
Received August 14, 2018, accepted September 14, 2018, date of publication September 18, 2018, date of current version October 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2870969

Design of an Optimized Architecture for Manned
and Unmanned Combat System-of-Systems:
Formulation and Coevolutionary Optimization
ZHE SHU , WEIPING WANG, AND RUI WANG, (Member, IEEE)
College of Systems Engineering, National University of Defense Technology, Changsha 410073, China

Corresponding author: Zhe Shu (shuzhe@nudt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61403404 and in part by the
Distinguished Natural Science Foundation of Hunan Province under Grant 2017JJ1001.

ABSTRACT With the rapid advancement of unmanned combat systems and the maturation of unmanned
swarm technology, integrating unmanned combat systems into existing combat system of systems has
become a hot topic. However, the current research at the organizational level is basically nonexistent.
Therefore, we propose a methodology for designing an optimized architecture that is a significant product
at this level to fill this technical gap. The design process consists of two steps: architecture modeling
and coevolutionary optimization. The architecture model is composed of three basic elements, which are
mission, equipment, and the command and control structure. The selection of the best scheme from possible
solutions is a multiobjective optimization problem, and its computational complexity increases rapidly
with the increase in the scale of combat system of systems. To overcome this difficulty, we introduce
a decomposition-based evolutionary algorithm NSGA-III and improve it by using preference vectors to
enhance the algorithm’s local search capability. Finally, we conduct the comparative experiments on
benchmark test suites and design an operation case to demonstrate the advance and effectiveness of the
enhanced algorithm. The proposed architecture modeling and optimization method can achieve a set of
nondominated solutions and provide auxiliary decision-making information to help commanders make
decisions and arrangements.

INDEX TERMS Architecture modeling, coevolutionary optimization algorithm, combat system-of-systems,
unmanned combat system.

I. INTRODUCTION
In information warfare, various unmanned combat sys-
tems (UCSs) have been widely used on the battlefield. From
land robots to unmanned submarines at sea and drones in the
air, UCSs take advantage of their strong mobility, low cost
and good concealment performance to carry out dull, dirty,
and dangerous missions and achieve the target of ‘‘noncon-
tact, zero casualties’’ [1]. The United States is the first to
carry out research on unmanned system-related technologies
and is in the absolute leading position in the field of UCS
military applications. After years of research and demonstra-
tion, the U.S. military has selected unmanned swarm oper-
ation as an important research direction. Under the unified
leadership of the Department of Defense (DoD), the Defense
Advanced Research Projects Agency (DARPA), the Strategic
Competence Office (SCO), the Air Force and Navy have con-

ducted many research studies and demonstration work and
initiated several projects. There is no doubt that unmanned
swarms will be the main force of the future battlefield [2].
Considering the highly dynamic and uncertain operational
environment and humanitarian issues in combat, the swarm
global judgment and emergency response capability based
on programmatic planning cannot match the capabilities of
manned combat systems (MCSs). Therefore, the integration
of unmanned swarms into existing combat system-of-systems
will be the main form on the future battlefield [3].

As mentioned in [4], the use of UCSs can be divided into
4 levels based on the hierarchical operation. In Figure 1,
the four levels are the organizational, brigade, user, and
device levels. Currently, the main academic interest lies in the
bottom three levels. At the brigade level, research is mainly
conducted on swarm operations, including cooperative task
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FIGURE 1. Unmanned combat systems in hierarchical operation level.

assignment [5]–[8], collaborative path planning [9]–[11], and
collaborative team control [12]–[14]. The user and device
levels focus on the fields of platform autonomous control, link
communications, human-computer interaction, and human-
machine intelligence integration [15]–[17]. However, on the
organizational level, a combat system-of-systems (CSoS)
containing an unmanned swarm has not received widespread
and sufficient attention. From the perspective of system-of-
systems (SoS) engineering, it is necessary to design the SoS
architecture at the initial stage of construction to ensure it
develops in the right direction. Therefore, we believe now is
a good time to introduce architecting technology into CSoS
containing unmanned swarms.

As an outstanding representative of system-of-systems
engineering, the U.S. DoD has performed quite admirable
work on SoS architectures. They not only have dealt with
large-scale defense projects but also integrated military sys-
tems as SoS architectures [18]. The SoS architecture is the
carrier of system-of-systems capabilities by integrating all
the capabilities from different component systems to accom-
plish the overall mission goals. Obviously, this definition is
based on capability, and the purpose of architecture is to
determine which systems gather to form a capable system-
of-systems [19]. As mentioned in [20] and [21], the missions
drive the architecting process towards the ideal, capable SoS
architecture. Therefore, the optimized architecture designed
in this paper requires providing a set of capabilities for a
specific military mission and simultaneously taking the char-
acteristics of unmanned swarms into account.

In this article, we propose a trinity architecture model,
namely, mission, equipment and C2 structure, to describe
CSoS through analysis of the capability views. Furthermore,
we define an architecture optimization problem, that is, how
to design the equipment and C2 relationship of the CSoS
for a specific operational mission, so that the CSoS has
the best combat performance, lowest operational cost, and
minimum collaborative workload for the C2 structure.

For such a multi-objective optimization problem with more
than two objectives, the efficiency of dominance-based
approaches decreases significantly [22]. Thus, a coevolution-
ary algorithm is presented to solve this optimization problem,
and a scenario case is designed to demonstrate the feasibility
and effectiveness of the proposed algorithm.

The rest of the paper is organized as follows: in the
next section, a literature review will summarize the two
aspects of SoS architecture and multiobjective evolutionary
algorithms (MOEAs). Section 3 establishes the architecture
model according to the characteristics of the CSoS and for-
mulates a multiobjective optimization model. In Section 4,
an improved NSGA-III is proposed. Section 5 designs an
operational scenario to verify the feasibility of the formula-
tion and the effectiveness of the optimization. Finally, con-
cluding and future work is presented in Section 6.

II. LITERATURE REVIEW
As mentioned in Section 1, the architecting problem includes
two parts: architecture modeling and architect optimization.
In this section, we will conduct a literature review from both
the modeling methods and the optimization algorithms for
architecting. The first part mainly introduces three model-
ing methods for architecting, and analyzes three methods
from the perspective of architecture optimization needs (data
requirements). For the multi-objective optimization problem
studied in this paper, the traditional Pareto-dominance-based
approaches have performance deficiencies. In response to
these shortcomings, the second part mainly summarizes the
improvement measures in three aspects.

A. MODELING METHODS FOR CSoS ARCHITECTING
There are many modeling methods widely applied in SoS
architecting, especially for military applications [23], [24].
In this study, we summarize three kinds of CSoS
architecture modeling methods according to different
formulations.

52726 VOLUME 6, 2018



Z. Shu et al.: Design of an Optimized Architecture for Manned and Unmanned CSoS

1) PATTERNS FOR SoS ARCHITECTING
The SoS architecture carries a large amount of information
about component systems, including the characteristics
of component systems and the interactive relationship
between them. A pattern of SoS architecture is regarded
as the framework adopted by the DoD Architecture
Framework (DoDAF) [25], MOD Architecture Frame-
work (MoDAF) [26], and NATO Architecture Frame-
work (NAF) [27]. It has been designed by top-level SoSE
engineers and optimized through multiple views [28], [29].
Additionally, because multiple views have been created
to describe the SoS architecture, this approach requires a
large quantity of support data. For example, the opera-
tion views (OV) describe the operation nodes, combat mis-
sion, or operation activities, as well as the information that
must be exchanged to complete the mission. Also, there are
needed a lot of data to describe the type of information
exchange and the frequency of information interactions.

2) AGENT-BASED SoS ARCHITECTING
SoS are becoming increasingly complex as component sys-
tems continue to grow in multiple divergent paths consisting
of multidistributed, independent, capable and self-organized
entities [30]. Agent-based SoS architecting is well accepted
as a popular approach that treats component systems as
agents. As an outstanding representative, the Agent-based
model (ABM) became widespread in the 1990s, and ABM
is a collection of abstracted and computational individ-
uals referred to as agents. Thus, one can simulate the
interactive behavior and self-determination of intelligent
agents [31], [32]. Particularly, the ABM is more popular in
the military/defense field because each intelligent individual
(commander, soldier, or even a robot with a high level of intel-
ligence) can be modeled as an agent, and the model can truly
demonstrate the operation of SoS by defining and regulating
the interactions between agents. Agents have their own intel-
ligence when accepting activities based on the whole mission
and deal with the activities in each specific circumstance.
The autonomy of individuals is the most realistic description
of SoS in the objective world. Furthermore, the behavior
between agents embodies swarm intelligence and can gen-
erate global emergent behavior [32]. Similarly, agent-based
architecting requires more data than the first approach to
support the modeling of the state and behavior of each agent.

3) ANALYTIC MODELS FOR SoS ARCHITECTING
Analytic models have been widely adopted in defense and
military operational research methodologies since as early
as the 1970s [33]. SoS architecting becomes a combinatorial
problem when all kinds of systems are collected into a joint
warfighting system-of-systems, and feasible solutions must
be provided by analytic computation [19]. As a combinatorial
problem with multiple objectives, the problem can be solved
either as a multiobjective optimization problem (MOP)
or as a single-objective optimization problem (SOP) by

reformulating multiple objectives into one dimension. Obvi-
ously, a SOP solver is much easier than the other meth-
ods for generating an optimal solution, and the supporting
approaches are similar to a simple weighted summation of
all the objectives or complicated evaluation in a fuzzy logic
system (FLS) [34]. Although this method can quickly reduce
the solution space to produce a solution, it contains many
subjective factors (such as the weighting ratio and fuzzy
knowledge acquisition) that will subjectively mask other use-
ful information in the solution space. Therefore, the MOP
solver is needed to generate a set of nondominated solutions
to support operational decision-making.

Here, we pay more attention to the multiobjective opti-
mization approach for CSoS architecting issues. For instance,
a multiobjective optimal concept is introduced to CSoS con-
struction by Wolf [35]. Agarwal et al. [36] developed a
computational intelligence approach by using a genetic and
particle swarm algorithm. Konur et al. [37] establish an
indicative function as a CSoS architecture model and adopted
an evolutionary method to generate the approximated Pareto
fronts. A heuristic approachwas successfully used to generate
a Pareto Front collection for CSoS architecting issues [24].

According to the literature review, the first two methods
require a large amount of data to support construction and
optimization. In contrast, the third method can supplement
the model with a large amount of prior knowledge and
is more suitable for use in top-level design and planning.
In addition, it is a MOP that can be significantly handled by
multiobjective evolutionary algorithms (MOEAs). However,
when the number of objectives increases, the performance
of traditional Pareto-dominance-based MOEAs will degrade
obviously. The relevant improvements will be summarized in
the following part.

B. IMPROVEMENTS FOR PARETO-DOMINANCE-
BASED MOEAS
MOEAs have a history of nearly forty years and have
been verified as an efficient method to tackle MOPs.
Over the past thirty years, Pareto-dominance-based methods,
such as NSGA-II [38] and SPEA2 [39], have become the
most popular algorithms applied to MOPs with no more
than two objectives. Recently, research has proven that
Pareto-dominance-based MOEAs have markedly reduced
performance as the number of objectives increased [40]
because as the objective space dimension increases, Pareto-
dominance-based MOEAs do not provide enough pressure to
push populations to the frontiers. The improvement work has
mainly proceeded via the following three aspects:

1) MODIFICATION OF DOMINANCE RELATION
Because the Pareto-dominance-based methods lose effi-
cacy in the dominance relationship, the first kind of
improvement strategy aims to further enhance the dom-
inance of the algorithms. For example, a grid-based
evolutionary algorithm (GrEA) was proposed to take
advantage of the grid dominance to push the selective
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pressure to the frontier [41]. Similar approaches include:
ε-dominance [42], θ -dominance [43], L-optimality [44], and
so on.

2) REPLACEMENT OF THE DOMINANCE RELATION
Another promising improvement strategy is to completely
replace the original dominant strategy. There are two more
popular approaches: the indicator-based and decomposition
based. The first method hopes to achieve a dominant choice
of population by providing new indicators, and it is called
an indicator-based evolutionary algorithm (IBEA) [45]. Fur-
thermore, hypervolume (HV) is introduced into the indicator-
based method with the merits of the MOEA algorithm and is
proposed as a new method, namely, HypE [46]. The second
approach is to find a way to decompose the MOP into single-
objective subproblems and optimize them at the same time.
This kind of method is called a multiobjective evolutionary
algorithm based on decomposition (MOEA/D) [47] and has
several variants such as NSGA-III [48] and MOLSD [49].

3) LOCAL SEARCH ADJUSTMENT
When the solution space is too large and nondominated solu-
tion points cannot be compared, a preference-based local
search mechanism is proposed. Kim et al. [50] specified
the preference as a prior information in front of the global
search, and Jaimes et al. [51] dealt with the preference infor-
mation interactively. The preference-inspired coevolutionary
algorithm using goal vectors (PICEA-g) [52] utilizes the
preference to produce approximation sets for a posteriori
decision-making to push the candidate solutions in the opti-
mal direction.

In general, the three categories of MOEAs each have
their own advantages. Among them, Deb et al. [38] found
that NSGA-III performs better than other MOEAs on the
DTLZ benchmark with 2 to 15 objectives [47]. Although
the NSGA-III promotes the diversity of candidate solutions
by applying uniformly distributed reference points, it is still
unsatisfactory in terms of the convergence effect [53]. The
PICEA approach has been proven to have better performance
than the other five state-of-the-art MOEAs for the HV, which
is the most important indicator of convergence [52]. In addi-
tion, decision makers will provide corresponding preference
information as posterior knowledge to assist decision making
in different combat environments. Therefore, we chose to
combine NSGA-III with the preference-inspired coevolution-
ary mechanism and propose an improved NSGA-III to solve
the MOP in CSoS architecting.

III. FORMULATION FOR CSoS ARCHITECTURE
A. CSoS ARCHITECTURE MODEL
It is necessary to have a definite understanding of capability,
which is the basis of the CSoS architecture model. The U.S.
DoD is convinced that capability is the ability to achieve
a desired effect by using resources, i.e., doctrine, organi-
zation, training, materiel, leadership, education, personnel,

and facilities (DOTMLPF), under specified standards and
conditions [54]. RAND defines capability as the ability to
accomplish a set of tasks and achieve the desired results
through a set of means or sets of behaviors under the given
standards and conditions [55]. From the perspective of capa-
bility generation, a capable CSoS usually chooses manned
and unmanned systems with different capabilities accord-
ing to the allocated mission and stipulates the C2 structure
between the systems. Obviously, capability is the bridge that
forms a direct mapping relationship between the missions
(activities list) and systems. Therefore, we established the
architecture model by defining the following elements.

1) CAPABILITY
CSoS is capable when it is provided with n capabilities by
component systems. Let the capabilities be indexed by i, such
that i ∈ I = {1, 2, · · · , n}.

2) MISSION (ACTIVITIES LIST)
A specific mission can be refined into a list of activities
that are the smallest mission units, and the activities can be
indexed by k , such that k ∈ K = {1, 2, · · · , l}.

The purpose of an architecture is to clearly define the rela-
tionship between the mission and capability; therefore, we set
up an adjacent matrix of activity-capability, A = {aik}n×l ,
where aik is an indicator variable to show whether activity i
requires capability k .

aik =

{
1 if activity i requires capabilty k,
0 otherwise

(1)

For each activity i, there is at least one capability to con-
tinue the mission, which means ∀i ∈ I ,

∑
k∈K aik ≥ 1.

3) SYSTEMS (MANNED AND UNMANNED)
There are m1 manned systems and m2 unmanned systems
providing capabilities to accomplish the mission. Manned
systems have a higher level of intelligence and C2 but are
fixed in CSoS. Let them be indexed by j1, such that j1 ∈
J1 = {1, 2, · · · ,m1}. Unmanned systems are in a limited
level of C2 to prevent inhumane belligerence and have more
open architecture interfaces, which can selectively join or exit
CSoS.

Let unmanned systems be indexed by j2, such that j2 ∈
J2 = {m1 + 1,m1 + 2, · · · ,m1 + m2} and J = J1 + J2. The
differentiated classification of systems will involve different
effects in the measurement and calculation of operational
costs and collaborative workloads.

The selected systems are required to provide relevant capa-
bilities for a specific mission, and thus, we set up the system-
capability matrix B =

{
bjk
}
m×l and activity-system matrix

X =
{
xij
}
n×m as follows:

bjk =

{
1 if system j provides capability k,
0 otherwise

(2)
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xij =

{
1 if activity i selects system j,
0 otherwise

(3)

where each system j can provide more than one kind of capa-
bility, and each activity i will choose more than one system,
such that ∀j ∈ J ,

∑
k∈K bjk ≥ 1 and ∀i ∈ I ,

∑
j∈J xij ≥ 1.

Further, the CSoS must be equipped with enough systems
to provide the capabilities to complete the mission. Here,
we make an assumption that the performance of different
capabilities can be summed up linearly, as introduced in [56].

4) C2 STRUCTURE
When unmanned swarms are introduced into an existing
CSoS, the changes that occur in the C2 structure are the most
significant, including the swarms’ ad hoc network, the col-
laboration between swarms and manned systems, and the
open interfaces for swarms. We assume that all the MCSs
are controlled by v1 C2 units and all the UCSs consist of v2
swarms, where C2 units and swarms are indexed by u1 and u2,
respectively, such that u1 ∈ U1 = {1, 2, · · · , v1} and u2 ∈
U2 = {v1 + 1, v1 + 2, · · · , v1+v2}. Meanwhile, each swarm
is assigned to a C2 unit, so all the C2 units in the CSoS can
be indexed by u and u ∈ U = U1 + U2. The integration of
swarms into the CSoS operation is divided into three steps as
follows:

First, we allocate all the manned combat systems to differ-
ent C2 units.

yj1u1 =

{
1 if MCS j1 is assigned to C2 unit u1,
0 otherwise

(4)

Y =
{
yj1u1

}
m1×v1

presents the adjacent matrix for the
MCS- C2 unit connection.

Then, unmanned combat systems are allocated to swarms
and further assigned to C2 units.

zj2u2 =

{
1 if UCS j2 is choosen by swarm u2,
0 otherwise

(5)

where Z =
{
zj2u2

}
m2×v2

presents the adjacent matrix for
the UCS-swarm connection. Since a swarm corresponds to a
C2 unit, the adjacent matrix Z also represents the relationship
between the C2 units and UCSs.

Finally, the C2 units are assigned to different activities:

ciu =

{
1 if C2 unit u is assigned to activity i,
0 otherwise

(6)

The premise of the judgment condition in (6) satisfies
xij = 1, yju1 = 1, j ∈ J1 or xij = 1, zju2 = 1, j ∈ J2,
namely, the conditions under which a C2 unit participates in
activity i ensures that the systems controlled by the C2 unit,
u, are selected by activity i. Therefore, Equation (6) can be

transformed into:

ciu =


1 if there exit system j, such that xij = 1,

yju1 = 1, j ∈ J1 or xij = 1, zju2 = 1, j ∈ J2
0 otherwise

(7)

ciu = xij ·
(
yj1u1 + zj2u2

)
(8)

Let C = {ciu}n×v = X · (Y + Z ) be the activity-C2 unit
adjacent matrix. Further, we can define the collaboration in
activity i as:

Coi =
∑v

u,w=1
ciuciw =

∑v

u,w=1
min (ciu, ciw) (9)

B. OBJECTIVE FUNCTIONS FOR SoS ARCHITECTURE
In architecting of the component systems collection, there are
some indices that need to be noted. Acheson et al. [57] use
performance, affordability, robustness, modularity, security,
etc. as the key performance parameters/attributes (KPP/KPA)
of the architecture [57]. As a pioneer in SoS architecting
optimization, the DoD believed that agility, performance, and
cost could effectively characterize SoS performance [58].
Further, Konur and Dagli noted that performance, completion
time, and total cost are the objectives of the architecture [56].
It can be concluded that performance and cost are the main
two attributes for CSoS architecting. Meanwhile, the collabo-
rative workload in cooperation is another important indicator
for integrating unmanned swarms into a CSoS. Therefore,
a CSoS architecting problem is defined to construct a capable
and stable CSoS with maximum operation performance, min-
imum total cost and minimum total collaborative workload.

1) TOTAL PERFORMANCE
Let perjk be the performance level that a selected system j
provides in capability, and let Perf be them×l matrix of perjk
values, namely Per =

{
perjk

}
m×l . The CSoS architecting

performance includes the overall performance of various sys-
tems displayed for all the capabilities. Before formulating the
performance function, there are two assumptions. We assume
that the total performance is the sum of all kinds of capability
performances, and the performance of a specific capability is
the sumof that capability’s performance provided by the com-
ponent systems through collaboration. The total performance
can be calculated by two parts. One is the inherent system
performance, and the other is the performance increase gener-
ated by multiple systems collaborating to complete the same
activity. Thus, we can formulate the performance function as
follows.

Per(X ,Y ,Z ) =

(
1+ Coi

/∑
i∈I

Coi

)
X · Per

=

n∑
i=1

m∑
j=1

l∑
k=1

(
1+ Coi

/∑
i∈I

Coi

) (
xij · perjk

)
(10)
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Specifically, collaboration involves both Y and Z matrices.
Therefore, the performance function contains three matrix
variables, X , Y , and Z .

2) TOTAL COST
The total cost of a military SoS can be divided into three
parts, namely, the operating cost for providing capabilities,
the collaboration cost for multiple systems operating in the
same activity, and the communication cost between com-
ponent systems. The operating cost is relevant to compo-
nent systems involved in CSoS, and the communication cost
depends on the organization structure. Therefore, they can be
expressed as:

Cost(X ,Y ,Z )

= X · Costop + (Y + Z ) · Costcom + Co · Costcol

=

n∑
i=1

m∑
j=1

xij · costopj +
v∑

u=1

m∑
j=1

(
yuj + zj2u2

)
· costcom

j

+

n∑
i=1

Coi · costcoli (11)

where costop
j

and costcom
j

represent the operating and com-
munication costs of system j, respectively, and costcoli is the
cost for the collaborative operation in activity i. Further, let
Costop, Costcom, and Costcol be the vector sets representing
each cost variable.

3) COLLABORATIVE WORKLOAD
The CSoS is an organic whole in which each component unit
needs to accomplish activities by collaborating with other
units, and this process will produce a collaborative work-
load. For each C2 unit u, the collaborative workload can be
divided into two categories, namely, the internal collaborative
workload (ICW) and external collaborative workload (ECW).
We characterize the ICW as the number of systems simulta-
neously controlled by the C2 unit p, such that:

ICWu =
∑m1

j1=1
yj1u1 +

∑m1+m2

j2=m1+1
zj2u2 (12)

Furthermore, the ECW represents the collaborative rela-
tionship between C2 unit p and the others, such that:

ECWu =
∑n

i=1
ciuciw =

∑n

i=1
min (ciu, ciw) (13)

Therefore, the total collaborative workload can be
calculated as:

CW (Y ,Z ) =
∑v

u=1

(
W I
· ICWu +WE

· ECWu

)
(14)

where W I and WE indicate the weights of ICW and ECW,
respectively.

C. OPTIMIZATION PROBLEM OF CSoS ARCHITECTURE
Here, we can define the optimization problem of CSoS archi-
tecture (CSoSAOP) as the maximum performance, minimum

cost and coordination workload with the matrix variables.

CSoSAOP : maxPerf (X ,Y ,Z )

minCost(X ,Y ,Z )

minCW (Y ,Z ) (15)

Meanwhile, we should take the following constraints into
account.

∀i ∈ I ,
∑

j∈J
xij ≥ 1 (16)

∀i ∈ I ,
∑

k∈K
aik ≥ 1 (17)

∀j ∈ J ,
∑

k∈K
bjk ≥ 1 (18)

∀i ∈ I ,
∑

j∈J

∑
k∈K

bjk · xij ≥
∑

k∈K
aik (19)

∀u ∈ U ,
∑

j∈J

(
yj1u + zj2u

)
≥ 1 (20)

∀u,w ∈ U , min (ciu, ciw) ≥ xij ·
(
yj1u + zj2u

)
(21)

Accordingly, the constraints (16)-(18) and (20) are to
ensure that all the adjacent matrices are meaningful. Con-
straint (19) guarantees that a CSoS can provide enough
capabilities for each activity by selecting adequate MCSs
and UCSs. Constraint (21) limits the collaboration between
different C2 units when they are allocated to the same activity.

Obviously, CSoSAOP is a nonlinear integer multiobjective
optimization problem that can be solved by MOEAs. The
number of CSoSAOP is three, and the Pareto-dominance
based MOEAs fail to provide sufficient selection pressure in
the optimal direction. To solve this problem, Section 4 will
introduce an improved NSGA-III to solve the multi-objective
optimization problem (MOP) in CSoS architecting.

IV. AN ENHANCED NSGA-III WITH A PREFERENCE-
INSPIRED CO-EVOLUTIONARY MECHANISM
As reviewed in Section 2, the traditional Pareto-dominance
based MOEAs, such as NSGA-II and SPEA2, lose their
power to have the desired Pareto sets, and three improve-
ments have been made. NSGA-III, an outstanding improved
MOEA based on decomposition, has been demonstrated to
perform much better than other state-of-the-art MOEAs on
well-known benchmarks [48]. However, NSGA-III has been
improved in terms of diversity, and there is still room to
enhance the algorithm convergence. Therefore, we intro-
duce a preference-inspired coevolutionary mechanism to
enhance the local search of NSGA-III, namely, a preference
vector-oriented NSGA-III (P- NSGA-III). In this section,
the framework of the improved algorithm will be first pro-
posed, and then, we will implement the enhanced NSGA-III
and adjust the crossover and mutation operators according to
the constraint in CSoSAOP.

A. FRAMEWORK OF P-NSGA-III
The P-NSGA-III algorithm is based on the NSGA-III
framework and borrows some ideas, such as ideal point
generation, genetic operation and adaptive normalization.
Meanwhile, NSGA-III has great performance on diversity,
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FIGURE 2. An elitist framework of P-NSGA-III.

and the preference vectors can effectively improve the capa-
bility of local search. In Figure 2, the elitist framework of
P-NSGA-III is shown. The parent solutions S and preference
vectors P have fixed populations, N and Np. Both of them
are evolved for Maxgen generations. In each generation t,
the parent solution set S(t) is subjected to genetic oper-
ations to generate N offspring solution sets So(t). Mean-
while, the parent preference vectors P(t) also produce the
offspring Po(t) according to genetic operations. Then, parents
and offspring are pooled together S(t) and So(t), P(t) and
Po(t), respectively. The combined preference vectors provide
important nondominance information to help truncate the
combined solution set, and the nondominance mechanism
will be introduced next. Then, the combined solutions are
divided into several different nondominance levels (F1, F2,
etc.) based on the preference vectors supporting nondomi-
nance information. Assuming that the last acceptable non-
dominant level is the l level, the solutions at the l + 1 level
and beyond are discarded, and the solutions in S(t)+So(t)\Fl,
the parent solutions in generation t and the selected solutions
from level 1 to level l − 1, are chosen as the solution in
S(t + 1). The remaining individuals in S(t + 1) need to be
selected from the Fl. The basis for selection is to make the
solutions have ideal diversity in the objectives space. Simi-
larly, the preference vectors P(t + 1) will be generated in an
analogous process except for the different Pareto dominance.

The preference vector mechanism borrows an idea from
the PICEA-g algorithm [52], which is demonstrated on a
biobjective minimization problem in Figure 3. In the objec-
tives space, some individuals can determine the dominance
relationship with others, such as s1 and s2, s3 and s4, but
there are some individuals who cannot directly determine
the dominance relationship with other individuals, such as
s2 and s4. Here, we introduce the preference vectors as sup-
porting information to provide selective pressure toward the

FIGURE 3. Simple biobjective minimization problem with four candidate
solutions and four preference vectors.

Pareto front. The fitness functions of the candidate solutions
and preference vectors are formulated as follows:

Fs = 0+
∑

p∈P∪P0

1
np

(22)

Fp =
1

1+ α
(23)

α =

1, np = 0
np − 1
2N − 1

, otherwise
(24)

where np denotes the number of solutions that dominate the
preference vector pi.
In Figure 3, we define the ‘‘f ’’ notation is an objective

function. There are four functions of candidate solutions,
namely f (s1), f (s2), f (s3) and f (s4), displayed on a biobjective
minimization problem space. Also the four preference vec-
tors are randomly generated in Figure 3. Further, preference
vectors p1 and p2 are dominated by solutions s1 and s2, and
preference vectors p3 and p4 are dominated by solutions s1,
s2, s3 and s4. Further, we can conclude that np1 = np2 = 2
and np3 = np4 = 4. Therefore, the solution fitness can be
calculated as:

Fs1 = Fs2 =
1
np1
+

1
np2
+

1
np3
+

1
np4
=

3
2

(25)

Fs3 = Fs4 =
1
np3
+

1
np4
=

1
2

(26)

Based on the fitness, s1 and s2 are considered the best
solutions, which will be selected for the next generation.
However, obviously s1 is dominated by s2. Compared with s1,
although s4 has a lower fitness, it is non-dominated with s2.
Therefore, s4 and s2 are desired to be kept in the popula-
tion set. In order to do that, the classic Pareto-dominance
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FIGURE 4. The flow chart of P-NSGA-III.

relation is incorporated. After calculating fitness values
using (22)–(24), we next identify all the non-dominated solu-
tions in S∪So. If the number of non-dominated solutions does
not exceed the population size, then we assign the maximum
fitness to all the non-dominated solutions. However, if more
than N non-dominated solutions are found, we then disregard
the dominated solutions prior to applying truncation selection
(implicitly, their fitness is set to zero). Based on fitness,
the best N non-dominated solutions are selected to constitute
the new parent S(t + 1). In the example of Figure 3, Fs1 =
Fs3 = 0, Fs2 = 3/2, and Fs4 = 1/2. The preference vector
fitness can be calculated in a similar way.

Since NSGA-III still uses Pareto-dominance-based sorting
method, the performance achieved in the more than two
conflict objectives optimization problem is not satisfactory.
As illustrated above, the preference vector mechanism pro-
vides a new idea of dominating sorting, and enhances the
local search capability of the original algorithm. It makes the
obtained sorting results more accurate, and further improves
subsequent hierarchical operations based on the reference
points. Eventually the performance of NSGA-III is improved.

In the course of combat, we are more hopeful that we can
achieve higher combat performance. We can use the specific
preferences in these applications as an a priori guide to the
generation of preference vectors so that the optimization
process is more realistic. Considering the preference vectors,
the flow chart of P-NSGA-III is more specific in Figure 4.

In Figure 4, we further refine the algorithm flow and
specifically describe how to use preference vectors to
enhance the nondominated sorting performance of NSGA-III.
In Algorithm 1, the computational process of the algorithm
in the t generation is presented through pseudocode. As indi-
cated in original NSGA-III, we predefine a set of reference
points to ensure the diversity in filtered solutions. According
to [48], we can predefine structured reference points Zs and
supplied aspiration points Za.

In the pseudocode, P(t) and Po(t) are respectively the
selected preference vectors and the offspring preference vec-
tors in generation t . The preference generator currently gen-
erates random preference vectors before variation operators
haven’t been implemented for the preference vectors. More
specifically, preference vectors are randomly generated as
objective vectors directly in objective space, within bounds
defined by the vectors of ideal and anti-ideal performance.
Q(t) is a new population of combined solutions, which has l
levels to maintain the diversity of the solutions. The function
‘‘fitness’’ of the solutions and preference vectors are formu-
lated in Equations (22) and (23), respectively. The preference
vectors coevolve with the candidate solutions in the same
generation.

Before the coevolutionary optimization of CSoSAOP,
the candidate solution encoding procedure is necessary.
In this research, there are three matrix variables X , Y , and Z .
We convert the matrix variables into vectors by extracting
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Algorithm 1 P-NSGA-III Procedure in Generation t
Input: selected solutions, S(t), selected preference vectors, P(t), structured reference points Zs or supplied aspiration points Za

Parameter: N indicates the scale of initial candidate solutions,M indicates the size of the objectives, Np indicates the number
of goal vectors, H denotes the number of reference points, l indicates the number of nondominance levels, and pc and pm
represent the probability of crossover and mutation, respectively.
Output: Promoted candidate solutions, S(t+1), promoted preference vectors, P(t+1).

1: i=1, Q(t) = Ø% Q(t) is the hierarchy set of populations.
2: [So(t), Po(t)] = crossover_mutation (S(t), P(t), pc, pm)
3: f(S) = objective_function (S)
4: ComS = merge (S(t), So(t))
5: Comf = merge (f(S(t)), f(So(t)))
6: ComP = merge (P(t), Po(t))
7: [FitComS, FitComP] = fitness (Comf, ComP)
8: [Fit1, Fit2, . . . ] = nondominated_sorting (FitComS, FitComP)
9: repeat
10: Q(t) = Q(t) U Fiti, i= i +1
11: until |Q(t)| ≥ N, Fiti = Fitl
12: if |Q(t)| = N then
13: S(t+1) = Q(t), break
14: else
15: Q(t) =

⋃l−1
j=1 Fitj

16: K = N - |Q(t)| % choose the other points from Fitl
17: (fn, Zr) = normalize ( Q(t), Zs, Za) [48] % normalize objectives and create reference set
18: S(t+1) = associate_filtrate (Q(t), Zr) % associate individuals in Q(t) with a reference point and filtrate N offspring
solutions.
19: P(t+1) = associate_filtrate (Q(t), Zr) % truncate Np offspring preference vectors
20: end if

FIGURE 5. Schematic of solution encoding for matrix variables.

matrix row vectors, as illustrated in Figure 5. For a CSoSAOP
solution, the entire length of the chromosomes is n×m+m1×

q1 + m2 × q2.

B. SOLUTION ENCODING
The gene on the chromosomes indicates the adjacency of
matrix variables, which is a 0-1 value. Actually, this simpli-
fies our crossover andmutation process introduced in the next
subsection.

C. RESTRICTED CROSSOVER AND MUTATION
The algorithm uses two classical genetic operator cod-
ings: simulated binary crossover (SBX) and polynomial

mutation (PM) [38]. Because the three matrix variables all
represent adjacency relationships, the chromosomes of dif-
ferent variables all have the 0-1 encoding form. When we
perform cross-mutation operations, we do not need to process
the three matrices independently. Instead, we can combine
the three matrix codes as a whole to perform cross and
mutation operations, as long as the three matrices after cross
and mutation satisfy the constraints. This greatly reduces the
complexity and workload of the crossover and mutation. It is
not necessary to pay attention to the crossover and mutation
process. We just need to check whether the new solutions
meet the constraints (16)-(21) at the end of the crossover and
mutation process.
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V. COMPUTATIONAL EXPERIMENTS
In this section, we will verify the excellence and effectiveness
of P-NSGA-III through two tests, namely benchmark test
and operation case study. The benchmark test problems are
chosen from the standardMOEAs’ test problem suite, and the
proposed algorithmwill be compared with other five state-of-
the-art MOEAs on the standardMOEA’s performancemetric,
hypervolume. The operation case study is abstracted from
actual requirements of CSoS architecture design. We will
compare P-NSGA-III algorithm with the original NSGA-III
in this case.

A. BENCHMARK TEST
1) TEST PROBLEMS
The test problems are chosen from the MaF [59] benchmark
test suite, which is proposed as the benchmark test suite
applied in IEEE CEC’2017. The MaF benchmark test suite
includes fifteen test functions, which are a good abstraction
and integration of different multiobjective optimization prob-
lems in the real world. According to [59], the properties of the
fifteen are list in Table 1.

TABLE 1. The properties of fifteen MaF benchmark test problems.

Considering the space limitations and the properties of real
case, we select six representative problems as the benchmark
test suite for this experiment. They are MaF1, MaF6, MaF8,
MaF10, MaF11, and MaF15.

2) COMPARATIVE ALGORITHMS AND
PERFORMANCE METRICS
As mentioned in Section 2, there are three methods to
improve the performance of traditional Pareto-dominance-
based MOEAs on many-objective optimization problems.
Li et al. [49] have summarized five categories of thirteen
MOEAs, which are all state-of-the-art in each field. As shown
in Table 2, we select five representatives from the five cate-
gories as the comparison group.

There are two widely accepted performance metrics,
hypervolume (HV) [46] and inverted generational dis-
tance (IGD) [47], measuring both convergence and diversity

TABLE 2. The representative MOEAs selected from five categories.

ofMOEAs. Among them, IGD needs to know the true PF data
to calculate the distances of the each point in true PF to the
points in its nearest approximation front. While, the follow-
up case is abstracted from the real problem to be solved, and
its true PF is unknown. To ensure the continuity of the experi-
ment, we choose HV as the performancemetric. The HVmet-
ric selects a reference point in the objective space, which is
dominated by all optimal candidate solutions. By measuring
the size of domination space, we can calculate the HV value.
Given a reference point, a lager HV value indicates better
performance.

3) PARAMETER SETTINGS
In this part, the general parameter settings are introduced first,
followed by specific parameter settings for each individual
algorithm.
• For eachMaF test problem, there are three parameters to
set. Assume that D is the number of decision variables,
M is the number of objectives, and K is the position
parameter. In our tests, M is taken as 3, 5, 7, 10 or 15,
D is obtained byD = M+K−1, where K is set to 10 for
MaF1, MaF6 and 20 for the other problems.

• For the experimental settings, we set N is the size
of population to 100. The comparative results are
obtained through 31 independent experiments for each
algorithm, which makes the results more statistically
significant [52].

• Parameters for Crossover and Mutation Operator: The
simulated binary crossover is used as the crossover oper-
ator in all the mentioned algorithms. In detail, the dis-
tribution index is set to ηc = 15 in HypE, GrEA,
and PICEA-g, ηc = 30 in P-NSGA-III, MOEA/D,
and NSGA-III. The crossover probability pc = 1.0
is set for all algorithms. For the polynomial mutation,
the distribution index is set to ηm = 20 and the mutation
probability is set to pm = 1/nvar , where nvar represents
the number of decision variables.

• For each comparative MOEAs, we set their specific
parameters according to the original papers or related
literatures, which are shown in Table 3. It is worth noting
that the best parameter settings of GrEA vary according
to different test problems. However, we use the same
set of parameters for all problem instances, which is a
little different from the best one. As discussed in [60],
this difference should not affect the final evaluation
results.
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TABLE 3. The specific parameter settings for comparative MOEAs.

4) RESULTS ANALYSIS
To further verify the effectiveness of P-NSGA-III, we make
a series of comparison with five MOEAs on MaF test suite.
Meanwhile, in order to ensure the validity of the statistical
results, we set up the mean and standard deviation of HV on
31 independent experiments to evaluate the performance of
these algorithms.

Table 4 lists HV values for the five algorithms on MaF
test suite, marking the best results for each set of experi-
ments in blue. We conducted Wilcoxon rank sum test in the
six competing evolutionary algorithms to determine whether
P-NSGA-III is statistically superior to the others. For each
test instance, the best performance is highlighted in blue.
The results of tests are written in Table 4 and marked with
symbols +, ≈, or −, indicating that P-NSGA-III performed
significantly superior to, approximately equal to, and signifi-
cantly inferior to the competing algorithms. The last rows of
Table 4 summarize the alignments on each test suite in which
P-NSGA-III is significantly better than, equal to or worse
than the others.

Table 4 shows that P-NSGA-III performs well on all the
instances with the HV indicator, and has obvious advan-
tages compared to other algorithms. For all the test suites,
P-NSGA-III achieved the best in 19 of 30, which was
much better than other five state-of-art MOEAs. Compared
with MOEA/D, P-NSGA-III performs well on almost all
the instances, except for four test problem. Compared with
HypE and GrEA, P-NSGA-III significantly surpassed MaF1,
MaF10 and MaF11, by both getting more than 10 ‘-’ signals,
meaning they were much better than other MOEAs. For
NSGA-III and PICEA-g, P-NSGA-III borrows a lot from
evolutionary mechanism of these two algorithms, and has
more ‘≈’ signals relatively.

It is noted that P-NSGA-III obtains 16 ‘-’ signals of 30
and 3 best results of 5 by comparing all three-objective MaF
test problems. We can indicate that P-NSGA-III will perform
better on operation case study in the next part.

B. OPERATION CASE STUDY
Area reconnaissance and denial (ARD) is a classical oper-
ation scenario involving air, ground and underwater combat
systems. In the past ten years, as a large number of UCSs have
entered the battlefield and unmanned swarm technologies

have become increasingly mature, the CSoS in ARD needs to
be further adjusted. In this section, a novel ARD is designed
as a case study for CSoSAOP, and the general parameter set-
tings are listed in detail. After that, we quantitatively analyze
the solution methods proposed for CSoSAOP through a set of
numerical studies.

1) CASE DESCRIPTION
Here, we design a novel ARD application scenario for the
case demo, which draws on experience [61]. Particularly,
we choose seven capabilities, six kinds of systems (no more
than 40), and six C2 units containing two swarms for the ARD
mission, as shown in Tables 5 and 7. It is worth noting that
we can generate a matrix based on Table I and build a matrix
using Table 3. Furthermore, when we take the calculation of
capability and cost into consideration, we should make some
assumptions as follows.
• As shown in Table 7, we assume that the performance of
each system enabling different activities can be divided
into levels of 1 to 5 by expert knowledge. According to
the definition of capability in Section 3, each capability
has the same importance; hence, the total performance is
calculated by summing all the individual performances.

• In Table 7, we divide all the systems into two categories,
i.e., manned and unmanned combat systems, and give
the number of limitations for each kind of system. Based
on the assumption of interaction between all systems,
we believe that the internal and external loads have the
same importance, that is, W I

= WE
= 0.5.

• There are three types of cost for systems operating
in ARD missions, which are assumed to be between
U10K and U100K RMB (K = 103). Here, satellites,
airships, and panzers are man-controlled and can be
categorized as manned combat systems; UAV, UGV, and
loiteringmissiles are swarm-controlled and can regarded
as unmanned combat systems. We assume that all the
enabled systems exert their capabilities in the mission
to generate a sum of cost, shown as a detailed list
in Table 6. Finally, we assume that all the systems use
Link16 as their communication network, so the commu-
nication interface costs are the same and equal Y− 10K for
each. The collaborative cost for manned and unmanned
combat systems is Y− 20K and Y− 10K, respectively.

According to the above table, we can initialize the
candidate solutions that contain N matrix variables subject
to constraints (16)-(21). In addition, then, we can obtain
an objective space based on objective functions (10), (11),
and (14) and define a set of reference points. In this objective
space, the Np preference vectors are randomly generated
based on operational preference information, which is the
better combat performance in this case.

2) GENERAL PARAMETER SETTINGS
In this application, we initialize the size of the candidate solu-
tions and preference vectors both to 100 and set the maximum
generation to 100. In the crossover operator, the crossover
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TABLE 4. The statistical results (mean and standard deviation) of the HV values obtained by P-NSGA-III, MOEA/D, HypE, NSGA-III, GREA, and PICEA-G on
MaF test suite.

TABLE 5. Activities and capabilities required in ARD mission.

probability pc = 1 is set for the algorithm, and the distribution
index is set to ηc = 15. For the polynomial mutation, the
distribution index is set to ηm = 20, and the mutation
probability is set to pm = 1/nvar , where nvar represents the
number of decision variables.

3) FIGURE RESULTS ANALYSIS
The enhanced and original NSGA-III are both applied in the
ARD case study, and the comparison of the last generation is
demonstrated in the three-dimensional and two-dimensional
representations in Figure 6.

TABLE 6. Cost in ARD mission.

Figure 6 provides the three-dimensional and two-
dimensional comparisons of the last generation. The black
circles represent the Pareto front generated by the original
NSGA-III, and the red stars represent the P-NSGA-III opti-
mal results. Based on the experimental results, we can draw
the following conclusions.
• There are 28 and 29 optimal solutions obtained by
the enhanced and original NSGA-III, respectively,
which are much smaller than the 100 population size.
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FIGURE 6. Comparison of the last generation generated by two algorithms: (a) The three-dimensional Pareto front representation;
(b)-(d) The projection of the three-dimensional Pareto front onto two dimensional planes.

Because the genetic operation is subject to con-
straints (16)-(21) and the integer requirements of the
variables, the space of executable solutions is lim-
ited, and part of the optimal solutions are repeated.
In Figure 6, duplicate solutions are covered reducing the
number of final results.

• In Figure 6, we can clearly observe that the P-NSGA-III
solutions have higher performance, lower cost and col-
laborative workload than those solutions obtained by the
original algorithm showing that P-NSGA-III performs
better in dealing with ARD problems.

Figure 6 shows that the performance of optimal solutions is
approximately linear and positive with cost, which is in line
with the objective world law. The higher the input cost is,
the greater the gain is.

4) ANALYTICAL RESULTS ANALYSIS
In this part, we choose the standard MOEAs’ performance
metric, to evaluate the Pareto fronts obtained by the two
algorithms. To ensure the statistical significance of the exper-
imental results, the two algorithms are taken 31 independent
runs on the ARD problem.

The ARD problem is abstracted from the actual engineer-
ing requirements and hasn’t been solved yet, so we cannot

obtain the true Pareto Front of ARD problem. As analyzed in
the previous, IGD needs to know the true PF data to calculate
the distances. Therefore, we select HV as the performance
metric to assess the two algorithms.

HV is taken to calculate the volume of the objective space
between the obtained solution set and a specified reference
point, which is strict Pareto-compliant to make the conse-
quence rather fair. HV works as follows. Let A be the final
non-dominated points set, which is obtained by a MOEA
algorithm in the objective space, and r = (r1, r2, . . . , rl) be a
reference point. The HV value of final nondominated points
set A is the volume of the region dominated by A with regard
to r , which is formulated as follow:

HV (A, r)=volume

⋃
f ∈A

[f1, r1]× [f2, r2]× . . .× [fm, rm]


(27)

For a given reference point r , the larger value indicates the
better performance. To facilitate the comparison of the two
sets of PFs, we generate a common reference point for the
calculation of HV metric. Hence, we select a given reference
point r in the objective space, which is weekly dominated by
all optimal solutions of the combined PF set.
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TABLE 7. Systems applied in ARD mission.

Thus, we can obtain two sets of HV values. The HV values
can be taken as the statistics to assess the superiority of
P-NSGA-III and the original NSGA-III through a nonpara-
metric statistical test, as shown in Algorithm 2.

Algorithm 2 Generation and Nonparametric Test for HV
Input: Pareto fronts obtained by P-NSGA-III, PF =

{pf1, pf2, . . . , pf31}, Pareto fronts obtained by NSGA-III,
PF ′ =

{
pf ′1, pf

′

2, . . . , pf
′

31

}
, Given reference point, r.

Output: HV of P-NSGA-III Pareto fronts, HV =

{hv1, hv2, . . . , hv31}, HV of NSGA-III Pareto fronts, HV ′ ={
hv′1, hv

′

2, . . . , hv
′

31

}
, Wilcoxon’s ranksum test results, (g, h).

1. ComPF = merge (PF, PF’)
2. r = [r1, r2, r3]
3. for each Pareto front pfi or pf′i ∈ ComPFdo
4. if r is dominated by pfi or pfi’ then
5. hvi = hypervolume (pfi, [r1, r2, r3], 10000)
6. hv′i = hypervolume ( pfi’, [r1, r2, r3], 10000)
7. else
8. end
9. HV = {hv1, hv2, . . . ,hv31}
10. HV’ = {hv′1, hv

′

2, . . . ,hv
′

31}
11. end
12. (g, h) = ranksum (HV, HV’, 0.05)

The performance of the original NSGA-III is statistically
compared with P-NSGA-III by a nonparametric statistical
test called Wilcoxon’s ranksum test for independent samples
with significance level of 0.05. The comparative result is
shown in Table 8.

TABLE 8. Nonparemetric statistical test result for the two comparative
algorithms.

In Table 8, g is the probability of significance that two
population samples are consistent. If g is close to 0, the incon-
sistency is more obvious. Also, the result h = 1 indicates a
rejection of the null hypothesis [62]. Therefore, the results
of Wilcoxon’s ranksum test show that P-NSGA-III performs
better than the original algorithm in ARD application based
on the HV metric.

In this section, the benchmark test is first demonstrated the
advance of P-NSGA-III by comparing the other fiveMOEAs.
And then, an operation case study shows the feasibility
of CSoSAOP modeling and the effectiveness of enhanced
NSGA-III. This method can effectively solve CSoSAOPs and
provide useful auxiliary decision-making information to help
commanders make decisions and arrangements.

VI. CONCLUSIONS AND FUTURE WORK
The methodology of CSoS architecting optimization fills the
technical gap in unmanned and manned integrated opera-
tions and is an important attempt at system-of-systems engi-
neering in the unmanned battlefield. This paper is divided
into two parts including architectural modeling and coevo-
lutionary optimization to complete the design of an optimal
CSoS architecture. First, we built a CSoS architecture model
from three perspectives, mission, equipment, and C2 struc-
ture combined with the characteristics of unmanned combat,
and proposed the corresponding architectural optimization
problem, namely, CSoSAOP. For CSoSAOP, we introduced a
decomposition-based evolutionary algorithm NSGA-III and
improved it by using preference vectors to enhance the local
search capability. Finally, we designed and demonstrated an
area reconnaissance and denial (ARD) application scenario
for the case demo, which verified the effectiveness of the
modeling and optimization method.

On one hand, wemust acknowledge thatmany assumptions
and simplifications have been made during the design and
demonstration of the case. There is still a large gap between
the case and practical application. This is also a direction
for us to further research by creating more practical cases in
the next step. On the other hand, this is still an offline plan-
ning optimization method at present. In the future, we hope
to improve the accuracy and timeliness of the calculations
by improving the evolutionary algorithm and to create an
online decision support system for the construction of CSoS
architecting.
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