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ABSTRACT Linear precoding algorithms with low complexity in massive multi-in multi-out system have
always been a hot research topic to solve the problem of inter-cell interference. In this paper, we proposed
a conjugate gradient-based regularized zero-forcing (CG-RZF) precoding algorithm, with which the base
station can directly obtain the transmitted signal after RZF precoding and avoid directly solving the inverse
matrix in RZF. Moreover, an RZF precoding algorithm based on a parallel conjugate gradient (Parallel-CG-
RZF) is also proposed, which can optimize initial values and iterative process of the aforementioned CG-RZF
precoding algorithm. The simulation results have shown that the proposed CG-RZF and the optimized
Parallel-CG-RZF precoding algorithm can significantly improve the performance of bit error rate with
fast convergence speed compared with other precoding algorithms and can reduce the number of global
communications. Meanwhile, the calculation complexity of the proposed CG-RZF and Parallel-CG-RZF
precoding algorithm is much lower than the optimized Chebyshev iteration algorithm.

INDEX TERMS Massive MIMO systems, parallel conjugate gradient, RZF, bit error rate, calculation
complexity.

I. INTRODUCTION
With the development of wireless communication technol-
ogy, the number of data transmission and access devices
has grown exponentially in the communication networks [1].
As one of the key and promising technologies of 5G [2],
massive MIMO technology can support higher data trans-
mission rates, enhance system capacity, and improve power
efficiency and spectrum efficiency, and thus it has broad
prospects in application. However, the use of large number of
antennas in the massive MIMO systems may cause series of
limitations to the mobile communications networks, such as
cell interference, pilot pollution, and multi-user interference.
Precoding technique [3] can be used to overcome above lim-
itations effectively based on kinds of precoding algorithms.

The precoding algorithm can obtain a related precoding
matrix based on the acquired channel state information (CSI),
with which the transmitted signal can be precoded before
transmission, and thus the received signal by the users can
avoid inter-user interference in the cell.

According to different modes of creating the precoding
matrix, the precoding algorithms are classified into non-linear
precoding algorithms [4] and linear precoding algorithms,
respectively. The linear precoding algorithms have much
lower complexity and are easier to obtain the precoding
matrix than the non-linear precoding algorithms [5], and
thus becoming more suitable for use in the massive MIMO
systems. In linear precoding algorithms, the Regularized
Zero-Forcing (RZF) precoding algorithm is improved form
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Zero-Forcing (ZF) precoding algorithm, and can obtain a
much better performance as the number of transmitting anten-
nas increases, and therefore, this paper proposed a lower
complexity precoding algorithm based on the RZF precoding
algorithm.

Linear precoding algorithms are designed to obtain the
approximate solution of an inverse matrix in the precoding
algorithm indirectly by some proposed methods, rather than
calculating the inverse matrix directly to reduce the calcu-
lation complexity. These algorithms are mainly divided into
three categories based on series expansion [6], iterative meth-
ods [7] and gradient methods [8]. In [9], the inverse matrix in
the precoding algorithm is developed based onKapteyn series
which can be truncated to reduce the calculation complex-
ity. In [10], Symmetric Successive Over Relaxation (SSOR)
iteration method is proposed to obtain the estimation of the
inverse matrix to lower the direct calculation complexity.
After several iterations, the obtained iterative results are
approximately equal to the required inverse matrix. In [11]
a mixed iteration method combined with conjugate gradients
is proposed, i.e. joint Conjugate Gradient and Jacobi iteration
(CGJC), which can speed up convergence and thus reduce
bit error rate in the precoding algorithm. In [12], a novel
low-complexity linear precoding algorithm based on Jacobi
method (JM) is proposed to avoid calculating the matrix
inversion, which can achieve the near-optimal performance
and capacity-approaching of ZF precoding with a reduced
number of iterations. In [13], a low-complexity precoding
scheme based on dirty paper coding and zero-forcing is
proposed to improve the downlink sum rate for a multi-cell
massive MIMO system and combines a reduced form of QR
decomposition and an orthogonal projection by applying a
quasi-Newton algorithm per iteration. In [14], a low peak-to-
average power ratio precoding scheme based on an approx-
imate message passing algorithm is proposed to minimize
multiuser interference in massive multiuser MIMO systems,
which exhibits fast convergence and low complexity charac-
teristics. In [15], the precoding algorithms of iterative discrete
estimation and IDE2 are developed for a downlink massive
MU-MIMO system with finite-alphabet precoding based on
the alternating direction method of multipliers framework.

In this paper, a low complexity RZF precoding algorithm
based on the conjugate gradient method for Massive MIMO
Systems is proposed. The main contributions of this paper are
as follows. Firstly, a conjugate gradient based RZF precoding
algorithm (CG-RZF) is proposed, with which the base station
can directly obtain the transmitted signal after RZF precoding
and avoid directly solving the inverse matrix in RZF and
thus reducing the calculation complexity. Secondly, a parallel
conjugate gradient based RZF precoding algorithm (Parallel-
CG-RZF) is also proposed by optimizing initial values and
iterative process of the aforementioned conjugate gradient
based RZF precoding algorithm, which can not only accel-
erate the convergence speed, but also reduce the number
of global communications overhead. Thirdly, the calculation
complexity of both conjugate gradient and parallel conjugate

gradient based RZF precoding algorithm is reduced greatly,
meanwhile, they can improve the performance of theMassive
MIMO Systems in terms of BER significantly.

The remainder of this paper is organized as follows.
Section II describes the system model. Section III presents
the proposed RZF precoding algorithm based on parallel
conjugate gradient and parallel conjugate gradient, respec-
tively, and then also analyzes the complexity of both proposed
algorithms. Section IV investigates the performance of the
proposed algorithms and shows simulation results in terms of
the BER for CG-RZF precoding algorithm, Parallel-CG-RZF
precoding algorithm and other RZF precoding algorithms,
respectively. Section V concludes this paper.

II. SYSTEM MODEL
As shown in Fig. 1, the defined massive MIMO system
consists of a multi-antenna (M-antennas) Base Station (BS)
and several single-antenna (S-antenna) users. Let M denote
the number of transmit antennas of the BS, and K denote the
number of single-antenna users, respectively. In the system,
the real channel state information (CSI) matrix between the
BS and the users can be denoted by [16]

H = [h1, . . .hK ] ,hk ∈ CM×1 (1)

where hk is the real channel matrix from the k-th single
antenna user to the BS, which subjects to an average of 0
Gaussian distribution.

FIGURE 1. System model.

The estimated channel matrix obtained by the BS based on
the real CSI matrix in equation (1) is calculated as

Ĥ =
[
ĥ1, . . . ĥK

]
∈ CM×K (2)

where ĥk ∈ CM×1 is the estimated channel matrix between
the BS and the k-th single-antenna user calculated by the BS.
Suppose that ĥk subjects to Gaussian distribution, i.e. ĥk ∼
CN (0M×1,8) where 8 ∈ CM×M is the channel covariance
matrix. However, in the actual channel environment, the BS
may not be able to accurately obtain the estimated CSI matrix
from equation (2), so this paper uses the general Gaussian
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Markov model [17] to estimate channel matrix as follows.

ĥk =
√
1− τ 2hk + τnk (3)

In equation (3), τ ∈ [0, 1] is the channel estimation parame-
ter, and τ = 0 means that the estimated channel matrix is the
same as the real channel matrix, which denotes the channel
estimation is quite accurate. In this model, the channel noise
is also estimated by nk , which follows the Gaussian distribu-
tion nk ∼ CN

(
0, σ 2

)
and is distributed with the matrix hk

independently and identically.
The signal received by the k-th user can be expressed as

yk = ĥHk x+ zk (4)

where matrix x denotes the transmitted signal from the BS,
and zk denotes additive white Gaussian noise at the k-th user,
which satisfies zk ∼ CN (0, σ 2).
Let s = [s1, . . . , sK ]T ∼ CN (0K×1, IK×1) denote the

transmitting data signal required by users from the BS, where
sk is the only desired signal for the k-th user. For mitigating
thesemulti-user data interference, the transmitting data signal
s should be precoded before being transmitted by the BS [18],
and thus the transmitted signal x in equation (4) can be
calculated by

x = Gs (5)

where matrix G = [g1, . . . , gK ] ∈ CM×K is the precoding
matrix for the proposed precoding algorithm, which should
satisfy the power constraint condition tr

(
GGH

)
= P and P

is the overall transmitting power at the BS.
The proposed RZF precoding algorithm based on conju-

gate gradient is to obtain the transmitted signal matrix x in
equation (4) directly and can avoid calculating the specific
precoding matrix in equation (5). In this paper the Bit Error
Rate (BER) is used to evaluate the performance of the pro-
posed algorithms. The estimated received signal after signal
detection can be expressed as

x̃ =Wy (6)

This paper adopts MMSE signal detection algorithm [19]
to decode the received signal and the detection matrixW can
be denoted by

W =
(
HHH+ σ 2I

)−1
(7)

Thus, the estimated received signal x̃ is compared statistically
with the original transmitted signal x to obtain the perfor-
mance of the BER.

III. RZF PRECODING ALGORITHM BASED
ON CONJUGATE GRADIENT
This section first makes a clear explanation to the pro-
posed conjugate gradient based RZF precoding algorithm
(CG-RZF), and then proposes a parallel conjugate gra-
dient based RZF precoding algorithm (Parallel-CG-RZF)
by further optimizing initial values and iterative process
of the aforementioned CG-RZF precoding algorithm, and

thus improving the performance in terms of Bit Error Rate
(BER) and reducing the number of global communications
overhead.

A. THE CONJUGATE GRADIENT BASED RZF
PRECODING ALGORITHM (CG-RZF)
According to [20], the RZF precoding matrix can be
expressed as

G = βĤ
(
ĤHH+ ξIK

)−1
(8)

Suppose A = ĤHH + ξIK , and substitute matrix A into
equation (8), we can obtain

G = βĤA
−1

(9)

Then substituting equation (9) into equation (5), we can have
the transmitted signal x calculated by

x = βĤA−1s (10)

Finally, let t = A−1s and we can obtain the linear equation as
follows.

At = s (11)

From the above, by using the conjugate gradient method to
calculate the vector t based on the equation (11), the trans-
mitted signal can be obtained directly, and avoid solving the
specific precoding matrix. The detailed procedure of the pro-
posed RZF precoding algorithm based on conjugate gradient
is presented as follows.

Next, we discuss the convergence of the proposed CG-RZF
precoding algorithm. According to the convergence theo-
rem of classical conjugate gradient method proved in [21]
and [22], the convergence condition of the iterative vector tk
in the above Algorithm 1 can be expressed as follows.

0 ≤
∥∥tk − t∗

∥∥
A ≤ 2

(√
λ1 −

√
λn

√
λ1 +

√
λn

)k ∥∥t0 − t∗
∥∥
A (12)

where A =
(
ĤHĤ+ ξIk

)
in the Algorithm 1 denotes an

n-order real symmetric positive definite matrix, and the max-
imum and minimum eigenvalues of A are denoted by λ1 > 0

Algorithm 1 The Proposed RZF Precoding Algorithm Based
on Conjugate Gradient

(Input Ĥ, s; Output x)

1. A =
(
ĤHĤ+ ξIk

)
2. t0 = 0, r0 = s− At0, p0= r0
3. for k = 0:n-1
4. µk = (rk , rk) /

(
pj,Apj

)
5. tk+1 = tk + µkpk
6. rk+1 = rk − µkApk
7. ηk = (rk+1, rk+1) / (rk , rk)
8. pk+1 = rk + ηkpk
9. end
10. x = βĤtn
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and λn > 0, respectively. In addition, the accurate value of
the iterative vector tk is denoted by t∗ and the initial value of
the iterative vector tk is denoted by t0.
For the convergence, the right of the equation (12) can be

converged to zero when the iteration times k is infinite, i.e.

lim
k→∞

{
2
(√

λ1 −
√
λn

√
λ1 +

√
λn

)k ∥∥t0 − t∗
∥∥
A

}
= 0

s.t. lim
k→∞

(√
λ1 −

√
λn

√
λ1+
√
λn

)k
=0 and

√
λ1−
√
λn

√
λ1+
√
λn
<1 (13)

According to Squeeze Theorem, we can obtain the equa-
tion (14) as follows.

lim
k→∞

∥∥tk − t∗
∥∥
A = 0 (14)

This means that with the increase of the iteration times k , tk
will get closer to t∗, and we have limk→∞ tk = t∗ when
the iteration times k is infinite. As a result, the proposed
algorithm is converged.

Furthermore, it is also seen from the equation (12)
that the initial value t0 can significantly affect the conver-

gence rate of the proposed algorithm, and t0 which is closer
to the accurate value t∗ can accelerate the convergence rate.
Moreover, in the proposed CG-RZF precoding algorithm t0 is
set to zero for simplicity, while in the proposed Parallel-CG-
RZF precoding algorithm, we let t0 = D−1s after optimizing
the initial values t0. The discussion of the convergence rate
of the proposed algorithm is mainly presented from the per-
spective of the simulation results in Section VI.

B. THE PARALLEL CONJUGATE GRADIENT BASED RZF
PRECODING ALGORITHM (PARALLEL-CG-RZF)
As the ratio of the number of the BS antennas to users
increases, the diagonal elements of the matrix ĤHĤ are much
larger than those of non-diagonal elements, which tends to be
diagonally dominant [23]. Therefore, matrix A is character-
ized by diagonally dominant property, and is approximately
equal to its main diagonal matrix 3 when the number of
antennas is very large, and thus equation (11) can be approx-
imated as follows.

3t = s (15)

Therefore, the initial value of t can be optimized and calcu-
lated as

t0 = 3−1s (16)

The standard CG consists of two inner product calcula-
tions. In a distributed storage parallel system [24], the first
inner product must be calculated before the second inner
product data is required, so they need two separate global
communications. Since global communications are relatively
expensive in the current distributed storage parallel system,
it is desirable to combine the two global communications
into one to reduce communication overhead [25]. Here is a
rearrangement of the calculation order of the CG method to
reduce the number of global communications.

According to the intrinsic properties of CG process:
orthogonality of residual vectors [26], we can obtain

(rk , rk+1)
(rk , rk)

≡
(pk ,Apk+1)
(pk ,Apk)

= 0 (17)

(ri,Ari) = 0, |i− j| > 1 (18)

Rearrangement can be done by substituting pk = rk+ηkpk−1
into (pk ,Apk), and thus we have

σk = (pk , vk) = (pk ,Apk)

= (rk + ηkpk−1,Ark + ηkvk−1)

= (rk ,Ark)+ ηk (rk , vk−1)+ ηk (pk−1,Ark)

+ η2k (pk−1, vk−1)

= (rk ,Ark)+ 2ηk (rk , vk−1)+ η2kσk−1 (19)

According to the equation (17) and considering about rk =
rk−1 − µk−1Apk−1 = rk−1 − µk−1vk−1, we can obtain

(rk , rk) = (rk , rk−1)− µk−1 (rk , vk−1)

γk = 0− µk−1 (rk , vk−1) (20)

According to equation (19), equation (20) and ηk =

(rk+1, rk+1) / (rk , rk), and denoting δk = (rk ,Ark), thus we
can have

σk=(rk ,Ark)+2ηk (−γk/µk−1)+η2kσk−1=δk − η
2
kσk−1

(21)

The rearrangement from the above makes a correction to
the standard CG method on the reduced global communi-
cation. And it can also be shown that this method is stable.
The proposed algorithm is started by performing a one-step
standard algorithm to obtain the initialization of v1 and σ1 as
follows.

C. THE COMPLEXITY ANALYSIS
This part analyzes the complexity of the proposed CG-RZF
precoding algorithm and the proposed Parallel-CG-RZF
precoding algorithm, respectively. Here, the complexity is
defined as the number of additions and multiplications
required for the user data signal to be converted into signal
transmitted by the antenna of the base station in equation (5).

According to the RZF precoding calculation procedures
based on the conjugate gradient, it is assumed that Ĥ and
ξIk are known matrices. The transmitted signal is x = βĤt1
after a single iteration of the conjugate gradient method. The
overall calculation procedures of the proposed algorithms can
be presented as follows.

1) The matrix ĤH multiplied by matrix Ĥ and comes
to ĤH Ĥ, and the corresponding calculation complexity is
(2M − 1)K 2;
2) The matrix ĤH Ĥ added by diagonal matrix ξIK and

comes to ĤH Ĥ + ξIK , and the corresponding calculation
complexity is K ;
3) The matrix A multiplied by vector t0 and comes to At0,

and the corresponding calculation complexity is (2K − 1)K ;
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TABLE 1. Calculation complexity of proposed CG-RZF algorithm and parallel-CG-RZF algorithm.

Algorithm 2 The Proposed RZF Precoding Algorithm Based
on Parallel Conjugate Gradient

(Input Ĥ, s; Output x)

1. A =
(
ĤHĤ+ ξIK

)
2. D = diag

(
diag

(
ĤHĤ+ ξIk

))
3. t0 = D−1s, r1 = s − At0, γ1 = (r1, r1)p1 = r1, v1 =

Ap1
4. σ1 = (p1, v1) , t2 = (γ1/σ 1)p1
5. for k = 2:n-1
6. sk = Ark
7. γk = (rk , rk) , δk = (rk , sk)
8. ηk = γk/γk−1
9. pk = rk + ηkpk−1
10. vk = sk + ηkvk−1
11. σk = δk − η

2
kσk−1

12. µk = γk/σk
13. tk+1 = tk + µkpk
14. rk+1 = rk − µkvk
15. end
16. x = βĤtn

4) The vector s added by vector At0 and comes to r0 =
s− At0, and the corresponding calculation complexity is K ;

5) The vector rT0 multiplied by vector r0 and comes to rT0 r0,
and the corresponding calculation complexity is 2K − 1;
6) The matrixAmultiplied by vector p0 and comes toAp0,

and the corresponding calculation complexity is (2K − 1)K ;
7) The vector pT0 multiplied by vector Ap0 and comes

to pT0Ap0, and the corresponding calculation complexity is
2K − 1;
8) The constant rT0 r0 divided by constant pT0Ap0 and

comes to µ0 =
rT0 r0
pT0 Ap0

, and the corresponding calculation
complexity is 1;

9) The constant µ0 multiplied by vector p0 and then added
by vector t0, thus coming to t1 = t0 + µ0p0, and the
corresponding calculation complexity is K ;
10) Thematrix Ĥmultiplied by vector t1 and comes to Ĥt1,

and the corresponding calculation complexity is (2K − 1)M ;
11) The constant β multiplied by vector Ĥt1 and comes to

βĤt1, and the corresponding calculation complexity is M .

According to the above calculation procedures, it can be
seen that the calculation complexity of the proposed CG-RZF
precoding algorithm is 2MK 2

+ 2MK + 3K 2
+ 5K − 1 after

only a conjugate gradient iteration. Additionally, we can also
obtain the calculation complexity of the proposed CG-RZF
precoding algorithm after N iterations, denoted by 2MK 2

+

K 2
−4K −1+N (2K 2

+2MK +9K ). Moreover, the calcula-
tion complexity of the proposed Parallel-CG-RZF precoding
algorithm after N iterations can be denoted by 2MK 2

+3K 2
+

2KM + 3K −M + N
(
2K 2
+ 11K + 3

)
.

The analysis results of calculation complexity of proposed
CG-RZF Algorithm and Parallel-CG-RZF Algorithm are
clearly shown in Table 1.

IV. SIMULATION AND ANALYSIS
In this section, we analyze and evaluate the performance and
calculation complexity of the proposed conjugate gradient
based RZF precoding algorithm (CG-RZF) and the proposed
parallel conjugate gradient based RZF precoding algorithm
(Parallel-CG-RZF), respectively. Compared with other RZF
precoding algorithms, the proposed CG-RZF and Parallel-
CG-RZF precoding algorithms can directly finds the transmit
signal matrix and do not need to obtain the specific precoding
matrix, and thus can avoid solving the inverse matrix in
RZF precoding algorithm, so the bit error rate (BER) is used
to appropriately evaluate the performance of the proposed
algorithms in this section. In the following simulations, it is
assumed that the number of transmitting antennas of the
BS M equals to 256, the number of users K equals to 32.
Moreover, 4QAM modulation mode is used by the BS, and
the transmitted signal power is also normalized.

Fig. 2 shows the BER with the SNR using the proposed
conjugate gradient based RZF precoding algorithm and other
four precoding algorithms when iteration times N = 1. It is
assumed that the channel estimation is imperfect, and the
channel estimation parameter τ equals to 0.1. It is seen that
the BER with the RZF precoding algorithm decreases much
faster than that with other four algorithms. The reason is that
the RZF precoding algorithm calculates the precoding matrix
directly with high calculation complexity and thus its perfor-
mance can be regarded as a reference to the proposed algo-
rithms for evaluation. Moreover, it is also seen that the BER
using Newton-RZF precoding algorithm is much smaller than
that of using other three precoding algorithms after only one
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FIGURE 2. Bit error rate VS. SNR (M = 256, K = 32, τ = 0.1, N = 1).

iteration, and meanwhile the BER of CG, Taylor, Numman
algorithms is almost the same and all improved slightly
because of insufficient iteration times.

FIGURE 3. Bit error rate VS. SNR (M = 256, K = 32, τ = 0.1, N = 2).

Fig. 3 shows the BER with the SNR using the proposed
CG-RZF precoding algorithm and other precoding algo-
rithmswhen iteration times N= 2 and τ = 0.1. It is obviously
seen that, the BER with the four precoding algorithms per-
forms much better after two iterations than after only an iter-
ation shown in Fig. 2, and with increase of the SNR, the BER
decreases much faster compared with the performance after
only an iteration. Moreover, the proposed CG-RZF precoding
algorithm has quite faster convergence speed, which can be
explained that with the proposed CG-RZF algorithm the base
station can directly obtain the transmitted signal after RZF
precoding and avoid directly solving the inverse matrix in
RZF and thus reducing the calculation complexity. Besides,
after two iterations, the BER performance of the proposed
algorithm is obviously superior to the Neumann-RZF and
the Taylor-RZF precoding algorithm, and it also performs
much better than Newton-RZF precoding algorithm in terms
of BER, respectively.

Fig. 4 shows the BER with the SNR using the proposed
Parallel-CG-RZF and CG-RZF precoding algorithms com-
pared to that of the referred RZF precoding algorithm when
iteration times N = 1. It can be seen that the BER with the
proposed Parallel-CG-RZF algorithm is quite smaller than

FIGURE 4. Bit error rate VS. SNR (M = 256, K = 32, N = 1).

that with the proposed CG-RZF algorithm and approaches
the RZF precoding algorithm after only one iteration. More-
over, it also can be seen that the convergence speed of the
proposed Parallel-CG-RZF precoding algorithm is obviously
accelerated compared with the proposed CG-RZF precoding
algorithms. This is because the Parallel-CG-RZF algorithm
can optimize initial values and iterative process of the CG-
RZF algorithm, and thus the BER and convergence speed are
meanwhile improved significantly.

FIGURE 5. Bit error rate VS. SNR (M = 256, K = 32, N = 2).

Fig. 5 shows the BER with the SNR using the pro-
posed Parallel-CG-RZF and CG-RZF precoding algorithms
when iteration times N = 2. It is noticed that the proposed
Parallel-CG-RZF and CG-RZF precoding algorithms can
obtain much lower BER after two iterations than after only
an iteration shown in Fig. 4. It also can be clearly seen
that the BER of the Parallel-CG-RZF precoding algorithm
gets nearly close to that of the RZF precoding algorithm,
and the Parallel-CG-RZF precoding algorithm still performs
much better than the CG-RZF precoding algorithm in term of
BER and convergence speed, respectively. Moreover, the pro-
posed Parallel-CG-RZF precoding algorithm has a signifi-
cantly faster convergence speed after two iterations because
of the reduced calculation complexity from the analysis in
Section III. Additionally, the Parallel-CG-RZF precoding
algorithm after only one iteration achieves the same perfor-
mance as other precoding algorithms after two iterations,
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TABLE 2. Complexity of proposed algorithms VS. Chebyshev-RZF algorithms.

which are shown in Fig. 4 and Fig. 3, respectively. Therefore,
the proposed Parallel-CG-RZF precoding algorithm performs
much better than other precoding algorithms in terms of BER
and calculation complexity, respectively.

Moreover, form Fig. 4 and Fig. 5 it is seen that the BER per-
formance of the proposed precoding scheme can be affected
by the channel estimation parameter τ , and the BER per-
formance of the proposed algorithm is getting much better
with the value of τ is becoming smaller. The reason is that
the smaller τ means the channel estimation is more accurate,
based on which the performance of the proposed schemes can
perform better.

FIGURE 6. Bit error rate VS. SNR (M = 256, K = 32, τ = 0.1, N = 1).

In Fig. 6 and Fig. 7, we compare the proposed Parallel-
CG-RZF and CG-RZF precoding algorithms with Chebyshev
iteration [20] in terms of the performance of BER. It can
be seen that when the number of iterations is 1, the pro-
posed Parallel-CG-RZF precoding algorithms is obviously
superior to the Chebyshev iteration algorithm proposed by
Zhang et al. [20], but performs slightly less than the optimized
Chebyshev iteration algorithm. Moreover, when the number
of iterations is 2, the performance of the proposed Parallel-
CG-RZF precoding algorithm is quite similar to the opti-
mized Chebyshev iteration algorithm. And the complexity of
the optimized Chebyshev iteration algorithm at N= 2 can be
calculated as 2MK 2

+11K 2
+2MK , however, the complexity

of the Parallel-CG iteration algorithm is 2MK 2
+ 7K 2

+

2KM + 25K − M + 6. The comparison results are clearly
shown in Table 2. Thus it can be see that the complexity
of the Parallel-CG-RZF and CG-RZF precoding algorithms

FIGURE 7. Bit error rate VS. SNR (M = 256, K = 32, τ = 0.1, N = 2).

are much lower than the optimized Chebyshev iteration algo-
rithm by directly obtaining the transmitted signal and avoid-
ing solving the inverse matrix in RZF and thus reducing the
calculation complexity.

V. CONCLUSIONS
In this paper, we proposed a low complexity RZF precoding
algorithm based on the conjugate gradient forMassiveMIMO
Systems. By using the conjugate gradient method, the base
station can directly obtain the transmitted signal after RZF
precoding and avoid directly solving the inverse matrix in
RZF and thus reducing the calculation complexity. Moreover,
a parallel conjugate gradient based RZF precoding algorithm
is also proposed by optimizing initial values and iterative
process of the aforementioned conjugate gradient based RZF
precoding algorithm, which can speed up the iterations and
reduce the number of global communications overhead. The
simulation results have shown that the proposed CG-RZF
precoding algorithm can significantly improve BER after two
iterations with fast convergence speed. More importantly, the
optimized Parallel-CG-RZF precoding algorithm can obtain
much better performance of BER compared with other pre-
coding algorithms, meanwhile, the calculation complexity of
which is much lower than the Chebyshev iteration algorithm
and optimized Chebyshev iteration algorithm, respectively.
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