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ABSTRACT We consider the problem of decision fusion for binary event detection using a sensor network of
nodes with non-identical detection and false-alarm probability pairs. We show that a soft decision fusion rule
that is used to make a binary decision inherently possesses a hard decision fusion (HDF) part. Revelation
of HDF part within the soft decision fusion rule, on the one hand, shows a connection between the two
approaches and, on the other hand, enables straightforward computation of network-level detection and false-
alarm probabilities. We consider the optimal soft decision fusion rule that minimizes the total probability
of error and reveal its inherent HDF part for a network of two nodes. We subsequently use it to develop a
radix-2 multistage decision fusion strategy for larger networks since revelation of HDF part for them is quite
time-consuming. We consider spectrum sensing by a cognitive radio-enabled wireless sensor network to
demonstrate the effectiveness of the proposed strategy. We show that the error performance of the proposed
strategy is close to that exhibited by the optimal soft decision fusion rule and is better than many suboptimal
hard and soft decision fusion strategies. The overall detection and false-alarm probabilities can be easily
computed using the proposed strategy. We also show that the EXOR and EXNOR binary fusion rules are never
optimal in minimizing the probability of error in decision making.

INDEX TERMS AND rule, detection probability, false-alarm probability, hard decision fusion, multistage
decision fusion, non-identical nodes, OR rule, probability of error, soft decision fusion.

I. INTRODUCTION
We begin with an analogy for cooperative decision making.
Consider a parliamentary democracy with two Houses,
namely, the Lower House (LH) and the Upper House (UH).
Themembers of LH are directly elected by the people through
voting where each vote is considered equal irrespective of
the caste, creed, sex, or social, economical or educational
background of the voter. The election of a candidate through
such voting is an example of hard decision fusion (HDF).
The members of UH, on the other hand, are elected indirectly
by the people through voting by their representatives in the
State Assemblies. In this case, each vote carries a weightage
proportional to the number of persons, the voter represents.
Such process of combining weighted decisions is called soft
decision fusion (SDF). Looking at the UH election process,
we realize that the ‘softness’ involved is ultimately to honor

the ‘hardness’ at the common people level, which is the
backbone of a democracy. In other words, this process, which
is SDF on surface, has a HDF part underneath.

In this work, we consider cooperative decision making to
detect a binary event. The optimal decision fusion rule that
minimizes the total probability of error (POE) in decision
making is Chair–Varshney (CV) rule, which is a SDF rule [1].
It is shown in the literature that for a network of identical
sensor nodes, i.e., the nodeswith identical detection and false-
alarm probability (DP and FAP respectively) pairs, the CV
rule becomes K -out-of-N (KN) rule, which is a HDF rule [2].
We show in this work that for a network of non-identical
sensor nodes, i.e., the nodes with non-identical DP and FAP
pairs, also, the CV rule contains a HDF part, though its
form may not be as simple as that of the KN rule. This
concomitance of HDF and SDF rules is evident from the
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following observations—For a network of N nodes, there
exist 22

N
possible HDF rules. One of these rules is optimum

for minimizing the total POE [2]. For the same network,
an optimum SDF rule (CV rule) also exists for minimizing
the total POE [1]. Two rules, one HDF rule and another SDF
rule, optimize the same quantity and both of them guarantee
optimization; this implies that they are same. Thus, for a
network of non-identical nodes, there exists a HDF equivalent
of the optimum SDF rule.

For such a network of non-identical nodes, it seems natural
to apply SDF, i.e., the individual nodes’ decisions should not
be treated equally and should be given weightages accord-
ing to their DP and FAP values. For a network of identical
nodes, on the other hand, all local decisions should be treated
equally, and therefore a HDF must be employed. This is
intuitive and is found in the literature also [2]–[14]. We,
however, in this work, develop a scheme based on HDF for a
network of non-identical nodes which exhibits performance
close to that depicted by the optimal SDF rule in terms of
the total POE. We emphasize that, in principle, it is possible
to obtain a HDF equivalent of SDF rule, and we show it
for a network of two non-identical nodes. For a network
of N nodes, in general, there exist 22

N
possible HDF rules,

which is a huge number even for small value of N , such as
N = 4. For those detection tests at the individual nodes in
which local DP is guaranteed to be greater than the local FAP
always, the monotonicity property of Boolean fusion rules is
followed. In such cases the optimumHDF rule cannot contain
the complements of local decisions, and therefore the possible
number of HDF rules reduces significantly from 22

N
[2].

This number is still much larger for efficient computation of
global DP and FAP. Therefore, for such networks obtaining
the HDF equivalent, though straightforward, is quite time-
consuming. We, therefore, use the HDF equivalent for two
nodes as a basic unit for larger networks and develop a new
multistage decision fusion (MDF) strategy, which we name
as a generalized radix-2 MDF strategy, since this strategy
works for a network of 2v non-identical nodes, where v is
a positive integer. In a challenging scenario where the local
DP may become smaller than the local FAP due to variations
in the values of those parameters on which these quantities
depend, the monotonicity property is not obeyed and the opti-
mal HDF rule may contain complement of local decisions.
We show for a network of two nodes, where in all 16 HDF
rules are possible, that even in this situation the EX–OR and
EX–NOR fusion rules can never be optimal. It is to be noted
that computation of DP and FAP for these two rules require
maximum number of multiplications among all HDF rules.

This work is motivated by two key requirements—one,
to establish a connection between SDF and HDF rules; and
two, to determine network-level performance in terms of DP
and FAP along with the POE. Numerous HDF and SDF
schemes, with their relative merits and demerits, exist for
event detection using distributed systems. We investigate a
common thread between these two approaches and show a

relation between them, which can be revealed through some
well-defined procedure. Another requirement is the com-
putation of network-level DP and FAP which is extremely
difficult for SDF rules, especially when the nodes of the
network are non-identical [15]–[19]. However, for HDF,
their computation is straightforward, though it may be very
time-consuming for large networks. Even though the POE,
as obtained by the CV rule, is optimum (minimum), the per-
formance in terms of DP or FAP may not be acceptable.
Depending upon the application, a minimum DP and a max-
imum FAP must be ensured. For a CR–WSN, for instance,
the knowledge of network-level DP and FAP respectively
gives information about the interference level with the PU
and the spectrum opportunity available to the secondary
users (SU). It is, therefore, required to compute the network-
level DP and FAP, which is possible once the CV rule is
expressed in the HDF form.

A. RELATED WORK AND CONTRIBUTIONS
Themethods proposed in the literature for binary event detec-
tion using data or decision fusion can be classified into two
categories—one, in which the sensor nodes participating in
the event detection have identical performance indexes; and
two, in which the sensor nodes participating in the event
detection have non-identical performance indexes, where the
performance indexes are measured in terms of the DP and
FAP pairs of the sensor nodes. These methods try to min-
imize the POE in event detection. However, computation
of the POE and the corresponding overall DP and FAP is
either very much time-consuming (for a network of identical
nodes) or intractable (for a network of non-identical nodes).
Computation of the overall DP, FAP and POE is required to
assess the system-level performance.

The initial key work on fusion strategies was done by
Chair and Varshney [1] and Tenney and Sandell, Jr., [20].
Tenney and Sandell, Jr., [20] focused on deriving the decision
rules at individual nodes. Chair and Varshney [1], on the
other hand, derived the optimal DF rule that minimizes the
POE in decision making. Since then several multistage fusion
strategies in the form of serial, parallel and tree topologies
have been proposed in the literature [2], [19], [21]–[24].
In serial topology based strategies, each node combines its
observations with that of the previous node and passes on
the whole information to the next node. In parallel topology
based strategies, all nodes transmit their observations about
the event to a node with higher processing capability and
memory, known as the fusion center (FC). In tree topology
based strategies, two or more nodes transmit their observa-
tions to other nodes in a hierarchical manner. The last node in
the hierarchy is usually a FC. The tree topology can be based
on a relay structure also in which intermediate nodes act as
relays and combine the decisions of previous nodes or relays
and pass them on to the successive relays without making
their own observations [22], [23]. Such a mechanism can also
be implemented within a FC in a parallel topology [25], [26].
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Zhang et al. [22], [23] consider a network of identical
nodes and focus on computing probability error bounds using
AND and OR rules as the size of the network increases.
Gupta et al. [25], [26] propose MDF strategies to minimize
the POE and at the same time to efficiently compute the POE
and the system-level DP and FAP. In their first work [25], they
consider a network of identical nodes, whereas in their second
work [26], they consider a network of non-identical nodes.
The MDF strategy considered for a network of identical
nodes, is a radix-2 strategy in which the decisions of nodes
are fused in pairs as per AND or OR rule and the process
continues in a hierarchical manner for a large network result-
ing in a POE performance which is close to the optimal one.
In theMDF strategy considered for a network of non-identical
nodes, a cluster of four randomly chosen non-identical sensor
nodes is formed. The decisions of the sensors of this cluster
are fused as per a two-stage decision fusion strategy, in which,
within the cluster, sensors’ decisions are fused in pairs as per
AND or the OR rule, and the two decisions are then fused
as per the OR or the AND rule. The process is repeated for
other clusters of four sensors, and then these decisions are
clustered in the groups of four. The process continues until
a final decision is obtained. This scenario, which considers a
network of non-identical sensor nodes, forms a more realistic
and practical problem. Therefore, we consider it in the present
work, with a different approach. In the previous work [26],
there is no attempt to get the optimal fusion at the cluster
level. However, in the present work, we propose a method
which ensures optimal fusion at the cluster level. It is known
that the optimal fusion rule for non-identical sensors network
is a SDF rule, which incorporates a weighted combination of
the performance indexes of individual sensor nodes. Though
such a fusion guarantees the optimal performance, the per-
formance per se cannot be evaluated. We propose in this
work a systematic procedure to express the SDF in terms
of AND and OR fusion of the local decisions and their
complements, which not only guarantees the optimal perfor-
mance, but ensures the evaluation of the performance as well.
We implement this approach over a large number of sensors in
a multistage fashion. Since the kernel of the present approach
is different from the previously proposed methods [25], [26],
the resulting multistage approach, in effect, is different from
them, even though it has a similar structure. It can be viewed
as the generalization of the previously proposed radix-2MDF
strategy [25], for a network of non-identical nodes. The per-
formance of the proposed strategy is close to that of the CV
rule and in certain practical scenarios, such as in CR–WSN,
the present approach works better than the previously pro-
posed approaches. Specifically, it performs better than many
other HDF rules such as AND, OR, HV, majority, and best
KN rules; and SDF rules such as maximal ratio combining
(MRC) and equal gain combining (EGC) rules [7], [27], and
another MDF strategy [26] in terms of POE and compu-
tational complexity in obtaining system-level DP, FAP and
POE. In developing the proposed strategy, we also prove that

EX–OR and EX–NOR Boolean fusion rules can never be
optimal in minimizing the POE.

The rest of the paper is organized as follows: Section II
presents the system model and introduces basic relations on
POE and CV rule. Section III explains how the CV rule can
be expressed in terms of HDF rule and does it for a two-node
network in general. It also explains it for a four-node network
with an example. Section IV proposes a generalized radix-2
MDF strategy for a network of 2v non-identical nodes, where
v is a positive integer, by using the optimal HDF equivalent
of CV rule for two nodes. It also presents the complexity
analysis of the proposed strategy and compares it with other
HDF and SDF techniques. Section V presents the simulation
results for a CR–WSN for various scenarios. A summary and
discussion of the work is presented in Section VI along with
the possible future research direction.

II. SYSTEM MODEL
With v as a positive integer, we consider a network of N = 2v

sensor nodes deployed for detecting a binary event with
non-identical DP and FAP pairs. We refer to such nodes as
non-identical nodes. Let (Pdi,Pfi) denote the DP and FAP
pair for ith node. DP and FAP denote the probability with
which the event is detected when the event actually occurs
and when the event actually does not occur respectively.
We assume that the FC can estimate these quantities along
with the prior probability of event’s presence. Such estimation
is possible with high accuracy in real time as reported in the
literature [28]–[34].

For increasing the reliability of the decision, cooperation
in event detection is used [35], [36]. Combining the local
decisions (decisions of individual nodes) by a FC is known as
decision fusion (DF). It can be either HDF or SDF. In HDF,
local decisions are combined directly without considering
local DP and FAP values; whereas in SDF a weighted com-
bination of decisions of individual nodes is considered where
the weights are functions of the nodes’ DP and FAP values.

Various counting rules described in terms of the
K -out-of-N (KN) rule belong to HDF. KN rule implies that
for event detection by the FC, at least K out of N nodes
should detect the event. Specific cases of KN rule include
OR rule (K = 1), AND rule (K = N ), half-voting (HV) rule
(K = dN/2e) and majority rule (K > dN/2e).

For KN rule, closed form expressions are available to com-
pute the global DP and FAP, which we denote by Qd and Qf
respectively [26]. If we denote the a priori probability of
the event to be present by α, then the POE, denoted by Pe,
in decision making by the FC is given by (1).

Pe = 1− [αQd + (1− α)(1− Qf )] (1)

The optimal fusion rule, whichminimizes POE is CV rule [1],
which can be written as (2).

3 =
α

(1− α)

∏
i

(ui=1)

Pdi
Pfi

∏
i

(ui=0)

(1− Pdi)
(1− Pfi)

H1
≷
H0

1 (2)
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Here,3 denotes the decision statistic, andH1 andH0 respec-
tively denote the hypotheses ‘event detected’ and ‘event not
detected’ as decided by the FC. Decision of the ith node is
denoted by ui, which is 1 or 0 for the presence or absence of
the event respectively. Denoting H1 and H0 also as 1 and 0
respectively, (2) can be written as (3). The CV rule assumes
that all nodes’ observations are independent.

3
1
≷
0
1 (3)

III. HARD DECISION FUSION WITHIN SOFT
DECISION FUSION
We begin by noting the fundamental difference between HDF
and SDF for a WSN with a FC. In HDF, binary decisions of
the individual nodes are combined without considering their
local DP and FAP values, even though the local DP and FAP
values and the fusion rule together decide the global DP and
FAP values. In SDF, on the other hand, as we note in the CV
rule, local DP and FAP values along with the local decisions
make the integral part of the fusion rule and is therefore
rightly expected to give better performance. Here, we ask a
basic question—Can we break a SDF rule, such as the CV
rule, into a HDF part and the SDF part? That is to say, can
we express the CV rule as HDF, i.e., in terms of local binary
decisions only, given local DP and FAP values? We show
in this section with an example of a two-node network that
it is indeed possible as the final decision is a binary (hard)
decision.

A. CV RULE AS A HDF RULE FOR A TWO-NODE NETWORK
Referring to (2) and denoting the factor α/(1 − α) by µ,
the decision statistic 3 takes the form as given in Table 1
where the decisions of two nodes denoted by u1 and u2 may
be 1 or 0 to indicate the presence or absence of the event
respectively. For a given set of (Pd ,Pf ) pairs for two nodes,
the final decision (D) can be obtained as 1 or 0 using Table 1
and (3). Once the complete listing of u1, u2 and D is known,
the CV rule, which is a SDF rule, can be expressed as a
Boolean fusion rule [2], which is a HDF rule.

TABLE 1. Decision statistic (3) for a network of two nodes as per CV rule.
Decisions of two nodes (u1 and u2) may be 0 or 1 to denote the
absence or presence of the event respectively. Accordingly, the decision
of the FC may be 0 or 1 as per the (DP, FAP) pair of the two nodes, viz.,
(Pd1,Pf 1) and (Pd2,Pf 2).

For a two-node network, the decision set (D) has six-
teen possibilities, from D0 = {0000} to D15 = {1111}
as per Table 1. Out of these sixteen possible decision sets,
D0 and D15 represent situations with final decisions respec-
tively as 0 and 1 always and they do not depend upon the
local decisions u1 and u2. The decision set D1 = {0001}

indicates the final decision to be 1 when both u1 and u2 are 1,
which is same as the AND rule. The final decision D in this
case, can therefore be written as the intersection of u1 and u2,
i.e., D = u1 ∩ u2. More precisely, we can write

{D = 1|Hj} = {u1 = 1|Hj} ∩ {u2 = 1|Hj} (4)

where j can be 1 or 0. Computing probability of (4) yields

Qx , Pr[D = 1|Hj] = Pr[{u1 = 1|Hj} ∩ {u2 = 1|Hj}] (5)

where Qx denotes network-level DP (Qd ) for j = 1 and
network-level FAP (Qf ) for j = 0. This is the general
approach of computing global DP and FAP and it can be
applied to a network of any number of nodes, by expressing
the final decision as the unions and/or intersections of local
decisions and/or their complements, and then computing the
probabilities as per the probability axioms [37]. The complete
list of possible global decisions in terms of local decisions and
the corresponding global DP and FAP is shown in Table 2.

TABLE 2. Global decisions D0 through D15 as unions and/or intersections
of local decisions and/or their complements (represented by a prime);
and the corresponding global detection and false-alarm probabilities.
Qx represents global probability and Pxi represents local probability of
i th node, where i = 1,2. Subscript x represents d for detection and f for
false-alarm.

An example for four nodes follows.
Example 1:Consider four nodes with their (Pd ,Pf ) pairs as

(0.8, 0.2), (0.7, 0.1), (0.9, 0.3), and (0.6, 0.2), and their local
decisions as ui with i = 1, . . . , 4. In general, for four nodes
there are 65, 536 possible decision sets from D0 through
D65,535. This example yields D831 = {0000001100111111}.
For this case, the final decision D can be expressed as

{D = 1|Hj} = {u1 = 1|Hj} ∩ {u2 = 1|Hj}

∪ {u1 = 1|Hj} ∩ {u3 = 1|Hj}

∪ {u2 = 1|Hj} ∩ {u3 = 1|Hj} (6)

which we rewrite, for convenience, as

D = (u1 ∩ u2) ∪ (u1 ∩ u3) ∪ (u2 ∩ u3) (7)
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assuming Hj. We note here that ui’s are independent but not
mutually exclusive events. Accordingly, the global DP and
FAP can be computed as

Qx = Px1Px2 + Px1Px3 + Px2Px3 − 2Px1Px2Px3 (8)

where ‘x’ represents ‘d’ for j = 1 and ‘f ’ for j = 0. Using Pd
and Pf values of the nodes along with (8) and (1) assuming
α = 0.5, the performance metrics at the FC, viz., Qd , Qf ,
Qd −Qf and Pe are respectively obtained as 0.9020, 0.0980,
0.8040, and 0.0980.
Remark 1: This example happens to be a 2-out-of-3 rule

as applied to u1, u2, and u3, with u4 being redundant. This
approach can be applied to KN rule in general and thus
we see that all counting rules can be expressed as unions
of intersections of local decisions. It may further be noted
that the union represents OR operation and the intersection
represents AND operation. We thus see that the KN rule can
be completely represented in terms of AND and OR rules
(also called unanimity rules) as applied to local decisions.
Remark 2: As we see in case of a two-network node, that

the HDF rule need not always be a counting rule, even in
that case the final decision can always be expressed as the
unions of intersections of local decisions or their comple-
ments. Thus we see that any HDF rule can be expressed in
terms of AND and OR rules of local decisions or their com-
plements. For detection tests at individual nodes when local
DP is always greater than local FAP, monotonicity property
of Boolean fusion rules holds and even the complements do
not appear [2]. We have already seen that a SDF rule such as
a CV rule can be expressed as a HDF rule; thus all DF rules,
whether HDF or SDF, can be expressed in terms of AND and
OR rules.
Remark 3: The corresponding global DP and FAP can

always be computed as per probability axioms applied to
representation of the global decision as in Remark 1 and
Remark 2.

IV. GENERALIZED RADIX-2 MULTISTAGE
DECISION FUSION
We now use the optimumHDF strategy for two nodes derived
from the CV rule in the previous section to develop a general-
ized radix-2 MDF strategy. The scheme requires the network
to have N = 2v nodes, where v is a positive integer. The
scheme works as follows: The decisions of N nodes are
collected in pairs randomly by the FC. Using the knowl-
edge of the local DP and FAP values, the FC applies the
HDF equivalent of the CV rule to each pair. The resulting
decisions are again fused in pairs using the resultant DP
and FAP values in the same manner. This process continues
forming a multistage approach until a final decision about
the presence or absence of the event is obtained along with
the corresponding global DP and FAP. The entire process
works as per Algorithm 1 and is depicted in Fig. 1. It should
be noted here that changing the decision pairings would
yield a different result. However, obtaining the best pairing
would increase the complexity of the scheme tremendously

Algorithm 1 RADIX2NONIDENT
Require: N , Pd = [Pdi]i=1,...,N , Pf = [Pfi]i=1,...,N ,

Dlocal = [Dlocali ]i=1,...,N , α
µ = α/(1− α)
for i = 1 to log2 N do
j = 1, k = 1
while j 6= N + 1 do
(Qdk ,Qfk ,Dk ) = CVTOBOOLEAN(Pd (j : j+ 1),

Pf (j : j+ 1),Dlocal(j : j+ 1), µ)
j = j+ 2, k = k + 1

end while
Pd = Qd ,Pf = Qf ,Dlocal = D
N = N/2

end for
Qd = Qd1,Qf = Qf 1,D0 = D1
return (D0,Qd ,Qf )

FIGURE 1. Generalized radix-2 multistage decision fusion strategy for
N = 2v , ‘v ’ a positive integer, non-identical nodes. Di , Pdi , and Pfi
respectively denote 1-bit decision, DP and FAP of the i th node Oi for
i = 1, . . . ,N ; Djk , Qdjk and Qfjk , ‘j ’ and ‘k ’ suitable integers, denote these
quantities respectively for intermediate stages; and D0, Qd , and Qf ,
respectively denote them for the final stage.

for largeN , without significantly improving the performance.
We, therefore, propose to pair the decisions randomly and
hence no complexity is involved with this step.

The function CVTOBOOLEAN works as follows:
1) Generate the truth-table for CV rule for 2 nodes as per

Table 1
2) As per the output of the truth-table (one of the decision

sets from D0 to D15), compute the global DP and FAP
(Qd and Qf ) and the final decision (D) as per Table 2.

We next consider Example 2 to illustrate the procedure of
radix-2 MDF strategy, in which we again consider the same
network of four nodes as considered in Example 1.
Example 2: We assume that the nodes are paired in the

order they appear in Example 1. The first pair of nodes with
(Pd ,Pf ) pairs (0.8, 0.2) and (0.7, 0.1) yields the truth-table
of OR rule, for which the Qd and Qf values of the pair are
obtained as 0.94 and 0.28 respectively. Similarly, for another
pair of nodes with (Pd ,Pf ) pairs (0.9, 0.3) and (0.6, 0.2),
the corresponding truth-table follows the decision of the first
node in the pair. Accordingly the Qd and Qf values of this
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pair of nodes become 0.9 and 0.3 respectively. At the second
stage, these intermediate DP and FAP pairs, viz., (0.94, 0.28)
and (0.9, 0.3) yield the truth-table of AND rule, which results
in the overall Qd , Qf , Qd −Qf and Pe as 0.846, 0.084, 0.762
and 0.119. Here again, we assume α = 0.5.
Example 3: To illustrate the effectiveness of the proposed

radix-2 MDF strategy, we compare it with another radix-2
MDF strategy proposed by Gupta et al. [25], which works
on the principle of combining the decisions of a node pair
as per the AND or the OR rule whichever yields higher
value of (Qd − Qf ) for that node pair. Accordingly, for the
present example, OR rule is applied for both the pairs, which
results in intermediate DP and FAP pairs as (0.94, 0.28) and
(0.96, 0.44). Similarly, the second stage also applies the OR
rule. The overall Qd , Qf , Qd − Qf and Pe are respectively
obtained as 0.9976, 0.5248, 0.4728 and 0.2636. As before,
α = 0.5 is assumed.
Thus, Example 1, Example 2 and Example 3 comprehen-

sively illustrate the procedure to express the CV rule in terms
of the HDF rule, which enables the computation of overall
DP, FAP and POE; and the procedure to apply the general-
ized radix-2 MDF strategy and its comparison with another
radix-2 strategy based on a different principle [25]. The POE
values, which are 0.0980, 0.119, and 0.2636, respectively, for
the three approaches, demonstrate the closeness of the pro-
posed strategy with the optimal strategy, and its superiority
over another radix-2 strategy available in the literature.

A. COMPUTATIONAL COMPLEXITY OF GENERALIZED
RADIX-2 MULTISTAGE DECISION FUSION STRATEGY
The proposedMDF strategy yields a global decision about the
presence or absence of the binary event under consideration,
along with the global DP and FAP values in v = log2 N
successive stages. The computation of DP and FAP in every
stage requires certain computations in terms of multiplica-
tions, divisions, additions and subtractions. Apparently mul-
tiplications and divisions consume more resources compared
to additions and subtractions. We, therefore, compute the
complexity of the proposed strategy in terms of the number
of multiplications and divisions. Moreover, for convenience,
we consider division operations equivalent to multiplication
operations.

Each stage of the radix-2 MDF requires multiple calls to
CVTOBOOLEAN function, which in turn generates the truth-
table as per Table 1, and subsequently computes the global DP
and FAP as per Table 2. To generate the truth-table once, 12
multiplications and 4 divisions are required. Counting num-
ber of divisions also under multiplications, generating the
truth-table once requires 16 multiplications. Table 2 lists all
possible decisions, D0 through D15 for two inputs. However,
assuming DPs to be greater than the corresponding FAPs at
the node level, which is true for all practical local detec-
tion tests, following the monotonicity property, the optimum
fusion cannot involve complement of the local decisions [2].
Thus, there remain only six possible fusion rules, namely,D0,
D1, D3, D5, D7 and D15. Among them D2 and D7 require one

multiplication each to compute DP and one multiplication
each to compute FAP. D0, D3, D5 and D15 do not require any
mathematical operation to compute DP and FAP. Since, only
one of these six possible fusion rules is optimum, to compute
DP and FAP for combining two decisions as per optimum
fusion rule, at maximum 2multiplications are required. Com-
bining it with 16 multiplications required to generate the
truth-table, total number of multiplications required for each
call to function CVTOBOOLEAN are 18. In all, the function
CVTOBOOLEAN is called 2v−1 times, which is evident from
Algorithm 1. In addition, 1 division is required to compute µ.
Thus, the total number of multiplications required by the
proposed radix-2 MDF strategy is 18× (2v − 1)+ 1 or 18×
(2log2 N − 1) + 1. For the special case of α = 0.5, i.e., for
equiprobable binary event, µ = 1, therefore, the number
of multiplications reduces to 14 × (2log2 N − 1). Clearly,
the computational complexity of the proposed strategy in
terms of number of multiplications is 2(N ).
In the general case, when DPs at the node level are not

necessarily greater than the corresponding FAPs, and may
become smaller due to changing parameters, the monotonic-
ity property of the Boolean fusion rules does not hold and
complements of local decisions may be involved in the opti-
mum global decision. However, we show in A thatD6 andD9,
which involve maximum number of multiplications in com-
puting global DP and FAP, are never optimal. Incidentally,
D6 and D9 respectively represent EX–OR and EX–NOR
Boolean operations. Thus, we show that EX–OR and
EX–NOR fusion rules are never optimal in minimizing the
total POE. Among remaining 14 possible DF rules from
D0 to D15, maximum number of multiplications required to
compute global DP and FAP are two, same as that for the case
when the local DPs are always greater than the corresponding
local FAPs. Thus, in the general case also, the total number
of multiplications required in computing global DP and FAP
are same as that for the special case of local DP greater than
the corresponding local FAP for all nodes.

B. COMPARISON OF COMPUTATIONAL COMPLEXITY
WITH COUNTING RULES
Computational complexity, in terms of the multiplica-
tions required, of the optimal counting rule for coopera-
tive event detection using a network of N non-identical
nodes, which results in the minimum POE among all
counting rules, as computed by Gupta et al. [26] is 2 ×(
3(N/2)− 1)2N + N + 1

)
. Following a similar approach,

the number of multiplications required for HV rule can be
evaluated to be

( N
N/2

)
+ (2N + 1)2N − 2N+2 − 2N + 6.

It can be similarly evaluated for other counting rules such as
majority rule, and except for the AND and OR rules, is found
to be of the same order. Thus, in general, the complexity of
counting rules in evaluating global DP and FAP is extremely
high even for a network of moderate size. Gupta et al. [26]
propose another MDF for such networks, which requires
M multiplications to compute global DP and FAP, where
M is given by [118(N − 1)/3], [118(N − 1)/3] + 4, and
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FIGURE 2. Comparison of computational complexity of optimal KN, MDF
proposed by Gupta et al. [26] and generalized radix-2 MDF strategy in
terms of multiplication required for N = 4,8,16, and 32 nodes.

[118(N − 1)/3] + 32, when N , N/2, and N/3 are divisible
by 4 respectively. Figure 2 shows the comparison of compu-
tational complexity of the proposed generalized radix-2MDF
with that of the optimal counting rule and the MDF proposed
by Gupta et al. [26]. We observe that the complexity of the
optimal KN rule and the HV rule increases exponentially with
the number of nodes, whereas it increases linearly for the
other two schemes. It can be seen that the proposed strategy
is the least complex among them.

V. SIMULATION RESULTS
We now present the simulation results to show the efficacy of
the proposed generalized radix-2 MDF strategy. We consider
two simulation scenarios.

1) Scenario I: A CR–WSN performing spectrum sensing.
2) Scenario II: Pd ∼ U (0.25, 0.75),Pf ∼ U (0, 0.5),

where ‘U ’ indicates uniform distribution.
In Scenario I, we consider a CR–WSN which performs

spectrum sensing. The individual CR nodes perform energy
detection (ED) for spectrum sensing [11], whereas the coop-
erative DF is performed following the proposed generalized
radix-2 MDF strategy. The simulation scenario considered is
as follows: The time–bandwidth product (u) is considered
to be 5, the energy detection threshold (λ) is chosen as 3,
the signal-to-noise ratio (SNR) (γ ) is taken as uniformly
distributed between 5 dB to 8 dB, and the noise variance (σ 2

n )
is assumed to be uniformly distributed between 0.01 to 0.1.
The DP (Pdi) and FAP (Pfi) of the ith node are respectively
computed in terms of Gaussian Q-function as [38]

Pxi = Q
(
λ− 2u(γxi + 1)σ 2

n
√
4u(γxi + 1)σ 2

n

)
(9)

where ‘x’ denotes ‘d’ for detection and ‘f ’ for false-alarm.
Further, γxi is γi when ‘x’ is ‘d’ and is 0 when ‘x’ is ‘f ’.

Fig. 3 compares the POE in binary event detection of
the generalized radix-2 MDF with the optimal SDF, namely,
the CV rule [2], two suboptimal SDF approaches based on
equal gain combining (EGC), which happens to be majority
rule under the simulation scenario considered, and maximal
ratio combining (MRC) [7], [27], and another MDF approach

FIGURE 3. Comparison of probability of error in binary event detection of
radix-2 MDF strategy with the optimal (CV) rule and some other
suboptimal soft and hard decision fusion rules, namely MRC based rule,
optimal KN, HV, majority, OR, and AND rules, and a hard decision fusion
based multistage scheme proposed by Gupta et al. [26] for
N = 4,8,16,32, and 64 nodes for Scenario I. Prior probability of the
presence of event (α) is considered to be 0.6.

recently proposed by Gupta et al. [26]. Comparison is also
done with all the counting rules. The counting rules consid-
ered cover entire range from OR rule to AND rule, including
HV and majority rules. Also considered is the best of the
counting rules, viz., optimal KN rule, which computes the
POE for all counting rules (from K = 1, . . . ,N ) and selects
that value of K , which yields the smallest POE. The binary
event is assumed to be present with a probability of 0.6. The
comparison is made for N = 4, 8, 16, 32, and 64 nodes in the
network. For simulation, 1000 instances of binary event are
generated and the results are averaged over 100 trials. It can
be observed from the figure that the proposed generalized
radix-2 MDF shows lower POE among the other subopti-
mal strategies and its performance is slightly inferior to the
optimal CV rule. Other suboptimal approaches show almost
similar performance with the multistage approach of [26]
showing better performance than that of MRC and EGC
(majority rule) based approaches. Similar results are obtained
for different prior probabilities of the presence of the event.
Comparing with counting rules, we observe that the proposed
strategy shows the best performance with the smallest POE.
We further observe that in general, the performance of all the
approaches improve with the increase in number of nodes,
except for the AND and OR rules for which the performance
deteriorates since the POE increases. Similar observations are
made with other prior probabilities of the presence of the
binary event.

Fig. 4 compares the proposed strategy with optimal CV
rule and other suboptimal SDF and HDF rules as done
in Fig. 3. However, now the comparison is for varying prior
probability of event’s presence from 0.1 to 0.9 in steps of
0.1. Number of nodes considered in the network are 8. It is
again observed that the proposed strategy shows the POE
performance very close to that exhibited by the CV rule and
superior to all other suboptimal SDF and HDF rules.

As expected, the optimal CV rule exhibits the best perfor-
mance with the least POE. The proposed strategy is close
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FIGURE 4. Comparison of probability of error in binary event detection of
radix-2 MDF strategy with the optimal (CV) rule and some other
suboptimal soft and hard decision fusion rules, namely MRC based rule,
optimal KN, HV, majority, OR, and AND rules, and a hard decision fusion
based ‘multistage’ scheme proposed by Gupta et al. [26] for prior
probability of event’s presence, (α) varying from 0.1 to 0.9 in steps
of 0.1 for Scenario I. The number of nodes N is considered to be 8.

to it with the POE somewhat inferior to that of CV rule.
However, at the cost of slightly poor POE compared to CV
rule, the proposed strategy has the advantage of straight-
forward computation of global DP and FAP with very low
computational complexity. Evaluation of these performance
indexes is extremely complex for other strategies except for
the MDF strategy of Gupta et al. [26] and the elementary
AND and OR rules. However, the POE performance for AND
and OR rules is very poor in general. For the MDF strategy
of Gupta et al. [26] it is much better, however, the proposed
strategy does better still.

Table 3 shows the Qd and Qf values also along with Pe
(the POE) for a network of 8 nodes and another network of 64
nodes for an equiprobable binary event. A closer look at this
table reveals that the CV rule is better than the proposed strat-
egy not only in terms of POE, but also in terms ofQd andQf ,

TABLE 3. Comparison of radix-2 MDF with other soft and hard decision
fusion approaches in terms of global detection probability (Qd ), global
false-alarm probability (Qf ) and probability of error (Pe) for prior
probability of the binary event’s presence (α = 0.5) and networks
of 8 and 64 nodes.

however, for the former these quantities are not easily com-
putable. It then suggests to compute these quantities using
the proposed strategy, and when the specified performance is
met, the CV rule should be applied as it will yield a better
performance. However, if the desired performance is not met
with the proposed strategy, it may not also be achieved with
the CV rule as their performances are close enough. In this
case, more number of nodes should be involved in cooperative
decision making until the desired performance is achieved.
It may be noted that more nodes will consume more power,
which must be kept in check; therefore, minimum number of
nodes which achieve set performance should be selected.

To demonstrate the effectiveness of the proposed radix-2
MDF strategy in general, we consider an application inde-
pendent scenario, Scenario II, wherein the DP and FAP of the
nodes are assumed to be uniformly distributed in the intervals
(0.25, 0.75) and (0, 0.5) respectively. These intervals are cho-
sen to emphasize that, in general, the DP at the sensor node is
greater than the corresponding FAP. However, to account for
occasional violation of this rule during the sensor’s working,
which may be caused because of the changing parameters on
which these probabilities depend, the corresponding intervals
are made to overlap to some extent. Fig. 5 compares the
performance of the generalized radix-2 MDFwith other HDF
and SDF approaches for a network of four nodes as the
prior probabilities of the event’s presence vary over a wide
range from 0.1 to 0.9. Simulations are done by generating
1000 instances of the binary event and the results are averaged
over 100 trials. We observe from the simulation curves that
the POE of the proposed strategy is close to that of the
optimal (CV) rule and is better than other suboptimal HDF
and SDF strategies.

FIGURE 5. Comparison of probability of error in binary event detection of
radix-2 MDF strategy with the optimal (CV) rule and some other
suboptimal soft and hard decision fusion rules, namely MRC based rule,
optimal KN, HV, majority, OR, and AND rules, and a hard decision fusion
based ‘multistage’ scheme proposed by Gupta et al. [26] for prior
probability of event’s presence, (α) varying from 0.1 to 0.9 in steps of 0.1
for Scenario II. The number of nodes N is considered to be 4.

VI. CONCLUSION
We proposed a generalized radix-2 multistage decision fusion
strategy for binary event detection with a view to achieve a
low probability of error in decision making and to enable
efficient computation of overall detection and false-alarm
probabilities at the same time for a network of nodes with
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non-identical local detection and false-alarm probability
pairs. The strategy followed a ‘divide and conquer’ approach
by dividing the number of nodes in the network in pairs
and applying the optimal hard decision fusion strategy on
those pairs and repeating this approach in successive stages,
which ensures a low probability of error at the network-level.
The optimal hard decision fusion applied to node pairs is
indeed a hard decision fusion equivalent of the optimal soft
decision fusion rule, which is more commonly known as
the Chair–Varshney (CV) rule. Establishing the connection
between the optimal hard decision fusion and the optimal soft
decision fusion which minimize the probability of error and
revealing this connection for a network of two nodes were
other important aspects of this work, which made the basis
for the proposed strategy. Through complexity analysis of
various soft and hard decision fusion strategies, we observed
that the proposed strategy is least complex for very small
to large size networks in computing global detection and
false-alarm probabilities, whose knowledgemay be necessary
in different situations. In addition, Monte Carlo simulations
revealed the superiority of the proposed strategy over other
suboptimal hard and soft decision fusion strategies in terms
of the probability of error. In general, the analysis provided
in this work revealed that the soft decision fusion simplifies
to expressing it as a Boolean expression, which is the form of
a hard decision fusion. Revelation of this simplicity, which
engenders new multistage approaches for decision fusion
with a potential to outperform the existing methods, is the
crux of the present work. It should be noted that if we could
obtain the hard decision fusion equivalent of the CV rule for
any network of N nodes, the performance of the proposed
scheme would be identical to that of the CV rule. Though,
in principle, it is possible to do so following the procedure
proposed in this work, it would increase the complexity
enormously for large N . We, therefore, attempt to achieve
a performance close to that of the CV rule by a multistage
decision fusion approach. The scheme proposed in this work
is based on the assumption that the fusion center is aware of
the detection and false-alarm probabilities of the individual
nodes. Though this assumption seems somewhat idealistic,
there are situations in which this information can be obtained
in real-time through fast estimation algorithms. Invention of
efficient and reliable fusion strategies that work for blind
situations will be an interesting work.

APPENDIX
Non-optimality of EX-OR and EX-NOR Fusion Rules
From (3) and Table 1, in general, for D6 = {0110}, which
is the EX-OR Boolean fusion rule, to hold, or in particular,
the decision to beD6, conditions (10) through (13) must hold.

µ[(1− Pd1)(1− Pd2)]/[(1− Pf 1)(1− Pf 2)] < 1 (10)

µ[(1− Pd1)Pd2]/[(1− Pf 1)Pf 2] > 1 (11)

µ[Pd1(1− Pd2)]/[Pf 1(1− Pf 2)] > 1 (12)

µ[Pd1Pd2]/[Pf 1Pf 2] < 1 (13)

We assume, without loss of generality, that Pd1 ≤ Pd2
and Pf 1 ≤ Pf 2. Then, there exist following six cases for
consideration:

Case 1 : 0 ≤ Pd1 ≤ Pd2 ≤ Pf 1 ≤ Pf 2 ≤ 1
Case 2 : 0 ≤ Pd1 ≤ Pf 1 ≤ Pf 2 ≤ Pd2 ≤ 1
Case 3 : 0 ≤ Pd1 ≤ Pf 1 ≤ Pd2 ≤ Pf 2 ≤ 1
Case 4 : 0 ≤ Pf 1 ≤ Pd1 ≤ Pd2 ≤ Pf 2 ≤ 1
Case 5 : 0 ≤ Pf 1 ≤ Pd1 ≤ Pf 2 ≤ Pd2 ≤ 1
Case 6 : 0 ≤ Pf 1 ≤ Pf 2 ≤ Pd1 ≤ Pd2 ≤ 1

We now show that for all these cases one of the test conditions
from (10) through (13) does not hold, therefore the decision
set D6, which is the EX-OR rule, never satisfies the CV rule
and therefore is never optimal in minimizing the total POE.
For illustration, we choose µ = 1 (α = 0.5) . It can similarly
be shown for any value of µ.
Case 1:

0 ≤ Pd1 ≤ Pd2 ≤ Pf 1 ≤ Pf 2 ≤ 1

⇔ 0 ≤ (1− Pf 2) ≤ (1− Pf 1) ≤ (1− Pd2)≤ (1− Pd1)≤1

⇔ (1− Pd1)(1− Pd2) ≥ (1− Pf 1)(1− Pf 2)

⇔ [(1− Pd1)(1− Pd2)]/[(1− Pf 1)(1− Pf 2)] ≥ 1

which violates test condition (10).
Case 2:

0 ≤ Pd1 ≤ Pf 1 ≤ Pf 2 ≤ Pd2 ≤ 1

⇔ 0 ≤ (1− Pd2) ≤ (1− Pf 2) ≤ (1− Pf 1)≤ (1− Pd1)≤1

⇔ 0 ≤ (1− Pd2) ≤ (1− Pf 2) ≤ Pd1 ≤ Pf 1 ≤ 1

⇔ Pd1(1− Pd2) ≤ Pf 1(1− Pf 2)

⇔ [Pd1(1− Pd2)]/[Pf 1(1− Pf 2)] ≤ 1

which violates test condition (12).
Case 3:

0 ≤ Pd1 ≤ Pf 1 ≤ Pd2 ≤ Pf 2 ≤ 1

⇔ 0 ≤ (1− Pf 2) ≤ (1− Pd2) ≤ (1− Pf 1)≤ (1− Pd1)≤1

⇔ (1− Pd1)(1− Pd2) ≥ (1− Pf 1)(1− Pf 2)

⇔ [(1− Pd1)(1− Pd2)]/[(1− Pf 1)(1− Pf 2)] ≥ 1

which violates test condition (10).
Case 4:

0 ≤ Pf 1 ≤ Pd1 ≤ Pd2 ≤ Pf 2 ≤ 1

⇔ 0 ≤ (1− Pf 2) ≤ (1− Pd2) ≤ (1− Pd1)≤ (1− Pf 1)≤1

⇔ 0 ≤ (1− Pd1) ≤ Pf 2 ≤ Pd2 ≤ (1− Pf 1) ≤ 1

⇔ (1− Pd1)Pd2 ≤ (1− Pf 1)Pf 2
⇔ [(1− Pd1)Pd2]/[(1− Pf 1)Pf 2] ≤ 1

which violates test condition (11).
Case 5:

0 ≤ Pf 1 ≤ Pd1 ≤ Pf 2 ≤ Pd2 ≤ 1

⇔ Pd1Pd2 ≥ Pf 1Pf 2
⇔ [Pd1Pd2]/[Pf 1Pf 2] ≥ 1

which violates test condition (13).
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Case 6 :

0 ≤ Pf 1 ≤ Pf 2 ≤ Pd1 ≤ Pd2 ≤ 1
⇔ Pd1Pd2 ≥ Pf 1Pf 2
⇔ [Pd1Pd2]/[Pf 1Pf 2] ≥ 1

which violates test condition (13).
It can similarly be shown for any value ofµ (all 0 ≤ α ≤ 1)

that one of the test conditions from (10) through (13) is
never satisfied. Thus, EX-OR can never be an optimal fusion
rule. On the similar lines, it can be shown that EX-NOR
[D9 = {1001}] can also never be an optimal fusion rule.
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