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ABSTRACT In recent years, tactile sensors have experienced tremendous progress. Among them, piezore-
sistive tactile sensors using nanocomposites exhibit good flexibility and sensitivity. Due to their low cost
and good performance, piezoresistive tactile sensors have great potential for large-scale commercialization.
However, the drawbacks are equally obvious, i.e., poor consistency and low-sensing range. The fundamental
reason is that conductive fillers have poor decentralization in polymer and lacks an effective structural
design. To solve these problems, we compared six common organic solvents in the solution blending
method to prepare the multi-walled carbon nanotubes/polydimethylsiloxane (MWCNT/PDMS) composite.
The optimal organic solvent by comparing the dispersion performance of MWCNT and the stability of
MWCNT/PDMS is presented. Moreover, the well-consistent tactile sensors were proposed and fabricated
using the micro-electromechanical systems technologies. The sensitivity reached 6.25% KPa−1, and the
reproducibility test of the same sensor has been performed. The result proves that the proposed schemes
for nano-materials preparation and processing have greatly improved the consistency of the piezoresistive
tactile sensors.

INDEX TERMS Humanoid robots, tactile sensors, microelectromechanical systems, nanocomposites.

I. INTRODUCTION
Thanks to the excellent electrical, thermal and mechani-
cal properties, carbon nanotubes (CNTs) have been widely
used in the fields of materials, biomedicine, and micro-nano
devices since the discovery of CNTs in 1991 by Iijima [1].
The incorporation of CNTs into polymers to prepare
nanocomposites has received extensive attention in recent
years. This kind of nanocomposites has good piezoresistive
effect under the premise of preserving the flexibility and
extensibility of the polymer, and the related research has
become an important research direction of electronic skin.
Compared to the common nanofillers, such as nano-silver
particles [2] and carbon black (CB) [3], CNTs have an
ultra-high aspect ratio (typically above 1000: 1), making the
CNTs/polymermaterial maintain high conductivity at a lower
doping amount, which greatly improves the mechanical prop-
erties of composite materials. Polydimethylsiloxane (PDMS)
is an inert, non-toxic polymer organosilicon compound and
widely used in the micro-channel structure design of micro-
electromechanical systems (MEMS) chips because of its
good elasticity and biocompatibility [4], [5].

The current issues of piezoresistive tactile sensors using
CNT/PDMS composites are lack of consistency among each
sensing elements and lack of reproducibility [6]. To solve
these, it is necessary to fabricate easy-rebound structure and
improve the dispersion uniformity of CNTs in PDMS. If the
dispersion is not good enough, the conductivity between
different sensors could differ greatly, resulting in poor con-
sistency. Without a good easy-rebound structure, the sensor
cannot maintain good consistency over long periods of use.

The biggest challenge in the preparation of CNTs/PDMS
composites is to overcome the phenomenon of aggregation
to distribute CNTs evenly in PDMS against van der Waals
forces in CNTs. In recent years, the common preparation
methods include melt blending method [7], polymeriza-
tion method [8] and solution blending method [9]. Among
them, the solution blending method has a good applica-
tion prospect because of its simple operation and has good
dispersion effect. The key of this method is the selection
of organic solvent to make CNTs have good dispersion
effect and dissolve in PDMS. In literatures, the organic
solvents used consist of toluene [10], ethanol [11], chloro-
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FIGURE 1. Diagram of the tactile sensor structure.

form [12], n-hexane [13], tetrahydrofuran (THF) [14] and
dimethylformamide (DMF) [15].

The designs on the easy-rebound structure mainly involves
pyramids [10], [16], [17], V-shape grooves [18], andGaussian
random distribution surface profile [19]. The structure was
designed not only to increase the response time, but also
augment the sensitivity of the sensor. The feature size and
density of the structure are also the key parameters that need
to be optimized.

In this paper, the dispersion performance of MWCNT and
the stability of MWCNT/PDMS in the six organic solvents
were compared, and a novel process to distribute CNTs was
proposed. Based on the prepared MWCNT/PDMS, a tactile
sensor with good consistency was further fabricated based
on MEMS technique. The structure diagram is shown in
FIGURE 1. The sensor test experiments demonstrate that
the proposed preparation process of MWCNT/PDMS and the
structure help improve consistency.

II. EXPERIMENT
A. PREPARATION OF MWCNT DISPERSION
10 mg MWCNT and 40 mL each of organic solvents, includ-
ing toluene, ethanol, chloroform, n-hexane, THF, and DMF
were separately added into six beakers. The six mixtures
were agitated in ultrasound for 1 hour to obtain MWCNT
dispersion.

B. PREPARATION OF MWCNT/PDMS COMPOSITES
500 mg PDMS was added to 20 mL chloroform solution and
stirred magnetically for 10 min. The PDMS/chloroform mix-
ture was poured into the MWCNT/chloroform dispersion and
then sonicated to disperse for 1 hour at 60◦C. The evaporation
of the solution while sonication can reduce the phenomenon
of the composite material adhering to the wall of the beaker
compared to the solution evaporation alone. After ultrasonic

dispersion is completed, the mixture is heated in a constant
temperature water bath (60◦C). The temperature is close
to the boiling point of chloroform, so it can accelerate the
evaporation of chloroform, and help to maintain uniform
dispersion of MWCNTs in PDMS. Heating lasts until the
chloroform is completely evaporated. The complete evapora-
tion can be established by measuring the mass of MWCNTs
and PDMS left in the beaker. The curing agent was added in
a ratio of 1:10 to the base and stirred manually for 5 min. The
beaker was placed in a vacuum drying oven and degassed for
15 min. TheMWCNT/PDMS composites were then prepared
by placing them in a 100◦C drying oven for 1 hour.

C. FABRICATION OF SILICON TEMPLATE
Si wafer with 100 nm thick SiN layer was used as the
substrate. The pyramid base SiN layer was patterned by

FIGURE 2. Fabrication process of silicon template.
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FIGURE 3. Fabrication process of the piezoresistive tactile sensor.

FIGURE 4. SEM image of patterned MWCNT/PDMS composites. (a-b) pyramids; (c-d) truncated pyramids.

photolithography and etched by reactive ion etching (RIE).
The pyramid structure was then wet-etched with potassium
hydroxide (KOH) and the truncated pyramid structure was
obtained by controlling the etching time (FIGURE 2).

D. FABRICATION OF TACTILE SENSOR
The fabrication process flow is illustrated in FIGURE 3. The
fabrication procedure is divided into three processes. Each
process was completed individually.

In the first process, a 200 µm thick PDMS was spin coated
on a 5 inches silicon wafer substrate and thermally cured at
100 ◦C in the hot drying cabinet for 30 min. A 50 nm thick
Cr layer and a 200 nm Au layer were sputtered on the PDMS
film as the electrode layer with a stainless steel shadowmask.
The PDMS was then peeled off from the silicon substrate
(FIGURE 3a).

In the second process, the prepared CNT/PDMS composite
was spin-coated on the prepared silicon mould and thermally
cured at 80 ◦C for 45 min. Then 4 × 4 mm2 sensing ele-
ments were cut out individually and peeled off from the
mould (FIGURE 3b). FIGURE 4 shows the scanning elec-
tronmicroscopy (SEM) images of patternedMWCNT/PDMS
composites.

Similarly, in the third process, a 170-µm-thick PDMS film
was spin-coated on the mould as an intermediate isolating
layer. A 1 µm thick parylene-C was deposited on the mould
in between Si and PDMS to avoid the PDMS agglutination on
Si. After thermal curing at 100 ◦C for 30min, the intermediate
isolating PDMS layer was patterned by knife-cutting with a
hard mask (FIGURE 3c). Then, the intermediate isolating
PDMS layer was stacked in between the top and bottom
layers and the composite sensing elements were filled in
indentations of isolating layer.

Finally, the upper PDMS layer with metals was attached
on intermediate PDMS layer using PDMS gel and the device
was thermally hard cured (FIGURE 3d). The image of the
fabricated flexible tactile sensor is shown in FIGURE 5a. The
sensor is flexible to be attached on cylinder, and is able to
twist, and stretch, as shown in FIGURE 5b-d.

III. RESULTS
A. ORGANIC SOLVENT SELECTION
FIGURE 6.a and b are photographs of the six MWCNT after
sonication dispersions for 5 min and 30 min. The MWCNT
in toluene and n-hexane appeared precipitation soon after
sonication, indicating that the dispersion ofMWCNT in these
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FIGURE 5. Flexible tactile sensor. (a) placed on the plane; (b) attached on
the cylinder; (c) twisted; (d) stretched.

FIGURE 6. The dispersion effect of MWCNT dispersed in different
solvents after a period of time. (a) 5 min after sonication. (b) 30 min after
sonication. (c) Two weeks after sonication.

two solutions was poor and these two solvents are not suitable
to use in this application. Chloroform, DMF, THF and ethanol
had good dispersion effect on MWCNT, and their solution
could keep steady for longer than two weeks.

FIGURE 7 shows the transmission electron microscopy
(TEM) images of these four dispersions. It is seen that the
DMF and THF have the best dispersion effect on MWCNTs.
There are only minor micron size agglomerations. The
ethanol performs worst among the four solvents, where phe-
nomenon of serious agglomeration exhibits.

FIGURE 7. TEM images of the four MWCNT dispersions. (a) MWCNT-DMF.
(b) MWCNT-THF. (c) MWCNT-Chloroform. (d) MWCNT-Ethanol.

FIGURE 8. The phenomena of adding DMF and ethanol into PDMS matrix.
(a) The substance that PDMS reacts with DMF. (b) PDMS is insoluble in
ethanol.

TABLE 1. Performance comparison with different solvents.

In the experiment of mixture of PDMS and solvents, DMF
reacts with PDMS to produce white colloidal material, and
PDMS is insoluble in ethanol, either (FIGURE 8). Then,
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TABLE 2. Sensitivity comparison with up to date results.

FIGURE 9. The dispersion effect of MWCNT / PDMS mixture in chloroform
and THF. (a) 1 hour after sonication. (b) 10 hours after sonication.

we compared the stability of MWCNT/PDMS composites in
chloroform and THF. The MWCNT dispersion of THF and
chloroform were separately mixed with PDMS solution, and
left standing for one hour after sonication. It can be seen
that the dispersion effect of MWCNT/PDMSmixture in THF
solution is poor, and the precipitation phenomenon is obvi-
ous, as shown in FIGURE 9a. Since it usually takes 5-6 hours
(50 mL of solvent, 60-70◦C) to evaporate the solvent in the
solution blending method, it is not appropriate to use THF.
The mixture in chloroform can maintain a uniform dispersion
state for at least 10 hours, as shown in FIGURE 9b. Therefore,
chloroform is the optimal solution among the six test solvents.
The SEM image of the cross section is shown in FIGURE 10.
It’s obviously observed that MWCNTs are dispersed evenly
in PDMS.

FIGURE 10. SEM image of the cross section of MWCNT/PDMS.

We used Hexane, THF and chloroform as common organic
solvents to prepare tactile sensors, and tested their sensitivity
and consistency to illustrate the effect of different dispersion
levels of MWCNT/PDMS on sensor performance. We tested
10 sensors for each organic solvent, the sensitivity was aver-
age, and the difference in consistency was the two with the
largest difference. The results were presented in TABLE 1,
it could be seen that the sensor prepared by chloroform is
superior to the other two in terms of sensitivity and con-
sistency, especially consistency. It is further proved that the
dispersion ofMWCNT/PDMS is the main factor affecting the
performance of the sensor.

B. ELECTRICAL CHARACTERISTICS
OF MWCNT/PDMS COMPOSITE
After evaporation of the chloroform, the prepared MWCNT/
PDMS composites were cured into 25× 1.5× 1.5 mm3 strip
shape using 3-dimensional (3D) printing mold. We tested
the current-voltage (I-V) curve using electrochemical ana-
lyzer. The result is shown in FIGURE 11.a, the composites
exhibit stable resistance in the range of −15V to 15V. The
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FIGURE 11. Electrical characteristics of the CNTs-PDMS composite.
(a) Current-voltage curve of the CNTs-PDMS composite. (b) Resistance vs.
Temperature curve.

resistance of the composite sample was further measured
within 20-60 ◦C in the stability test. The results show that
the resistance value fluctuates with 2% in FIGURE 11.b.
The prepared MWCNT/PDMS composites exhibit excellent
electrical properties and could be used as sensitive materials
for piezoresistive tactile sensors.

C. CHARACTERISTICS OF TACTILE SENSOR
The parameters such as the length of the pyramid base,
the density of the micro-structure, and shape of the pyra-
mid base were explored to find the best performing struc-
tural design. Experiment results are shown in FIGURE 12.
Sparse pyramid structures are more sensitive than densely
arranged pyramid structures, as shown in FIGURE 12. a.
This conclusion is consistent with previous work [16]. The
pyramid structure has a higher sensitivity in the lower pres-
sure measurement range, while the tactile sensors with trun-
cated pyramid structure could obtain a wider measurement
range, as shown in FIGURE 12. a, when the applied pres-
sure is greater than 15 kPa, the resistance of sensor with
whole pyramid structure would not change anymore. In addi-
tion, the pyramid structure with 20 µm feature size narrows
the measurement range of the tactile sensor, as shown in
FIGURE 12. b due to its small deformation range.

Take the sensor with 50µm sparse truncated structure as
an example, the sensitivity could reach 6.25%/kPa in the
0 to 100kPa pressure range and 1.23%/kPa in the 10 to 22 kPa
range. The comparison with some up to date results is shown

FIGURE 12. Characterization of tactile sensors. (a) Test results of tactile
sensors with 50 µm feature size. (b) Test results of tactile sensors with
20 µm feature size. (c) Sensitivity curve with increasing number of test
cycle.

in TABLE 2. It can be seen that the sensitivity of the sensor
fabricated by our method reaches state-of-the-art level.

The repeatability of the device (50 µm sparsely arranged
truncated pyramid structure) was tested by periodically
applying a 0.1 N normal force on the device surface by a
transmission stage with high-precision force gauge (MARK-
10 SH-2). The result is shown in FIGURE 12c black line.
The sensor showed excellent consistency in 1000 rounds
of testing, with a sensitivity variation of 2.4%. We further
tested the resistance of the sensors produced in the same
batch and produced with the same parameters in different
batch. The initial resistance variation was within 1.2%, and
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TABLE 3. Consistency comparison with up to date results.

the sensitivity change was less than 0.54%. Then we test the
1000-rounds sensitivities of these two sensors, as shown in
FIGURE 12c red and blue lines. Consistency among different
sensors withstood long-term tests with a sensitivity change
of less than 3.3%. The consistency comparison with some
up to date results is shown in TABLE 3. It can be seen
that the consistency of the sensor fabricated by our proposed
method is much higher than current results. The methods and
processing techniques we proposed to produce composites
and sensors show excellent consistency and could be used for
reference in large-scale industrial production.

IV. CONCLUSION
In this work, we address the main problems, i.e. poor con-
sistency of the nanocomposite based piezoresistive tactile
sensor. Optimal solution to prepare the most dispersible
MWCNT/PDMS composites was proposed and proved by
comparing the six common organic solvents in the solu-
tion blending method to prepare MWCNT/PDMS compos-
ite. It is demonstrated that chloroform is the best choice of
organic solvents by comparing the dispersion performance
of MWCNT and the stability of MWCNT/PDMS. Moreover,
the MEMS processing technology was utilized to achieve the
resilient microstructures to improve the sensitivity and sens-
ing range The effect of different structural parameters on the
performance of the sensor was explored. The reproducibility
test of the same sensor and the test results of different sensors
in the same batch and different batches have proved that the
proposed preparation materials and processing schemes have
greatly improved the consistency of piezoresistive tactile
sensors.

In the future work, dense tactile sensor array will be pro-
posed to achieve tactile sensing over the body. Meanwhile,
scanning circuit and tactile signal processing algorithm will
be studied.
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