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ABSTRACT This paper discusses two fast implementations of the conjugate gradient iterative method
using a hierarchical multilevel preconditioner to solve the complex-valued, sparse systems obtained using
the higher order finite-element method applied to the solution of the time-harmonic Maxwell equations.
In the first implementation, denoted PCG-V, a classical V-cycle is applied and the system of equations on
the lowest level is solved exactly. The second variant involves an approximate solution to the system of
equations on the lowest level. To this end, auxiliary space preconditioning (ASP) is used instead of a direct
solution. In this approach, denoted PCG-V-ASP, the time needed to solve the sparse system of equations
is longer, but the memory requirements are smaller. To accelerate the computations, a graphics processing
unit (GPU, Pascal P100) was used for both variants of the multilevel preconditioner. As a result, significant
speedups were achieved over the reference parallel implementation using a multicore central processing unit
(CPU, Intel Xeon E5-2680 v3, twelve cores). The results indicate that the auxiliary space preconditioning
does in fact reduce the memory requirements, as compared with the reference PCG-V method, and at the
same time performs each iteration faster. However, if symmetry is taken into account and the memory-
efficient supernodal LDLT factorization is employed, the savings are less spectacular than anticipated based
on previously published results using LU factorization and the multifrontal technique. PCG-V also requires
a fewer iterations, so it’s time to solution is ultimately shorter. The difference is more pronounced if both
preconditioners are run on a CPU. The use of a GPU as an accelerator for the computations considerably
improves the performance of PCG-V-ASP over that of PCG-V.

INDEX TERMS Auxiliary space preconditioning, FEM, GPU, Maxwell’s equations, multilevel
preconditioning.

I. INTRODUCTION
The higher-order finite element method is one of the numer-
ical tools most commonly used to solve complex electro-
magnetic problems. However, when the number of degrees
of freedom is large, the solution of an FE system of equations
becomes memory-demanding and time-consuming, espe-
cially when direct solvers are used. An efficient way to
solve such problems with low memory requirements is to
utilize Krylov-based iterative methods, such as the conju-
gate orthogonal conjugate gradient (COCG) [1]–[3] or the
generalized minimal residual method (GMRES) [4], [5],

with preconditioning to accelerate convergence. When
applied to the solution of a sparse systems of equations
derived from FEM discretization of the time-harmonic
Maxwell’s equations, many traditional preconditioners
(e.g., those based on incomplete LU factorization) fail, and
specialized preconditioners must be developed [6], [7].

Recently, a number of FEM preconditioners using higher-
order basis functions have been proposed [6]–[11]. This idea
draws on the assumption that the system matrix is parti-
tioned into blocks of matrices associated with order of basis
functions, providing a hierarchy of problems with associated
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prolongation and restriction operations, which allow for a
solution to be transferred from one level to the other. The
preconditioner can thus be organized in a V or W cycle,
known from multigrid methods, in such a way that a few
iterations are applied at the highest level, and then the approx-
imate solution from a higher level proceeds (via the inter-
mediate levels) to the lowest, and then back to the highest.
In the approaches proposed in [6] (PCG-V) and [7] (pMUS),
the problem on the lowest level is solved using a factorization-
based direct solver for sparse linear systems of equations.
Unlike these approaches, the auxiliary space precondition-
ing (ASP) method, introduced in [12] and developed fur-
ther in [11], [13], and [14], assumes that the problem on
the lowest level is approximately solved in auxiliary spaces
(a space of piecewise linear scalar functions and a space
of nodal vector functions) defined on the same tetrahedral
mesh. This strategy guarantees that RAM demands are sig-
nificantly lower than in factorization-based direct solutions
on the lowest level of the multilevel preconditioner; it is
thus especially useful in solving large problems. However,
it should be borne in mind that the remarkable benefits of
the ASP approach reported in [11], [13], and [14], were
achieved using the UMFPACK [15], [16] direct solver for
sparse systems of equations which, in our tests, has proved
to be a highly memory-demanding library. UMFPACK is
based on the multifrontal factorization technique. Numerical
experiments show that other methods for factorizing a sparse
matrix, such as the supernodal-based [17] technique imple-
mented in PARDISO solvers, require much less memory
than UMFPACK, so it is not clear to what extent the ASP
preconditioner reduces the memory requirements when used
with a memory-efficient direct solver for sparse systems of
linear equations.

In this paper, we present and compare the performance
of the conjugate gradient method with two preconditioners:
a V-cycle multilevel preconditioner (PCG-V) and a V-cycle
multilevel preconditioner with auxiliary space precondition-
ing (PCG-V-ASP). In order to solve the relatively small
sparse systems of equations that occur in both precondition-
ers, we employ the supernodal sparse Pardiso solver avail-
able in the Intel MKL library and use LDLT factorization,
rather than the multifrontal-based UMFPACK solver with LU
factorization used previously in [11], [13], and [14]. This
choice is intended to provide a better picture of where the
ASP-based preconditioner stands with respect to the regular
PCG-V preconditioner. The preconditioners considered can
be implemented in such a way that various computations
are performed concurrently. Initially, computations in both
solvers are performed on a central processing unit (CPU),
with the Intel MKL functions executed in parallel mode.
These tests show that, because the ASP preconditioner needs
more iterations to converge, it requires significantly more
time to solve a sparse system of equations than when the
PCG-V solver is applied. On the other hand, ASP involves
fewer operations that do not scale well with an increasing
number of cores. To determine whether increased parallelism

can offset the larger number of iterations, we have also
developed code for both solvers that makes use of a GPU
accelerator with as many as 3584 cores, and compares the
performance of preconditioners for this GPU-accelerated sce-
nario with the CPU-only multithreaded code optimized for
multicore processors.

The paper is organized as follows: Section II briefly
describes the finite element formulations used to compute
the scattering parameters of the structure being examined.
Two preconditioning techniques are described in Section III.
Implementations of the proposed approaches are described in
Section IV. Finally, our results are presented and discussed in
Section V.

II. FINITE ELEMENT METHOD
Let us consider a lossy dielectric-loaded structure� enclosed
by a boundary S. The distribution of the electric field in � is
determined by the vector Helmholtz equation:

∇ ×

(
1
µr
∇ × EE

)
− k20εr EE = 0, (1)

where EE is the electric field, k0 = ω
√
µ0ε0 is the wavenum-

ber, and µr and εr are the relative permittivity and perme-
ability, respectively. Assuming that the structure is excited
through m ports (with a single mode excitation in each of the
ports), the weak formulation of (1) reads [18]:∫
�

(
∇ × Ew ·

1
µr
∇ × EE − k20 Ew · εr EE

)
d�

− jωε0
m∑
i=1

∫
Pi
Ew · (Eni × EHti)dPi = 0, (2)

where ε0 is the absolute permittivity, Pi is the surface of the
i-th port, Eni is a unit vector normal to Pi, Ew is a vector testing
function, ω is the angular frequency, j is the imaginary unit,
and EHti is a distribution of the tangential magnetic field at Pi.

A 3D vector finite elementmethod formulationwith hierar-
chical vector basis functions up to the third order [9] was cho-
sen to solve (2). Following the standard FEM procedure [18],
we obtain:

(S− k20T)E = jωB̄Īm, (3)

where S, T ∈ Cn×n are sparse stiffness and mass matrices,
respectively, n is the number of degrees of freedom (DoF),
Īm is a diagonal matrix with m amplitudes of waveguide
modes, and B̄ consists of n-dimensional vectors: B̄ =[
b̄1, b̄2 . . . b̄m

]
. The elements of vector b̄i (associated with

the i-th port) are computed as follows:

b̄i =


∫
Pi

ET1 · (Eni × EHti)dPi

. . .∫
Pi

ETn · (Eni × EHti)dPi

. (4)
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The next step involves the normalization of B̄ and Īm with
respect to the characteristic impedance of each of m ports:

Im = ĪmZP
1
2 , B = cB̄/ZP

−
1
2 , (5)

ZP = diag(ZP1, ZP2 . . . ZPm) is a diagonalmatrix containing
the characteristic impedances. Substituting (5) into (3) yields
the final form of the system of equations:

(S− k20T)E = jk0BIm. (6)

where the system matrix A = S− k20T is sparse, symmetric,
and indefinite.

Next, the system of equations (6) is solved in order to
compute the desired parameters of the structure. For large
problems, it is worthwhile (in terms of memory usage and
computation time) to use iterative, Krylov-subspace based
methods, such as COCG [1] or GMRES [4]. For nonpositive
definite systems (6), the conjugate gradient method (CG) can-
not be applied. However, the utilization ofmultilevel or multi-
grid preconditioners with the CG method is common in
electromagnetics [6].

Finally, the scatteringmatrix (S) of the structure is obtained
as follows:

S(k0) = 2(I+ Y(k0))−1 − I, (7)

where I is the identity matrix, Y(k0) = Z(k0)−1, and Z(k0) =
BTE is an input-to-output transfer function.

III. SOLUTION OF A SPARSE SYSTEM OF EQUATIONS
The system matrix that emerges from FEMwith higher-order
basis functions is large and sparse. The direct solution of
the system of equations involves factorization of the sparse
matrix. Unfortunately, the factors are much denser than the
matrix that is being factorized. As the number of degrees
of freedom grows, the number of nonzero elements in the
factors increases rapidly, and a direct solution of the system
of equations becomes impossible because of the limitations
of CPU memory.
To roughly determine the practical limit of direct

solvers in computational electromagnetics when FEM
higher-order basis functions are used to solve the time-
harmonic Maxwell’s equations, we considered two software
libraries designed for the solution of sparse linear systems:
UMFPACK and Intel MKL Pardiso. UMFPACK [15] is
a popular numerical library, also used in Matlab, for LU
factorization of a sparse matrix and solving sparse sys-
tems of equations. The code uses column preordering [19]
to reduce fill-in, followed by symbolic factorization and
a right-looking unsymmetric-pattern multifrontal numeri-
cal factorization. Although the matrix pattern analysis and
permutations are intended to reduce memory requirements,
the actual memory usage is rather high. Our test, carried
out with higher-order FEM matrices resulting from simula-
tions of a lossy filter, have shown that the factorization of
a complex-valued sparse matrix with 1.2 million unknowns
with UMFPACK would need over 2 TB of RAM. This figure

is clearly too large for any practical use. It is also worth
noting that UMFPACK does not take the symmetry of the
matrix into account. In FEM, the resulting matrix is indef-
inite but symmetric, so the more efficient LDLT factoriza-
tion should be applied. However, even if symmetry is not
considered, better results in terms of memory consumption
can be achieved if sparse LU factorization is carried out
using a supernodal approach [17], as adopted by the Intel
MKL Pardiso solver for directly solving sparse systems of
equations. For the same problems, the Intel MKL Pardiso
solver needs much less memory than UMFPACK. Table 1
shows the memory requirements for storing and factorizing
complex-valuedmatrices with different number of rowswhen
the number of tetrahedra grows from 66,735 to 277,143.
Complex-valued FEM matrices were generated using the
FEM code described in [20], assuming the basis functions up
to the third-order. For a problem with 1.2 million degrees of
freedom. Pardiso needs 32 GB, two orders of magnitude less
than UMFPACK. The difference in memory requirements is
remarkable, and the use of UMFPACK should be restricted
to very small matrices. It can also be seen from the table
that the memory requirements of Intel MKL Pardiso grow
very rapidly. LU factorization of a system with 5.1 million
unknowns was not possible on a workstation equipped with
256 GB RAM. Taking advantage of the symmetry of FEM
matrices, and using PARDISO’s LDLT factorization capabil-
ities (not available in UMFPACK), brings about considerable
savings, as shown in Table 2, where thememory requirements
are given for matrices stored in symmetric form and for LDLT

factorization (rather than LU).

TABLE 1. Memory (in GB) required to store the sparse matrix AAA and to
factorize a complex-valued matrix AAA11 with Intel MKL Pardiso.
LU factorization: sparse matrices are stored as general.

TABLE 2. Memory (in GB) required to store the sparse matrix AAA and to
factorize a complex-valued matrix AAA11 with Intel MKL Pardiso.
LDLT factorization: sparse matrices are stored
in upper triangular form.

A. PRECONDITIONED ITERATIVE SOLVERS
When memory requirements grow with problem size,
the direct solution of larger problems becomes impossible
and iterative Krylov-space methods must be applied. Iterative
solvers are memory-efficient, but their convergence may be
poor. Preconditioning is needed to improve the convergence
rate. Preconditioning transforms the original linear system
into one which has the same solution, but is likely to be
easier to solve with an iterative solver [21]. Ideally the
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application of a preconditioner in each iteration should be
equivalent to the multiplication of a system matrix by its
(approximate) inverse. The preconditioner itself can be a
matrix or a sequence of operations. A preconditioner requires
extra memory, which must be taken into account when select-
ing a preconditioning technique. Also, modern workstations
have multicore CPUs and are often equipped with accel-
erators, such as graphics processing units, which contain
thousands of cores. If these computational resources can be
used in parallel, the time to solution can be significantly
reduced.

This section introduces two preconditioners with low
memory requirements and good parallelization properties,
specifically designed for the finite element method (FEM)
with higher-order vector basis functions.

1) MULTILEVEL PRECONDITIONER
A hierarchical multilevel preconditioner (Hie-ML) is a
set of operations (Listing 1), which can have different
schemes (V-cycle, W-cycle) and, depending on the order of
basis functions, may have several levels. In our case, basis
functions up to the third order have been used (QTCuN) [9],
so we can employ three levels. In a hierarchical multi-
level preconditioner, a global sparse matrix A is divided
in submatrices (Aij) that are related to the orders of the
finite element basis functions. In our case, the division is
as follows:A11 A12 A13
A21 A22 A23
A31 A32 A33

 =
S11 S12 S13
S21 S22 S23
S31 S32 S33


− k20

T11 T12 T13
T21 T22 T23
T31 T32 T33,

 (8)

where A11 corresponds to the Whitney basis functions.

Listing 1. Hierarchical multilevel preconditioner (Hie-ML).

Listing 1 shows that the Hie-ML preconditioner has
smoothing operations (lines 6, 10), a sparse matrix vector
products between levels (lines 7, 9), and a solution of the
sparse system of linear equations on the lowest level (line 4).
To perform smoothing operations, relaxation iterative meth-
ods can be used. Zhu and Cangellaris [6] proposed the Gauss–
Seidel method for smoothing operators, in order to guarantee
satisfactory convergence. However, the Gauss–Seidel method

cannot be efficiently parallelized, meaning that high per-
formance cannot be achieved. Thus, a weighted Jacobi
method (wJacobi) was proposed [10], based on the sparse
matrix vector product, and thus capable of easy paralleliza-
tion. Finally, the system of equations on the lowest level of the
preconditioner is solved by means of the direct solver [22].
The memory requirements of the preconditioner are asso-
ciated with the memory needed for factorizing and storing
factors of a sparse matrix A11 (associated with the lowest-
order FEM basis functions). This matrix is much smaller than
the whole system matrix A, so the memory requirements are
lower.

2) AUXILIARY SPACE PRECONDITIONING
The memory requirements of a hierarchical preconditioner
can be reduced even further if the system of equations on
the lowest level of a hierarchical preconditioner (Listing 1,
line 4) can be solved by means of the auxiliary space precon-
ditioner (ASP) technique [13]. This takes advantage of the
three spaces of basis functions:
• V: the space spanned by the first order vector basis func-
tions (Whitney functions [9]), tangentially continuous,
associated with the edges of the mesh,

• N : an auxiliary space of linear scalar basis functions.
∇N is a subspace of V , assuming the same mesh.

• N 3: an auxiliary space of nodal vector functions, which
are tangentially and normally continuous.

The functions fromN space can be projected onto V space
by means of the node-to-edge sparse mapping matrix G,
whereas the transposed matrix GT is used for the reverse
mapping from V to N . In the same way, functions from
N 3 space can be projected onto V using a sparse 5 matrix,
composed of the three blocks associated with the Cartesian
coordinates:

5 =
[
5x 5y 5z

]
, (9)

while 5T is used for the reverse mapping. The details of the
implementation of 5 and G can be found in [23] and [24].

The system matrix A associated with the functions from
V space is represented in the two auxiliary spacesN andN 3

by means of the square matrices:

An
11 = GTA11G (10)

and:

Aζ11 = 5
T
ζ A115ζ (11)

where ζ = {x, y, z}.
Similarly to in [11], we have utilized the shifted Laplacian

technique, in which it is assumed that the matrices
Ax
11, Ay

11, and Az
11 are constructed in such a way that the

term k20 , used in the volume integral of (2), is replaced by
(1 − jγ )k20 , where γ = 0.8. In effect, the eigenvalues of
the resulting preconditioned matrix are clustered in the right-
hand half of the complex plane, which significantly improves
the performance of ASP (see [11] for details).
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Listing 2. Auxiliary space Preconditioner (ASP), V-cycle.

The solution of the system of equations on the lowest level
of a hierarchical preconditioner can be approximated by the
following formula:

A−111 r ∼= smoothing(z, r)+G(An
11)
−1GT r

+

∑
ζ=x,y,z

5ζ (Aζ11)
−15T

ζ r. (12)

where the smoothing procedure is performed by using a
weighted Jacobi method (similar to in the case of Hie-ML).
The formula (12) can be expressed in the form of a V-cycle
scheme, as shown in Listing 2.

In ASP, the majority of memory usage is related to fac-
torization, and thus to sparse matrices (10) and (12)—see
Listing 2, lines 5 and 9. These matrices are much smaller
than matrix A11, which appears in the standard hierarchical
preconditioner (Listing 1, line 4).

TABLE 3. Description of the CPU-based and GPU-based implementations.

IV. IMPLEMENTATION
This paper compares two implementations: The reference
(CPU-based) implementation uses the Intel Math Kernel
Library (Table 3), in which computations are performed in
parallel using all CPU cores. The library is tuned for the
fastest operation of Intel multicore processors, so we consider
our CPU-only version of the preconditioned PCG to be a
good yardstick for comparisonwithGPU-accelerated solvers.
In the second, GPU-based, implementation most of the com-
putations (a sparse matrix vector product, BLAS1 opera-
tions) are massively parallelized on a graphics accelerator,
and only direct solutions on the lowest level of the V-cycle
preconditioners are performed on aCPU, using the IntelMKL
PARDISO solver. More precisely, in the GPU-based imple-
mentation, a CPU is used to carry out computations in line 4
(Listing 1) of the standard hierarchical multilevel precondi-
tioner (Hie-ML, or on lines 5 and 9 (Listing 2) of the ASP
preconditioner. This requires communication between the
GPU andCPU.However, the overhead due to the data transfer

is not significant, since the size of the matrices A11 (V) and
An
11 andA

ζ
11 (V-ASP) is relatively small compared toA. In the

case of PCG-V, there are more transfers between CPU and
GPU per iteration, as steps 2–4, 6, 8, and 10–13 in (Listing 2)
are executed on a GPU; however, since ASP operates on very
small matrices, this does not affect the performance much.

We used Intel MKL (2017, update 1) for the CPU opera-
tions. To implement the GPU operations, cuSPARSE (v8.0)
was applied whenever possible—except for the sparse-matrix
vector product (SpMV), for which we developed our own
computational kernels. In these kernels, a sparse matrix is
stored in the Sliced ELLR-T sparse matrix format [25]. In this
format, the matrix is divided into slices, nonzero entries are
permuted in each slice, and rowswith fewer nonzero elements
are zero-padded to ensure coalesced access to data. This
format yields much better performance than the standard
CRS format employed in the cuSPARSE library. More pre-
cisely, for the hardware used in the test, we obtained almost
90GFlops for complex-valued sparsematrix, compared to the
65 GFlops achievable with cuSPARSE [26]. To save GPU
memory, the system matrix A is divided into nine blocks;
the SpMV operations required in various stages of the PCG
algorithm and preconditioner are performed on a GPU and
involve one or more such blocks (see [10] for details).

The upper performance bound (roofline model) for the
SpMV kernel is given by:

Pmax =
Flops
tB

BW , (13)

where Flops is the number of SpMV floating point opera-
tions, tB is lower bound on data transfer (in bytes), and BW
is the maximal data transfer from/to main memory.

V. NUMERICAL RESULTS
All numerical tests were executed on an Intel Xeon
(E5-2680 v3, 2.5 GHz, twelve cores) with 256 GB mem-
ory and an NVIDIA Tesla P100 (Pascal accelerator) with
3584 CUDA cores and 12 GB GPU RAM. To investigate the
behavior of the PCG-V and PCG-V-ASP methods, we con-
sidered a realistic lossy electromagnetic problem, in the form
of a four-pole dielectric-loaded cavity filter [27], shown
in Fig. 1. In each resonator cavity, large cylindrical dielectric
pucks with dielectric relative permittivity εr = 30+j3×10−6

are located on dielectric supports (with εr = 9). All the other
filter parameters are provided in [27]. Complex-valued FEM
matrices were generated using the higher-order FEM code
described in [20]. The number of weighed Jacobi iterations in
the presmoothing and postsmoothing phases of the multilevel
preconditioner (both in PCG-V and PCG-V-ASP) are 2 and 7,
in the third and second levels, respectively.

As we observed in the introduction, the memory require-
ments determine the practical use of a given solver on a par-
ticular workstation. In previous papers with auxiliary space
preconditioning [11], [13], [14], UMFPACK code was used
as a direct solver for sparse systems of equations. Here,
Intel MKL Pardiso is used instead. We selected for our tests
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FIGURE 1. a) Four-pole dielectric-loaded filter. b) and c) top and side
view of the structure with the dimensions (in mm): a1 = 6.91, a2 = 7.93,
c = 9.0, w2 = w4 = 5.93, w3 = 4.85, h1 = 5.86, h2 = 5.25, t = 0.5,
d = 9.52, l = 20.0, the radius, height and the permittivity of the pucks:
2.55, 2.30, 30 and 1.75, 2.31, 9, respectively.

TABLE 4. Properties of the largest test problem analyzed in the paper.
AAAn

11 and AAAζ11 were defined in Eqs. (10)-(11), respectively.

the largest problem, with 5.1 million degrees of freedom;
Table 4 shows the characteristics of the most important matri-
ces involved in the preconditioners. It can be seen that the
matrices to be factorized are much smaller than the matrix A.
Also, the matrices used in the ASP preconditioner are about
ten times smaller than the matrix A11 used on the lowest
level of the standard multilevel preconditioner (see line 4 in
Listing 1). In the GPU-based version of the preconditioner, all
steps except for the direct solution of the sparse system on the
lowest level are carried out on the GPU; the size of the matrix
on the lowest level is also important from the point of view
of communications between the CPU and GPU. If a smaller
matrix in the ASP preconditioner is processed on the CPU,
less data traffic occurs upon each iteration. This implies that
the PCG-V-AS solver should benefit more than the PCG-V
solver from the increased number-crunching power provided
by the GPU.

TABLE 5. Memory (in GB) required to store the sparse matrix AAA using LU
factorization of the matrix AAA11 with Intel MKL Pardiso and vectors in the
iterative solver PCG-V.

Table 5 shows the amount of memory required to store
the sparse matrix A, and to factorize and store the factors
of the matrix A11 with the Intel MKL Pardiso used in the

iterative PCG-V solver. The storage needed for vectors is also
given for completeness. It is worth noting that, even if the
A11 matrix has about 17 times fewer rows, its factorization is
memory-consuming and utilizes as much as 31% of the total
memory requirements of the PCG-V solver.

TABLE 6. Memory (in GB) required to store the sparse matrix AAA using LU
factorization of the matrices AAAn

11 and AAAζ11 with Intel MKL Pardiso and
vectors in the iterative solver PCG-V-ASP.

TABLE 7. Memory (in GB) required to store the sparse matrix AAA using
LDLT factorization of the matrix AAA11 with Intel MKL Pardiso and vectors
in the iterative solver PCG-V.

TABLE 8. Memory (in GB) required to store the sparse matrix AAA using
LDLT factorization of the matrices AAAn

11 and AAAζ11 with Intel MKL Pardiso
and vectors in the iterative solver PCG-V-ASP.

The PCG-V-ASP solver (Table 6) with LU factorization
carried out using Intel Pardiso requires significantly less
memory than PCG-V to solve the system on the lowest level.
Comparing the data in the third column of Table 5 and Table 6,
it can be seen that the factorization of matrices on the lowest
level, and then storing the factors, requires three times as
much memory in the standard PCG-V as in PCG-V-ASP.
Overall, the relative CPU-memory savings are less spectacu-
lar. For the system with 5.1 million unknowns, the memory
savings in the PCG solver with the auxiliary space precondi-
tioner amount to 26% (a reduction from 14.4 GB to 11.5 GB).
If the symmetry of the FEM matrices is taken advantage of
and LDLT factorization is applied, the memory requirements
of the iterative solvers are obviously lower, but the difference
here between PCG-V and PCG-V-ASP is not very signif-
icant. Tables 7 and 8 show that PCG-V and PCG-V-ASP
require in total 12.6 GB and 11.0 GB, respectively. This is
a good result, but the savings are not as dramatic as reported
in [11], [13], and [14], where a memory-hungry LU factor-
ization using UMFPACK was considered. It is worth noting
that the memory consumption for factorizing matrices used
in the multilevel preconditioner are significantly lower in
Intel MKL Pardiso than in UMFPACK. In particular, Pardiso
requires about 20 and 10 times less memory to factorize A11
in PCG-V and An

11 in PCG-V-ASP, respectively.
It is evident that PCG-V-ASP requires less memory than

the standard PCG-V; however, since the difference is not
very significant, it is also important to compare both pre-
conditioners in terms of time needed to solve the system.
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To this end, we tested two parallel implementations of the
preconditioned conjugate solver with LDLT factorization,
using the largest problem involving a complex-valued matrix
with 5.1 million rows. The first implementation uses only
a multicore CPU. The second implementation takes advan-
tage of a GPU accelerator. The average times taken by the
singe iteration of the PCG-V and PCG-V-ASP solvers for
a CPU-only implementation are presented in the second to
sixth rows of Table 9. While the operations in the main
CG iteration and the smoothing in the preconditioner take a
similar amount of time, there is a significant time difference
in favor of PCG-V-ASP for the solution on the lowest level
of the preconditioner, as seen from the fifth row in the table.
The time taken to solve the system on the lowest level is
not dominant. As a result, the average time taken by a single
iteration of PCG-V-ASP is only about about 7% shorter for
PCG-V-ASP. Unfortunately, the PCG-V-ASP solver requires
over three times as many iterations as PCG-V. Based on the
results of the tests, it can be concluded that, despite its lower
memory requirements, the savings with LDLT factorization
are not significant from the performance point of view. It is
thus preferable to use the PCG-V solver.

TABLE 9. Comparison of the PCG-V and PCG-V-ASP solvers for a
CPU-based implementation. LDLT factorization of sparse matrices
on the lowest level (AAA11 in PCG-V; AAAn

11 and AAAζ11 in PCG-V-ASP).

TABLE 10. Comparison of the PCG-V and PCG-V-ASP solvers for a
GPU-based implementation. LDLT factorization of sparse
matrices (AAA11 in PCG-V; AAAn

11 and AAAζ11 in PCG-V-ASP).

The relative performance of PCG-V-ASP with respect to
PCG-V does however improve significantly if both solvers
are accelerated using a GPU. Table 10 shows the performance
of the PCG-V and PCG-V-ASP solvers, with most of the
computations offloaded to a GPU (Table 3). The only part
the computations that needs to be performed on a CPU is the
direct solution of various systems of equations on the low-
est level. This involves transferring the intermediate results
between the GPU and CPU. Since PCG-V-ASP involves
smaller matrices on the lowest level, the CPU-only part of
the entire algorithm decreases significantly with respect to

the standard PCG-V, and the impact using a GPU is greater
for PCG-V-ASP than for PCG-V. This is clearly visible com-
paring the data in the fifth rows of Tables 9 and 10. For a
CPU-only implementation, the operations on the lowest level
are 1.9 faster for PCG-V-ASP, while this speedup increases to
3.8 for the implementation involving a GPU. If the CPU-only
implementation is compared to the GPU version, it can be
seen that the use of the GPU reduces the time taken by a
single iteration from 2.48 to 0.77 (3.2 times) for the PCG-V
and from 2.3 to 0.33s (a factor of seven). The overall impact
of the GPU can be seen in the final row of the Table 10, which
presents the speedup of the GPU-version over the CPU-only
version, considering all operations.

TABLE 11. Comparison of the time taken to solve a complex-valued
sparse system of equations with 5.1 million unknowns.
LDLT factorization of sparse matrices on the lowest
level of V and V-ASP preconditioners was used.

Table 11 compares the time taken to solve a complex-
valued sparse system of equations with 5.1 million unknowns
for various implementations of preconditioned conjugate gra-
dient solver. Since PCG-V-ASP requires over three times
more iterations, the time taken by the PCG-V solver
to achieve the assumed convergence is shorter. However,
the GPU offsets, to a certain extent, the greater-than 3.74 to 1
difference in the number of iterations, reducing the runtime
advantage of the PCG-V to a ratio of 2 to 1. Although
ultimately the PCG-V-ASP solver is slower, the difference
on a GPU is not very dramatic, and with the GPU acceler-
ation, this preconditioner becomes a viable option for even
larger complex-valued systems (with more than five million
unknowns), for which the factorization of the matrix A11
cannot be handled due to the memory limitations of the
workstation.

VI. CONCLUSION
In this paper, fast CPU-based and GPU-based implemen-
tations of the conjugate gradient iterative method, using
parallel preconditioners with low memory requirements,
were employed to solve complex-valued and sparse systems
resulting from the FEM democratization of time-harmonic
Maxwell’s equations. Both preconditioners make use of the
hierarchy of basis functions and operate in a V-cycle. In one
preconditioner, a direct solution of the sparse system of
equations is performed, while the other involves an itera-
tive solution with an auxiliary space-preconditioning ASP.
ASP has been advocated in the past as an approach that
significantly reduces the memory footprint. This paper shows
that, when symmetry is taken into account and Intel Pardiso
LDLT factorization using is used, the memory require-
ments improvements are small. Moreover, for the CPU-only
implementation, the PCG-V-ASP solver turned out to be over
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three times slower than the solver using a direct solution on
the lowest level. It can be concluded that the use of ASP
does not pay off on multicore CPUs. The use of a graphics
processing unit (Pascal P100) results in a significant acceler-
ation of computations (by a factor of seven in the PCG-V-ASP
solver and by a factor of 3.2 for the PCG-V solver) compared
to parallel CPU-only computations involving all CPU cores
and using optimized vendor libraries. Even better speedups
can be expected for problems with multiple right-hand sides,
where blocking allows better utilization of the computational
resources of the GPU [26]. Since the PCG-V-ASP solver
benefits more from the GPU acceleration, it seems that
that a blocked version of the PCG-V-ASP GPU-accelerated
code could prove competitive compared to a blocked PCG-V
solver.
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