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ABSTRACT This paper deals with the optimization of machining parameters of speed, feed rate, and
depth of cut that aim to simultaneously achieve the low surface roughness (SR) and high material removal
rate (MRR) of a version of ACETAL homopolymer material known as Delrin. First, an L27 orthogonal
array with three-level of cutting speed (Vc), feed rate (f ), and depth of cut (ap) is formulated, and the
experiments are conducted accordingly in a CNC turning machine using cemented carbide tool with
insert angle of 80◦. A response surface model is rendered from these experimental results, and two
objective functions representing the SR and MRR of Delrin are derived. An enhanced multi-objective
teaching–learning-based optimization (EMOTLBO) is then proposed to solve the multi-objective machining
problem, aiming to minimize the SR and maximize the MRR of Delrin simultaneously. A fuzzy decision
maker is also integrated to softly select the preferred solution from Pareto-front based on the importance level
of both objective functions. Extensive simulation studies prove that EMOTLBO is more competitive than
other existing algorithms for being able to produce a more uniformly distributed Pareto-front. Simulation
results are further validated Experimentally, and the difference of lower than 5% is observed that imply to
good agreement between the simulation and experimental results.

INDEX TERMS Homopolymer, multi-response, design of experiment (DOE), response surface
model (RSM), analysis of variance (ANOVA), surface roughness (SR), material removal rate (MRR),
enhanced teaching-learning-based optimization (EMOTLBO).

I. INTRODUCTION
Delrin is an engineering crystalline thermoplastic polymer
material developed by DuPont. It is a version of Acetal
homopolymer that offers an excellent physical, tribological
and environmental properties that make it suitable for many
mechanical and industrial applications. It is generally diffi-
cult to machine due to its properties like low elastic modu-
lus, rate of moisture absorption, high coefficient of thermal
expansion, and internal stresses. It is a challenge to achieve
both surface finish and material removal rate concurrently as
these parameters represent quality and quantity respectively.
While human process planner can utilize their experiences
to determine the machining parameters, the selected values
are generally conservative and largely deviated from opti-
mum settings. Meanwhile, the determination of optimum
process parameters through experiments are tedious and high
cost.

Substantial researches were conducted to address these dif-
ficulties in the past. Various regression models were derived
by the researchers based on experimental data to map the
relationship between the input and output parameters, aiming
to achieve better prediction of the performance of machining
processes of the selected material. Chabbi et al. [1] inves-
tigated the influence of machining parameters, i.e., the cut-
ting force and cutting power on material removal rate in
turning of polyoxymethylene (POM C) using L27 orthog-
onal array. They used Response Surface Model (RSM) for
modeling and artificial neural network for optimization and
reported that feed rate is the most significant parameter
for improving surface finish, while the feed rate and depth
of cut are crucial for improving material removal rate.
Kaddeche et al. [2] investigated the surface roughness, cutting
force, and temperature rise during the machining of HDPE
80 andHDPE 100 polymers and reported that feed rate affects
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the surface roughness and depth of cut influences the temper-
ature level. Also revealed that the temperature generated in
the cutting zone of HDPE 80 is higher than that of HDPE
100. Panda et al. [3] studied the influence of machining
parameters on surface roughness (SR) and material removal
rate (MRR) in turning of Nylon 6/6 using analysis of vari-
ance (ANOVA). It was reported that SR decreases when both
cutting speed and feed rate increase. Lazarevića et al. [4] used
L27 Taguchi orthogonal array to study the influences of four
cutting parameters; cutting speed, feed rate, depth of cut and
tool nose radius to minimize the SR in turning of polyethy-
lene. ANOVA was also performed to identify the impor-
tance level of these process parameters. Hamlaoui et al. [5]
investigated the machinability of HDPE tough resin used for
piping and fittings. Gaitonde et al. [6], [7] used Taguchi
method and ANOVA to study better machinability during
the turning of unreinforced polyamide (PA6) and glass fiber
reinforced polyamide (PA66GF30). They reported that PCD
tool is better than cemented carbide (K10) for machining
PA6 and PA66GF30 and optimal values of feed rate and
cutting speed should be kept at low level to achieve better
results. The effect of cutting speed and feed rate on surface
finish in the machining of Ultra High Molecular Weight
Polyethylene (UHMWPE) was studied in [8], while the
machinability of unreinforced polyetheretherketone (PEEK)
and glass fiber reinforced (GF30) PEEK was studied in [9]
using Taguchi method. The machinability study on carbon
reinforced PEEK material was conducted in [10], while
Abdul Shukor et al. [11] focused on applying Taguchimethod
to determine the best machining parameters for pocket
milling process of polypropylene (PP). In [12], all factors that
influence the SR of glass fiber reinforced resin were assessed
using design of experiments (DOE) and ANOVA. In [13],
the surface roughness in turning of polyamide was modeled
and optimized using artificial neural network by considering
the feed rate, cutting speed, depth of cut and tool nose radius
as control parameters.

Most of the regression models seen in literatures are non-
linear functions consist of several input machining parame-
ters with bounded values. One approach used to determine the
optimum parameter settings is to integrate these regression
model with optimization methods. Although the conventional
optimization algorithms such as geometric programming,
nonlinear programming, dynamic programming etc. can be
employed to solve the regression models, these approaches
need an excellent guess of initial solution for not being
trapped into the local optima [14]. Due to their robustness
in searching process, various evolutionary algorithms and
swarm intelligence algorithms were recently designed and
integrated into the regression models to achieve optimum
solutions. A comprehensive study of works that utilizing
evolutionary algorithms and swarm intelligence algorithms
to address optimization of machining parameters can be
found in [15]–[17].

Most machining problems are formulated and solved using
multi-objective optimization because machining is involved

with more than one performance characteristic simultane-
ously. Two popular methods known as the priori approach
and the posterior approach [18] are commonly used to solve
these multi-objective optimization problems (MOPs). Unlike
the priori approach that can only generate a unique optimum
solution in a single run based on a specific combination of
weight, the posterior approach can generate a set of mul-
tiple tradeoff or Pareto-optimal solutions of a MOP using
a single simulation run. Posterior approach also allows the
process planner to decide a unique optimum solution from
the Pareto-optimal solutions based on the importance level of
each objective without requiring them to know these impor-
tance levels in advance [19]. For these reasons, the posterior
approach is preferred over the priori approach in solving
the MOPs of machining process that need to consider the
frequent change of customer requirements.

Various types of multi-objective evolutionary algo-
rithms (MOEAs) were reported to solve MOPs. The frame-
works of MOEAs can be categorized into two types, namely
Pareto-dominance-based (e.g., ε-MOEA, SPEA2 and PESA)
[20]–[22] and decomposition-based (e.g., MOEA/D and
NSGA-III) [23], [24]. The existing MOEAs adopted one of
these approaches to obtain the non-dominated solution set.
In [25], an imperialist competitive algorithm was used to
tackle the multi-response optimization of ultrasonic machin-
ing process. In [26], particle swarm optimization (PSO)
was used to multi-objective optimization of electric dis-
charge machining. A multi-objective Jaya algorithms was
recently proposed in [27] to solve the four modern machin-
ing processes known as the wire-electric discharge machin-
ing (WEDM) process, laser cutting process, electro-chemical
machining (ECM) process and focused ion beam (FIB)
micro-milling process.

Recently, teaching-learning-based optimization (TLBO)
[28] and its variants have been widely used to solve
different machining parameter optimization problems due
to the advantage of not requiring any algorithm-specific
control parameters. A multi-objective TLBO (MOTLBO)
was used in [29] to minimize both of the carbon emission
and operation time of turning operations simultaneously.
A non-dominated sorting TLBO was proposed in [30] to
solve four machining processes of WEDM, laser cutting,
ECM and FIBmicro-milling.More variants ofMOTLBO and
their applications can be found in [31]–[38]. For instance,
a multi-objective improved teaching-learning based opti-
mization (MO-ITLBO) was reported in [34] to solve the
MOPs with the results of statistical analyses by integrating
ε-domination method into ITLBO. An identical MO-ITLBO
was also reported in [35]. In [36], MO-ITLBO was applied
to optimize the design of a plate-fin heat exchanger. While
the MO-ITLBO variants reported in [34]–[36] seems to be
same, none of these works can clarify how an ITLBO can
be extended to solve the MOPs [37]. A multi-objective
individualized-instruction teaching-learning based optimiza-
tion were designed in [38] to solve MOPs more effectively by
designating specific teacher to improve learner’s knowledge
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and adopting the external archive to preserve promising
solutions found.

The objective of this paper is to investigate the multi-
objective machining parameters optimization of Delrin.
Despite of its high requirement for industrial applica-
tion, the machining characteristics of Delrin have not been
addressed so far based on the authors’ best knowledge.
In this paper, the research contributions are presented with
two major areas. The first area (in Section II) focuses on
design of experiments (DOE), the regression model devel-
oped based on the experimental results and two objective
functions representing minimizing surface roughness and
maximizing material removal rate of the selected material.
The second area (in Section III) focuses on a posterior version
of MOEA known as the enhanced multi-objective teaching-
learning-based optimization (EMOTLBO) to obtain the opti-
mum turning conditions of Delrin in order to simultaneously
minimize surface roughness and maximize material removal
rate. Some modifications and improvements are also pro-
posed in EMOTLBO to solve MOPs effectively. An external
archive is integrated into EMOTLBO to store or retrieve the
non-dominated Pareto optimal solutions. Different selection
mechanisms for teacher and peer learner are introduced to
facilitate better guiding effect during the teacher and learner
phases of EMOTLBO. A mutation operator is designed to
prevent the stagnation on local Pareto front by emulating a
brainstorming session that promotes the critical thinking of
learner. An archive controller is designed to insert the newly
obtained non-dominated solutions and eliminate the redun-
dant archive members. Finally, a fuzzy decision maker [39]
is also integrated in EMOTLBO to softly select the most pre-
ferred compromised solution from the set of Pareto optimal
solution based on the order of importance of objectives.

The simulation and experimental results are presented
in Section IV, while the conclusions are presented
in Section V.

TABLE 1. Properties of Delrin (from the supplier).

II. EXPERIMENTAL MODELING OF DELRIN
A. EXPERIMENTAL DETAILS
A cylindrical Delrin rod of 30 mm diameter was chosen
as the material, while CNC turning center model sprint
16TC (Fanuc 0i T Mate C) CNC with Fanuc control motors
and drives was chosen for the machining. Table 1 presents
the mechanical and physical properties of Delrin, while

TABLE 2. Cutting tool specification (from the tool manual).

FIGURE 1. Cutting tool geometry.

TABLE 3. Machining parameters and their levels.

Table 2 shows the specification of the carbide tip (CNMG)
cutting tool insert. Figure 1 shows the geometry of the cutting
tool. Servo super cut coolant32 was used for turning three
steps of equal length of 10 mm. Three levels of cutting speed
Vc (m/minute), feed rate f (mm/rev) and depth of cut ap(mm)
as recommended by cutting toolmanufacturer was considered
and L27 matrix was built as shown in Table 3. Figure 2 shows
the machined specimen and chips during machining.

FIGURE 2. (a) Machined specimen and (b) chips during the machining.

Surface finish denoted as Ra (µm) and material removal
rate denoted as MRR(cm3/minute) were considered as
response variables. Surface roughness of each sample was
instantly measured using Mitutoyo make surf tester after
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TABLE 4. Experimental results of Ra and MRR with control variables.

each machining. Each measurement was done four times and
the mean of measurement of these four trials was recorded as
in Table 4. TheMRR was calculated empirically based on the
rate at which volume of material removed as:

MRR = Vc × f × ap (1)

B. RESPONSE SURFACE METHODOLOGY
Response Surface Methodology (RSM) is an experimental
modeling technique used to determine relationship between
control variables and response variables. The objective of
using RSM in this research is to investigate the effect of
cutting speed (Vc). feed rate (f ) and depth cut (ap) on surface
finish Ra and material removal rateMRR.
In general, a second order RSM model is given by

Y = α0 +
I∑
i=1

βixi +
I∑
i=j

βijxixj +
I∑
i=1

βiix2i (2)

where α0 is a free term of the regression equation; x1,
x2, . . . , xn are variable terms; βi are linear coefficient terms,
βii are quadratic coefficients; and βij are interacting coeffi-
cient terms. Let ψ1 (·, ·, ·) and ψ1 (·, ·, ·) be the functions to
relate the response variables Ra and MRR, respectively, with
the three control variables of Vc, f and ap where

Ra = ψ1 (Vc, f , ap) (3)

MRR = ψ2 (Vc, f , ap) (4)

The regression models of (3) and (4) are the second order full
quadratic regression. The coefficients of α0, βi, βii and βij are

determined based on the experimental data. The regression
equations of Ra andMRR were obtained as:

Ra = 0.86381+ 0.006238Vc + 7.44875f − 1.9865ap

− 0.0016666× Vc × f + 0.001888× Vc × ap

+ 1.6× f × ap− 0.0000312V 2
c − 11.39375f 2

+ 0.607ap2 (5)

MRR = 23.3431− 0.1277Vc − 115.5125f − 30.095ap

−Vc × f + 0.3× Vc × ap+ 135.15× f × ap

− 0.00063827V 2
c − 32.6875f 2 − 5.23ap2 (6)

C. ANALYSIS OF VARIANCE
Analysis of variance (ANOVA) is a statistical tool used to
determine how well a model fits the experimental data and
examine the goodness-of-fit. The key parameters of the out-
put of ANOVA are represented as S, P and R2. Parameter S
represents the standard deviation of how far the data values
fall from the fitted values and indicates how well the model
describes the response. R2 is the percentage of variation of
data in the response with the range of 0-100%. Higher value
of R2 indicates the better fit of model. The significance is
generally checked as: (i) if the value of probability P < 5%,
the model is adequate and parameters are significant on
responses and (ii) if the value of P > 5%, the model is
adequate and parameters are insignificant on responses. The
experimental data shown in Table 4 and the developed RSM
model were input into a statistical tool in which a confidence
level of 95% was set in order to find the model adequacy.
The percentage of contribution of each machining parameter
on response variable was calculated.

D. PROBLEM FORMULATION OF DELRIN MACHINING
The multi-objective machining optimization of Delrin can
be formulated based on the regression models obtained from
(5) and (6). Three process parameters considered in the multi-
objective machining model of Delrin are cutting speed (Vc),
feed rate (f ) and depth cut (ap). Surface roughness (Ra)
and material removal rate (MRR) that respectively represent
the quality and quantity of product, are two contradictory
objectives to be optimized simultaneously.

To this end, the multi-objective machining optimization
problem of Delrin material can be expressed as:minimize

Vc,f ,ap
Ra

maximize
Vc,f ,ap

MRR

s.t. 80m/minute ≤ Vc ≤ 200m/minute

0.09mm/rev ≤ f ≤ 0.5mm/rev

0.5mm ≤ ap ≤ 3.0mm (7)

The optimum machining parameters of Vc, f and ap for
multi objective optimization problem of (7) are solved using
the proposed EMOTLBO. For the ease of implementation,
the maximization of MRR can be equivalently represented
as the minimization of negative value of MRR.
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III. PROPOSED METHODOLOGY
A. TLBO
TLBO was proposed in [28] to emulate the interaction
between teacher and learners during the learning process in
a classroom. The best solution of each generation represents
teacher, while the remaining candidate solutions are learners.
The learners are able to accept instructions from teacher and
learn from other peers as well.

Let Xgn,d be the d-th dimension of the n-th learner in g-th
generation for n ∈ [1,N ], d ∈ [1,D] and g ∈ [1,G], whereN
is the population size;D is the total number of design variable;
and G is the total generation. Denote X̄gd and XgT ,d as the d-th
dimension of mean and best (teacher) solutions, respectively.
The d-th dimension of each n-th learner Xgn,d can be updated
in teacher phase as follow:

Xg+1n,d = Xgn,d + r1
(
XgT ,d − Tf X̄

g
d

)
(8)

X̄gd =
1
N

N∑
n=1

Xgn,d (9)

where r1 is a random number between 0 to 1 generated from
uniform distribution; Tf is the teaching factor and it can
be set as either 1 or 2 with equal probability to reflect the
teaching ability of XgT . The new solution Xg+1n produced in
teacher phase can replace the current solutionXgn if the former
solution has better fitness than the latter one.

The completion of teacher phase leads to learner phase that
emulates peer-learning mechanism among the learners. Each
updated learner Xg+1n can interact with a randomly selected
peer Xg+1r to improve its knowledge further, where r ∈ [1,N ]
and r 6= n. The learner Xg+1n is attracted by its peer Xg+1r ,
if the latter solution has better fitness than the former one and
vice versa. Denote X̃g+1n,d as the d-th dimension of n-th learner
produced during the learner phase, then:

X̃g+1n,d = Xg+1n,d + r2
(
Xg+1r,d − X

g+1
n,d

)
,

if Xg+1r is fitter than Xg+1n (10)

X̃g+1n,d = Xg+1n,d + r2
(
Xg+1n,d − X

g+1
r,d

)
,

if Xg+1n is fitter than Xg+1r (11)

where r2 is a random number between 0 to 1 generated from
uniform distribution. The new solution X̃g+1n obtained from
learner phase can replace the current solution Xg+1n if the
former solution is fitter than the latter one.

The TLBO algorithm begins optimization by generat-
ing a set of N random solutions as the first population.
During optimization, each learner gradually moves closer to
teacher or peers with better fitness and repels away from peers
with worse fitness using (8)-(11) to achieve good balance
of intensification and diversification of search process. The
position vector of teacher is returned as the best solution of
optimization when the termination conditions are met.

Since the inception of TLBO, it has been applied to
solve various engineering problems as reported in [28]

and [40]–[42]. Apart from exploring the potential applica-
tions of TLBO, some studies focused on analyzing the
implementation of TLBO and its convergence characteristic.
Črepinšek et al. [43] attempted to replicate the experimental
results of Rao et al. [40], [41] and some notable findings
in terms of performance comparisons between algorithms.
A geometric interpretation of TLBO was used in [44] to
explore its inherent origin bias, the impacts on the population
convergence and success rates of objective functions with
origin solutions.

B. EMOTLBO
1) EXTERNAL ARCHIVE
In the beginning of EMOTLBO, an initial population is ran-
domly generated with N learners denoted as Xgn . Assume
that M is the total number of objective functions considered,
them-th objective function value of learner Xgn is evaluated as
Fm
(
Xgn
)
, where m = 1, . . . ,M . Unlike the single objective

optimization that allows easy comparison between solutions
using relational operator, solutions of multi-objective space
needs to be compared using the Pareto dominance concept
due to trade-off between different objectives [45]. A solution
is better than (dominates) another solution if and only if the
former one shows better or equal objective value on all of
the objectives and provide a better value in at least one of the
objective functions. All non-dominated solutions found in the
initialization stage is stored in a fixed-size external archive
that consists of a space with dimensions equal to the number
of objective functions considered. The objective space in
archive is divided into multiple equally-spaced hypercubes to
maintain the uniform distribution of non-dominated solutions
and prevent the loss of good solutions.

2) TEACHER AND PEER SELECTION MECHANISM
All learners in the proposed EMOTLBO are updated
using the teacher phase and the learner phase represented
by (8)-(9) and (10)-(11), respectively. The best solution
obtained so far in EMOTLBO is used as the teacher to guide
other learners towards the promising regions of search space
in order to find a near global optimum solution. Nevertheless,
it is challenging to find the best solution of multi-objective
search space due to various trade-offs between objectives.
Different selection mechanisms are designed for teacher and
learner phases of EMOTLBO to address this issue.

For teacher phase, a teacher is selected from the existing
Pareto optimal solutions stored in external archive. Since all
archive members are non-dominated with each other, the den-
sity of each occupied hypercube in archive becomes main
consideration during the selection mechanism of teacher
phase. The less occupied hypercube tends to be chosen to
offer one of its non-dominated solutions as teacher. Let c be
a constant number greater than one, Kh be number of Pareto
optimal solutions exist in the h-th occupied hypercube and H
be total number of occupied hypercube in external archive.
Define Ph as the probability of each h-th occupied hypercube
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FIGURE 3. The pseudo-code for the selection of teacher.

to be chosen to offer teacher. The selection mechanism of
teacher phase can be achieved using roulette-wheel method
by referring to the probability Ph of each occupied hypercube
defined as:

Ph =
c
Kh

(12)

As shown in (12), the probability of choosing an occupied
hypercube to offer teacher increases with decreasing number
of non-dominated solutions in hypercube. A non-dominated
solution in the chosen hypercube is randomly selected as
teacher to update all EMOTLBO learners during the teacher
phase using (8)-(9). Figure 3 shows the pseudo-code for
the selection of teacher in each g-th generation based on
the current external archive Ag. The updated learner Xg+1n
produced in teacher phase can replace the current learner Xgn
if the former solution dominates the latter one. Otherwise,
Xg+1n is discarded. If both Xg+1n and Xgn solutions are non-
dominated with each other, a coin is flipped to determine
which solution to be accepted. The pseudo-code used for
the updating the solution of each n-th learner in the g-th
generation is described in Figure 4.

FIGURE 4. The pseudo-code for updating the new solution of learner.

For learner phase, a peer learner Xg+1k is randomly selected
form population to update the learner Xg+1n using (10) or (11).

FIGURE 5. The pseudo-code for the selection of peer learner.

Figure 5 shows the pseudo-code for the selection of peer for in
each n-th learner during the peer-learning phase. The learner
Xg+1n is attracted towards its peer Xg+1k as stated in (10)
if the latter solution dominates the former one. Otherwise,
the learner is repelled away from its peer using (11) to prevent
learning from inferior peer learner. If both Xg+1n and Xg+1k
solutions are non-dominated with each other, a coin is flipped
to randomly select one equation from (10) and (11) to update
Xg+1n in learner phase. The same procedures as explained in
teacher phase are then used to determine the updated n-th
learner by considering the Pareto dominance levels between
the solutions X̃g+1n and Xg+1n .

3) BRAINSTORMING SESSION
Although the density of each occupied hypercube in archive
is designated as an auxiliary evaluation indicator to select
teacher, the algorithm might be trapped into local optima due
to the changes of population tends towards stability when the
iterative generation becomes larger. This drawback leads to
frequent selection of the least occupied hypercube to offer
teacher. The guiding effect of randomly selected peer learner
is also questionable when no significant change is observed
in population diversity. This is challenging for the algorithm
to escape from the local optimal especially when a given
problem has complex Pareto front.

A probabilistic-based mutation operator is incorporated
into EMTLBO to provide perturbation on the learners with
probability of Pmut after they are updated from the teacher
and learner phases. The mutation operator is analogous to
the brainstorming session in a classroom that encourages the
learners to think out of box after interacting with teacher and
peers. Assume that the n-th learner plans to do brainstorming
after updating the knowledge either from teacher or learner
phases, the d-th dimension of n-th learner, i.e., Xgd,n, is ran-
domly chosen for perturbation as shown:

Xgd,n = r3
(
XUd − X

L
d

)
(13)

where r3 is a random number between 0 to 1 generated
from uniform distribution, while XUd and XLd are the upper
and lower limits of d-th variable, respectively. The pseudo-
code of brainstorming session is described in Figure 6.
Similar procedures as explained in both teacher and learner
phases are used to update the n-th learner by comparing
the Pareto dominance levels between the current solution
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FIGURE 6. The pseudo-code for brainstorming session of learner.

FIGURE 7. The pseudo-code of the proposed archive controller.

and that obtained from the brainstorming session. For every
n-th learner selected for brainstorming, no fitness evaluation
is needed after obtaining new solution from the teacher or
learner phases. Perturbation on these updated solutions is first
performed using (13), followed by the fitness evaluation of
perturbed solution.

4) ARCHIVE CONTROLLER
For each generation, a set of new solutions are produced in
population via the teacher and learners phases, as well as the
brainstorming session. The new non-dominated solutions in
population are identified using the Pareto dominance concept
and compared against the archive members in order to update
the archive. Since the external archive is a fixed size storage
unit, an archive controller is proposed to determine whether
a new solution can be added into archive and which archive
members need to be eliminated when the archive is full.

Figure 7 describes the pseudo-code of proposed archive
controller. In general, the established rules used by archive
controller to update the archive are summarized as follows:

• If the new member is dominated by at least one of the
archive member, the archive controller prohibits the new
member to enter archive.

• If the new member dominates at least one of the archive
members, the archive controller deletes all dominated
archive members and adds the newmember into archive.

• If the new member and all archive members are non-
dominated with each other, the archive controller adds
the new member into archive.

• If the new member is inserted outside the hypercube
in archive, the archive controller needs to rearrange the
segmentation of objective spaces so that all hypercube
in archive are extended to cover the new member.

• If the archive is full, the archive controller needs to
eliminate the redundant archive members.

In contrast to the teacher selection mechanism explained
earlier, crowding distance [46] is used by archive controller
to estimate the density of solutions surrounding an archive
member. The crowding distance CDa of each a-th archive
member XArc,ga is measured as the average distance of two
adjacent members on either sides of the a-th archive member
along each of the M objectives. Let |A| be the total num-
ber of archive member A in current Pareto front and the
crowding distance of each a-th archive member is initialized
as CDa = 0 for a = 1, . . . ,A. For every m-th objective
function, all archive members are sorted in ascending order
based on their objective value and stored in a list denoted as
Lm. Assume that a-th archive member is sorted as the j-th
element of list Lm, i.e., Lm[j]. The crowding distance of each
j-th sorted member with objective value Fm

(
XArc,gLm[j]

)
is:

CDLm[j] =



∞, if j = 1 or j = A

CDLm[j]+
Fm
(
XArc,g
Lm[j+1]

)
− Fm

(
XArc,g
Lm[j−1]

)
Fm
(
XArc,gLm[F]

)
− Fm

(
XArc,gLm[1]

) ,

if j = 2, . . . , (A− 1)
(14)

From (14), the boundary solutions for each m-th objective
function in the sorted list Lm have largest crowding distance.
The archive members located on the less populous (isolated)
regions of external archive have larger crowding distance and
vice versa. When the archive is fully occupied, the proposed
archive controller removes the archive members with lowest
crowding distance in order to avoid the clustering of Pareto
front on a single non-dominated solution. Unlike MOPSO
and MOGWO where the extra archive member is randomly
selected from the most occupied hypercube, EMOTLBO
removes solution with the lowest crowding distance to ensure
the less crowded member is not deleted accidentally.

5) FUZZY DECISION MAKER
One of the most challenging issues encountered by process
planner is to select the most preferred solution of the multi-
objective machining optimization problem by referring to the
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relative importance level of each objective function. A fuzzy
decision maker [30] is incorporated into EMOTLBO to softly
select the most preferred compromised solution among all
Pareto optimal solutions based on the requirement or order
of importance of objectives stated by customers.

Let FU =
[
FU1 , . . . ,F

U
m , . . . ,F

U
M

]
be the utopia point

defined as a specific point in the objective space where all
objective functions are simultaneously at their best possi-
ble values. In contrary, pseudo nadir point is a point in
the objective space where all objective functions are simul-
taneously at their worst value and denoted as FSN =[
FSN1 , . . . ,FSNm , . . . ,FSNM

]
. To determine the most preferred

solution from Pareto front, the fuzzy decision maker first
calculates a linear membership function value for each m-th
objective function in each Pareto optimal solution by measur-
ing the relative distance between the value of the objective
function in the Pareto optimal solution from its values in
the respective utopia and pseudo nadir points. The closer
value of objective function to its utopia point leads to higher
membership function value that implies for higher degree of
optimality for the objective function in the Pareto optimal
solution and vice versa. Denote µma as the membership func-
tion value of each a-th archive member or Pareto optimal
solution for the m-th objective function. For minimization
problem, the value of µma is computed using the fuzzification
process as shown:

µma =


1, Fm

(
XArc,Ga

)
≤ FUm

FSNm − Fm
(
XArc,Ga

)
FSNm − FUm

, FUm ≤ Fm
(
XArc,Ga

)
≤ FSNm

0, Fm
(
XArc,Ga

)
≥ FSNm

(15)

For maximization problem, the value of µma is computed as:

µma =


0, Fm

(
XArc,Ga

)
≤ FSNm

Fm
(
XArc,Ga

)
− FSNm

FUm − FSNm
, FSNm ≤ Fm

(
XArc,Ga

)
≤ FUm

0, Fm
(
XArc,Ga

)
≥ FUm

(16)

Define wm as the relative importance of the m-th objective
function. The total membership function or total degree of
optimality of each a-th Pareto optimal solution is computed
by considering the individual membership function and the
relative importance of each objective function as:

µa =

M∑
m=1

wnµma (17)

Based on (17), the a-th Pareto optimal solution with highest
value of µa is selected as the most preferred non-dominated
solution because this solution more optimizes the objective
functions of multi-objective machining problem than other
Pareto solutions based on the given relative importance.
Figure 8 describes the pseudo-code of fuzzy decision maker.

FIGURE 8. The pseudo-code of fuzzy decision maker.

6) THE COMPLETE EMOTLBO ALGORITHM
The pseudo-code of complete EMOTLBO is shown in
Figure 9, where fes is the number of function evaluations
and max_fes is the maximum function evaluations. During
the initialization phase, a population of N learners is ran-
domly generated, while the external archive Ag is initial-
ized to be empty. After evaluating the objectives of each
learner, the proposed archive controller is executed to keep
the non-dominated solutions in archive. The teacher phase,
learner phase, brainstorming session and external archive
updating process of EMOTLBO are then executed cycle by
cycle until the termination condition is met. At the termi-
nation of EMOTLBO, the Pareto optimal solutions stored
in external archive are obtained. The desired Pareto opti-
mal solution can be determined with fuzzy decision maker
based on the predefined preference value of each objective
function.

7) PERFORMANCE METRICS
Two performance metrics are used to evaluate the quality of
Pareto optimal solution produced by all multi-objective algo-
rithms in solving the Delrin machining optimization problem.
Coverage to two sets [47] is a metric used to compare a pair
of non-dominated solution sets by calculating the percentage
of each set that is dominated by another set. Let C(·, ·) be
the coverage operator, the coverage to two non- dominated
solution sets of A and B are then defined as:

C(A,B) =
|{b ∈ B; ∃a ∈ A : a ≺= b}|

|B|
(18)

The value C(A,B) = 1 implies that all solutions of set B are
dominated or equal to all solutions in set A, while none of
the solution in set B are covered by the set A is represented
as C(A,B) = 0. The value of C(A,B) is not necessary
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FIGURE 9. The pseudo-code of complete EMOTLBO.

equal to that of 1 − C(B,A), hence it is imperative to con-
sider both of C(A,B) and C(B,A) during the performance
comparison.

Spacing measure [48] is a metric used to quantify the
uniformity distribution along the Pareto front obtained from
different algorithms. Let the total objective functions and total
non-dominated solutions in an archive be M and A, respec-
tively. For every m-th objective, the smallest Euclidean dis-
tance between the a-th archive member and any b-th archive
member in the objective space is computed as:

da = min
a,a6=b

M∑
m=1

∣∣∣Fm (XArc,Ga

)
− Fm

(
XArc,Gb

)∣∣∣,
a, b = 1, . . . ,A (19)

Meanwhile, the average of all da is obtained as:

d̄ =

A∑
a=1

da

|A|
(20)

Let S be the spacing measure and it is defined as the distance
variance of neighboring non-dominated solutions, i.e.,

S =

√√√√ 1
|A− 1|

A∑
a=1

(
d̄ − da

)2 (21)

The value of S = 0 implies that all non-dominated solutions
stored in external archive are equidistantly spaced from each
other and it is the best possible performance.

IV. EXPERIMENTAL STUDIES
The first part of experimental studies focused on investi-
gating how well the developed regression models of Delrin
can fit into the experimental data. Extensive simulation and
experimental studies were then conducted to evaluate the
performance of EMOTLBO.

A. EVALUATION ON DELRIN MODELING
1) CONTOUR AND 3-D SURFACE PLOTS FROM RSM
The contour plots and 3D surface plots for Ra are presented
in Figures 8(a)-(c) to provide better perceptive on the effect
of input machining parameters Vc, f and ap on response
variable Ra. Figures 9(a)-(c) show the contour plots and 3D
surface plots for MRR, which were produced based on the
experimental results reported in Table 4, in which one of the
variable was set constant at its midst level and the remaining
variables were interacted with each other.

Figure 10(a) shows the relations of Vc and f on Ra with
fixed ap. The expected value of Ra is in the range of 0.6495 ≤
Ra ≤ 0.8596 µm with lower f and higher Vc. If the f
and Vc are increased further, Ra increases correspondingly.
The effect of Vc and ap on Ra with constant f is illustrated
in Figure 10(b). The expected value of Ra varies in the range
of 1.5983 ≤ Ra ≤ 1.6009 µm with higher Vc and higher ap.
If Vc and ap are increased further, Ra increases accordingly.
Figure 10(c) reveals the effect of f and ap on Ra when Vc is
constant. The Ra value ranges as 0.6994 ≤ Ra ≤ 0.8019 µm
with lower f and higher ap. From these analyses, it can be
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FIGURE 10. Contour plots and 3D surface plots for the estimated Ra with
the expected ranges of (a) 0.6495 ≤ Ra ≤ 0.8596,
(b) 1.5983 ≤ Ra ≤ 1.6009 and (c) 0.6994 ≤ Ra ≤ 0.8019.

concluded that the feed rate f is more significant in obtaining
the high surface finish Ra for the selected material.
Figure 11(a) shows the effect of Vc and f onMRRwhen ap

is held constant. It shows that the increase in Vc and f leads
to maximum MRR which varies from 75.2043 ≤ MRR ≤
88.7093 cm3/minute. Figure 11(b) shows that the effect of Vc
and ap on MRR when f is constant. The increase of Vc and
ap leads to increase in MRR in the range of 80 ≤ MRR ≤
135 cm3/minute. Figure 11(c) shows the effects of f and ap on
MRR when Vc is constant. The increase in f and ap increases
MRRin the range of 90.4712 ≤ MRR ≤ 102.295 cm3/minute.
It is concluded that the highest value of Vc, f and ap are
significant in obtaining higherMRR of Delrin material.

2) ANOVA RESULTS
Tables 5 and 6 present the ANOVA results of Ra and MRR,
respectively, with 95% confidence interval It is observed that
the components of Vc, V 2

c and Vc × ap are found to be
insignificant in modeling surface finish, while V 2

c , f
2 and

ap2 are the insignificant parameters of material removal rate.
The higher contribution is given by feed rate with 55.69%,
followed by f 2 with 31.05% in modeling the surface finish.

FIGURE 11. Contour plots and 3D surface plots for the estimated MRR
with the expected ranges of (a) 75.2043 ≤ MRR ≤ 88.7093,
(b) 80 ≤ MRR ≤ 135 and (c) 90.4712 ≤ MRR ≤ 102.295.

Other terms such as linear term ap contributes with 3.16%,
squared term ap2 with 2.01%, interaction term f × ap with
3.62% and interaction term Vc × f with 2.07%. For MRR,
the linear terms and interactive terms are significant, while
the squared terms are found insignificant with contribution
lesser than 1%. The linear terms Vc, f and ap have significant
contribution of 13.93%, 46.30% and 26.89% respectively.
The next term with high contribution is f × ap with 7.45%.
The remaining interaction terms of Vc × f and Vc × ap have
contribution of 2.88% and 2.09 % respectively.

B. PERFORMANCE EVALUATION OF EMOTLBO IN
PROPOSED MACHINING PROBLEM
1) SIMULATION AND EXPERIMENTAL SETTINGS
The performance of EMOTLBO is compared with six
well-established algorithms, i.e., non-dominated sorting
genetic algorithm II (NSGA-II) [46], multi-objective par-
ticle swarm optimization (MOPSO) [48], multi-objective
teaching-learning based optimization (MOTLBO) [29],
multi-objective improved teaching-learning based optimiza-
tion (MO-ITLBO) [34]–[36], multi-objective gray wolf
optimizer (MOGWO) [49] and multi-objective sequential
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TABLE 5. ANOVA results for surface roughness RA.

TABLE 6. ANOVA results for surface roughness MRR.

TABLE 7. The parameter settings of all compared algorithms.

quadratic programming (MOSQP) [50]. Previous studies
demonstrated the robustness of these six algorithms in
tackling different types of MOPs. The performance of
EMOTLBO with those six selected algorithms is anticipated
to produce convincible results.

The parameter settings used in those algorithms by their
respective authors are presented in Table 7. The crossover
rate of NSGA-II was set as Pcr = 0.9, while the teaching

factor Tf of MOTLBO and MO-ITLBO was randomly gen-
erated between 1 and 2. For MOPSO, the inertia weight ω
was linearly decreased from 0.9 to 0.4, while the cognitive
and social coefficients were set as c1 = c2 = 2.05. For
MO-ITLBO, the multiple group learning approach was incor-
porated into teaching phase, and ε-dominance method of [20]
was used to manage the archive. The number of groups
denoted as nGroup and the value of ε were set as 4 and
0.007, respectively [37]. The implementation of MO-ITLBO
was based on variant I proposed in [37] because it provides
better clarity than [34]–[36]. No specific parameter setting is
required for MOSQP and its source code is available in [51].
The same values were used for parameters of EMOTLBO
common with other algorithms for the sake of fair com-
parison. For instance, the common parameters such as grid
inflation coefficient and number of grid per dimension of
MOPSO, MOGWO and EMOTLBO were set as α = 0.1 and
nGrid = 10, respectively. The maximum archive size A of
these three algorithms were set equal to the population size.
Mutation rates of NSGA-II, MOPSO and EMOTLBO were
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set as pmut = 1/D, where D refers to the number of decision
variables involved [46], [48].

The effect of population size on the search performance of
all compared algorithms were studied by varying population
size as N = 20, 30 and 40. The maximum number of
fitness evaluation was used as termination condition for all
algorithms and it was set as FEs = 20,000 for all popula-
tion sizes. All algorithms were run 20 times independently
using Matlab 2017a on the personal computer with Intel
R©Core i7-7500 CPU @ 2.70GHz.

TABLE 8. The mean and standard deviation of coverage metric produced
by all compared algorithms for different population sizes.

2) RESULTS AND DISCUSSIONS
The mean and standard deviation (SD) of coverage met-
ric obtained by all compared algorithms in 30 independent
runs for the population sizes of 20, 30 and 40 are pre-
sented in Table 8. It is observed that EMOTLBO delivers the
best performance in all population sizes because it produces
higher percentages of non-dominated solutions to dominate
the solution sets obtained by other peers. For instance, 36.3%
of non-dominated solutions produced by the MO-ITLBO are
dominated by those of EMOTLBO when N = 30, while only
0.3% of non-dominated solutions produced by EMOTLBO
is dominated by those of MO-ITLBO. For N = 40, there
are 13.8% and 15.1% of non-dominated solutions produced
by MOPSO and MOTLBO, respectively, are dominated by
the solution sets of EMOTLBO. Nevertheless, only 0.4% of
the non-dominated solutions obtained by EMTLBO is domi-
nated by those of MOPSO and MOTLBO. Among all of the
six algorithms in benchmarking, MOSQP has demonstrated
the most competitive performance as more than 1.5% of its
non-dominated solutions are inferior to the Pareto-front of
EMOTLBO. On the other hand, none of the non-dominated
solutions produced by EMOTLBO is inferior to those of
MOSQP for all population sizes.

TABLE 9. The mean and standard deviation of spacing metric produced
by all compared algorithms for different population sizes.

Table 9 presents the mean and SD values of spacing
metric produced by all algorithms in the same 20 indepen-
dent runs for the population sizes of 20, 30 and 40. It is
observed that the spacing value of Pareto-fronts obtained
using EMOTLBO is the lowest as compared to those
of NSGA-II, MOPSO, MOTLBO, MO-ITLBO, MOGWO
and MOSQP. This implies that the proposed EMOTLBO
can generate Pareto-fronts with more uniform distribution.
Though EMOTLO, MOPSO and MOGWO used similar
external archive concept to store the non-dominated solutions
obtained, simulation results have proved that the archive
updating strategy of EMOTLBO is more efficient in eliminat-
ing the duplicated solutions based on the crowding distance
of archive members.

In contrary, the probabilistic selection method used by
MOPSO and MWGWO to exclude the redundant archive
members are less efficient because there is a narrow chance
to accidentally remove the less dense members from archive.
Notable observations were demonstrated by MO-ITLBO and
MOSQP for producing the second lowest and largest values
of spacing metrics, respectively. The Pareto-front of MOSQP
is not uniformly distributed in spite of better quality solutions
generated. Although MO-ITLBO produced Pareto-front with
better distribution, it seems many generated solutions are
inferior. As compared with these two algorithms, the pro-
posed EMOTBLO has demonstrated more competitive per-
formance in terms of well distributed Pareto-front with better
solutions.

Figure 12 shows the Pareto-fronts produced by NSGA-II,
MOPSO, MOTLBO, MO-ITLBO, MOGWO, MOSQP and
EMOTLBO forN = 40. Significant discontinuities are found
on the Pareto-fronts of NSGA-II, MOPSO, MOGWO and
MOSQP, implying that these algorithms tend to be trapped
into the local Pareto-front and cannot approach the true
Pareto-front effectively. These justify the presence of inferior
non-dominated solutions generated by NSGA-II, MOPSO,
MOGWO and MOSQP when compared to EMOTLBO.
In addition, the non-dominated solutions stored in Pareto
front of EMOTLBO is the most uniformly distributed as
compared to all of its six competitors. The qualitative results
presented in Figure 12 are consistent with the quantitative
results of Tables 8 and 9.
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FIGURE 12. The Pareto-fronts produced by (a) NSGA-II, (b) MOPSO, (c) MOTLBO, (d) MO-ITLBO, (e) MOGWO, (f) MOSQP and (g) EMOTLBO.

TABLE 10. Comparison between the predicted and experimental values.

Apart from evaluating the quality of Pareto-fronts pro-
duced by EMOTLBO, it is also essential to validate the opti-
mum machining parameters produced by EMOTLBO based
on the relative importance of objectives with experimental

values of surface roughness Ra and material removal rate
MRR. Let w1 and w2 be the weight values that indicating the
importance level of objectives to minimize Ra and maximize
MRR, respectively, where w1+w2 = 1. Since both objectives
of minimizing Ra and maximizing MRR are contradicting
with each other, the weightage setting of w1 = w2 = 0.5
are considered in this section in order to give equal impor-
tance in producing the products with maximum quality and
maximum quantity simultaneously during the machining
process.

An EMOTLBO with population size of N = 40 was exe-
cuted to obtain the Pareto-front as illustrated in Figure 12(g).
Based on the importance levels of both objectives as rep-
resented by w1 and w2, fuzzy decision maker was used to
select the unique optimum solution corresponding to each
machining condition using (15)-(17). The predicted optimum
machining parameters and experimental values of Ra and
MRR and their errors are presented in Table 10.
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TABLE 11. 12 test functions used in comprehensive simulation study.

For the optimum parameters of Vc = 200 m/minute,
f = 0.50 mm/rev and ap = 1.2mm, predicted values of
Ra = 1.6299 µm and MRR = 132.5714 cm3/minute is
obtained from simulation with the relative importance of
w1 = 0.5 and w2 = 0.5, respectively.

From the validation results shown in Table 10, 3.556 %
and 4.281% of error are noticed between the experimental
and predicted values of Ra andMRR, respectively. With these
significantly small error rates, it is concluded that there is
a good agreement between the simulation results and the
experimental results.

C. PERFORMANCE EVALUATION OF EMOTLBO
IN TEST FUNCTIONS
1) TEST FUNCTIONS AND PERFORMANCE METRIC
Apart from the proposed Delrin machining problem, another
12 test functions characterized with convexity, concavity,

discontinuity or the presence of local Pareto-fronts were
also employed to evaluate the general optimization perfor-
mance of proposed EMOTLBO. These benchmark problems
are classified into two categories, i.e., the high-dimensional
bi-objective problems covering ZDT1-ZDT4 and ZDT6 [47],
and the scalable objective problems composed of DLTZ1-
DLTZ7 [52]. The mathematical description of these 12 test
functions are presented in Table 11.

In contrary to Delrin machining problem, the true Pareto-
fronts of these 12 test functions are available in advance.
Hence, the inverted generation distance (IGD) metric [53]
can be used to assess the optimization performance of
EMOTLBO in terms of its capability to generate the non-
dominated solution sets that are not only uniformly dis-
tributed in objective space, but also can approximate the
true Pareto-fronts as close as possible. Assume that A
is the approximated solution set obtained by a particular
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TABLE 12. IGD results on the ZDT and DTZ problems.

multi-objective optimization algorithm, while TP∗ is a set
of uniformly distributed solutions acquired from true Pareto-
front. Let |TP∗| represents the number of solutions in the true
Pareto-front TP∗ and 9

(
TP∗i ,A

)
be an operator to return the

minimum Euclidean distance from the i-th member of TP∗

to the approximated solutions of A in objective space. Then,
the IGD value of TP∗ to A is defined as [53]:

IGD
(
A,TP∗

)
=

|TP∗|∑
i=1

9
(
TP∗i ,A

)
|TP∗|

(22)

If |TP∗| is sufficiently large to represent the true Pareto-front,
both of the diversity and convergence of the approximated
set A can be measured using IGD (A,TP∗). Smaller value
of IGD (A,TP∗) is more desirable because it implies that
the approximated solution set A produced is more evenly
distributed and closer to the true Pareto-front TP∗.
A non-parametric statistical procedure known asWilcoxon

test was also employed for rigorous performance comparison
between EMOTLBO and its peers to ensure the better results

achieved by the best algorithm is statistically significant
instead of by chance [54]. In this study, the pairwise com-
parison between EMOTLBO and its peers were conducted at
5% significant level, i.e., σ = 0.05. The h value produced
by Wilcoxon test can determine if EMOTLBO is statistically
better (i.e., h = ‘+’), insignificant (i.e., h = ‘=’) or worse
(i.e., h = ‘−’) than its peers.
The optimization performances of EMOTLBO in solving

all 12 test functions were compared with those of NSGA-II,
MOPSO, MOTLBO, MO-ITLBO and MOGWO. Similar
parameter settings as presented in Table 12 are adopted for
all involved algorithms except for the population size N and
archive size |A|. Specifically, the values of N and |A| are set
as 100 in these algorithms were used to solve the bi-objective
problems (ZDT1-ZDT4 and ZDT6), while N = |A| = 150
were assigned to the algorithms when dealing with the tri-
objective problems of DLTZ1-DLTZ7 [34]. For each test
function, the maximum fitness evaluation number was set
as 300,000 and each compared algorithm is executed for
30 times.
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FIGURE 13. The plots of best performance obtained by EMOTLBO on (a) ZDT1, (b) ZDT2, (c) ZDT3, (d) ZDT4, (e) ZDT6, (f) DTLZ1, (g) DTLZ2, (h) DTLZ3,
(i) DTLZ4, (j) DTLZ5, (k) DTLZ6 and (l) DTLZ7.

2) COMPARISONS OF EMOTLBO WITH OTHER
MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS
The comparison results of mean IGD (IGDmean), standard
deviation (SD) and Wilcoxon test produced by all compared
algorithms in each test function are presented in Table 12,
where the best and second best results are indicated with

boldface and underline texts, respectively. The comparison
of IGDmean values between the EMOTLBO and its peers
are summarized as w/t/l and #BM, where w/t/l means that
EMOTLBO outperforms a given peer in w functions, ties in t
functions and loses in l functions. #BM refers to the number
of best (i.e., lowest) IGDmean achieved by each algorithm.
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The Wilcoxon test result denoted as h is summarized as
+/ = /− to indicate the number of test functions in which
EMOTLBO performs significantly better, almost the same
and significant worse than its competitor, respectively.

Table 12 shows the proposed EMOTLBO has produced
the lowest IGDmean values in eight test functions except for
DLTZ1, DLTZ3, DLTZ4 and DLTZ7 which are dominated
by NSGA-II, MOTLBO and MOGWO. This implies that
the non-dominated solution sets generated by EMOTLBO
in most of test functions are uniformly distributed in objec-
tive space and can closely approximate the true Pareto-
fronts of each respective function. From Table 12, it is
notable that some compared algorithms lack of capabilities
in handling the test functions with certain characteristics. For
example, NAGA-II cannot effectively approach to the true
Pareto-front of ZDT1, ZDT3, ZDT6 and DLTZ4 although
it performs relatively well in the other eight test functions.
Meanwhile, the MOPSO can handle ZDT1, ZDT3, ZDT6,
DLTZ4, DLTZ5, DLTZ6 and DLTZ7 quite well but it fails
to produce good approximation of true Pareto-front for the
remaining five test functions. Compare to both MOTLBO
and MO-ITLBO, the optimization capability of EMOTLBO
has been improved significantly. The inclusion of mutation
mechanism prevents the trapping of non-dominated solutions
found in local Pareto-fronts, while the proposed archive con-
troller delete the most crowded archive members, hence able
to ensure the approximated solution sets produced by the
EMOTLBO are more uniformly distributed.

Similar observations were found fromWilcoxon test result
in which the IGDmean values produced by EMOTLBO are
significantly better than the other five algorithms in majority
of test functions. This implies that the excellent optimiza-
tion performance delivered by EMOTLBO in solving most
test functions are statistically significant and not achieved
by any random chances. Table 12 shows that no sig-
nificant difference between the IGDmean results obtained
by NSGA-II and EMOTLBO in ZDT4. Similar observa-
tions can be found in DLTZ3 (MOTLBO vs EMOTLBO),
DLTZ4 (MOPSO vs EMOTLBO) and DLTZ7 (MOPSO vs
EMOTLBO).

Finally, the best results of EMOTLBO in solving all 12 test
functions are also visually illustrated in Figure 13, where
the true Pareto-fronts of each test function are plotted with
red lines, while the approximated Pareto-fronts generated
by EMOTLBO are marked with blue diamond. The quali-
tative analyses shown in Figure 13 are consistent with the
quantitative analyses tabulated in Table 12 because the non-
dominated solution sets found by EMOTLBO in majority of
test functions are distributed uniformly and able to approach
the respective true Pareto-front effectively.

V. CONCLUSION
The aim of this research is to find the optimum machin-
ing conditions to simultaneously achieve minimum surface
roughness and maximum material removal rate during the
turning of Delrin. A three-level L27 orthogonal matrix was

first formulated and experiments were conducted with Delrin
specimens with 30 mm diameter. The Carbide tip (CNMG)
cutting tool inserted with a tool angle of 80◦ and servo super
cut coolant 32 was used for turning three steps of equal
length of 10 mm. The RSM model was rendered from the
experimental data and the model was further verified using
ANOVA. The R2 value for surface roughness Ra was found
to be 94.58%, implying that the predicted values are close
to the experimental counterparts. The adequacy and practical
applicability of the model within the expected range of values
are also confirmed. Based on these experimentally developed
regression models, two objective functions to be considered
in the multi-objective machining optimization problem of
Delrin material are derived.

Apart from deriving the regression models of Delrin,
an improved multi-objective optimization algorithm known
as EMOTLBOwas proposed to solvemultiobjective problem.
Several modifications were incorporated into EMOTLBO,
including: (i) an archive used to store non-dominated solu-
tions, (ii) an archive controller to manage the non-dominated
solutions, (iii) a new selection mechanisms for teacher and
peer learner (iv) a mutation operator that emulates brain-
storming session in classroom to prevent premature conver-
gence and (v) a fuzzy decision maker to softly select the
preferred non-dominated solution from Pareto front based
on the importance of objectives. Extensive simulation stud-
ies reveal that EMOTLBO outperforms six well-established
multi-objective optimization algorithms for being able to
produce the more evenly distributed Pareto fronts and higher
number of non-dominated solutions. The simulation results
of EMOTLBO were validated and observed only <5% of
error for both surface roughness and material removal rate,
implying that the good agreement between the simulation
and experimental results. Finally, the general optimization
capability of EMOTLBOwas proven for being able to deliver
competitive performance in solving the 12 standard test func-
tions with different characteristics. The non-dominated solu-
tion sets produced by EMOTLBO for each test function are
not only uniformly distributed, but also close to the respective
true Pareto-front.
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