
Received August 10, 2018, accepted September 7, 2018, date of publication September 17, 2018, date of current version October 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2870684

EOD Edge Sampling for Visualizing Dynamic
Network via Massive Sequence View
YING ZHAO 1, YANMIN SHE1, WENJIANG CHEN1, YUTIAN LU1, JIAZHI XIA 1,
WEI CHEN 2, JUNRONG LIU3, AND FANGFANG ZHOU1
1School of Information Science and Engineering, Central South University, Changsha 410083, China
2State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, China
3Key Laboratory of Network Assessment Technology, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

Corresponding author: Jiazhi Xia (xiajiazhi@csu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB0904503, in part
by the National Science Foundation of China under Grant 61672538, Grant 61772456, Grant 61872388, and Grant 61872389, in part by
the Natural Science Foundation of Hunan Province under Grant 2017JJ3414, in part by the Open Project Program of the State Key Lab of
CAD&CG, Zhejiang University, under Grant A1812, and in part by the Open Research Fund of the Key Laboratory of Network
Assessment Technology, Institute of Information Engineering, Chinese Academy of Sciences.

ABSTRACT Dynamic network visualization is crucial to understand network evolving behavior. Massive
sequence view (MSV) is a classic technique for visualizing dynamic networks and provides users with a
fine-grained presentation of time-varying communication trend from both node pair and global network
levels. However, MSV is vulnerable to visual clutter caused by overlapping edges, failing to show clear
patterns or trends. This paper presents an edge sampling method, using the edge overlapping degree (EOD)
concept, to reduce visual clutter in MSV while preserving the time-varying features of network communica-
tion. Referring to accept–reject sampling, we use kernel density estimation to characterize the time-varying
features between node pairs and generate EOD probability density functions to accomplish sampling in a
bottom-up manner. To enhance the sampling effect, we also consider the edge length factor and streaming
processing. The case studies on two dynamic network data sets demonstrate that our method can significantly
improve the overall readability of MSV and clearly reveal the temporal features of both node pairs and global
network. A quantitative evaluation comparing with two other sampling methods using three real-world data
sets indicates that our method can well balance visual clutter reduction and temporal feature preservation.

INDEX TERMS Dynamic network visualization, massive sequence view, graph sampling, visual abstraction.

I. INTRODUCTION
Networks (or graphs) are often formed gradually and
evolve continuously in real-world domains, such as phone
calls, email communications, and Twitter posts. Effective
analysis of these dynamic networks is crucial to under-
stand time-varying network behavior. Dynamic network
visualization [1] is an active research field that provides intu-
itive diagrams and rich interactions to involve users in mak-
ing sense of networks’ evolving nature. Massive sequence
view (MSV) is a classic dynamic network visualization
technique [2], widely used for analyzing dynamic social
network [3] and program execution traces [4]. Fig.1(a) and
Fig.1(b) demonstrate its visual encodings. Nodes (or vertices)
of a dynamic network are represented by horizontal lines,
which are equally spaced along the vertical axis. The horizon-
tal axis represents the time when the network exists. If there
is an instant relation (edge) from nodes a to b at time ti, then a

vertical line with start and end points at the vertical positions
of a and b, respectively, is drawn at horizontal position ti. This
step is repeated for all edges in the observation period.

Two advantages make MSV easy for users to observe the
communication trend from the perspectives of node pair and
global network. First, MSV enables arbitrarily fine-grained
visualization as edges are drawn onto a continuous timeline.
Second, MSV can preserve users’ mental maps because of
its fixed node positions. However, MSV is vulnerable to
visual clutter. In a dynamic network, multiple edges may
occur at (approximately) the same time, leading to overlap-
ping edges or failing to show distinguishable edges due to
insufficient horizontal pixels, as shown in Fig.1(b). MSV’s
overall readability is thus compromised. Furthermore, users
may misunderstand the time-varying trend of network com-
munication. For example, the MSV in Fig.2(a) presents the
dynamic network of internal emails of Enron, a former energy
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FIGURE 1. Use of MSV to visualize the dynamic network in table (a) before sampling and (b) after sampling (c). The overall readability of MSV is
improved while the time-varying features of network communication is preserved after sampling.

FIGURE 2. Enron email dataset containing 24,705 email communications (edges) between 150 employees (nodes) from 1999 to 2002. The nodes in
the two MSVs are sorted by the node reordering strategy of minimizing edge length [3]. There is serious visual clutter in MSV (a). After
sampling (b), the overall readability of MSV is improved, clearly showing three sudden drops of email communications (three orange arrows),
indicating the events of two CEO replacements and bankruptcy petition of Enron company. Two distribution curves in (c) stick together most of the
time, thereby indicating that the time-varying trend of email traffic is well persevered after sampling.

service company. This dynamic network contains a series
of evolving events related to the biggest American account-
ing scandal [5]. With serious visual clutter, the MSV cannot
depict the sudden changes in email traffic caused by the
events. Users may even misunderstand that the email com-
munication remains intense and frequent through the latter
half of the timeline (see Section 5.1 for more detailed case
analysis).

Several techniques have been proposed to improve
standard MSV. Filtering and zooming [6], [7] provide
detail-only and pixel-increased views to show selected peri-
ods and nodes, but a clear overview is lost. Anti-aliasing
techniques [8] can reduce the visual clutter caused by
overplotting edges but not by overlapping edges. Curved
links [9] avoid edge overlapping but result in edge crossings.
Node ordering strategies are by far the best techniques to
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improve MSV [3], [10], but achieving satisfactory optimiza-
tion results is particularly difficult when communications
between mass nodes occur densely and irregularly. Improv-
ing the overall readability of MSV remains a challenging
problem.

The main cause of visual clutter in MSV is that too many
edges are drawn on a screen with a limited size. Empirically,
not all edges in a dynamic network are significantly related to
network evolution, and some may be regarded as background
noise. Removal of noise edges can reduce the amount of edges
to be displayed on the screen, as shown in Fig.1(c). This idea
coincides with that of graph sampling technique for gener-
ating highly readable graph visualization on complex net-
work. However, existing graph sampling methods [11]–[13]
largely concern static network analysis. To our knowledge,
no method has been designed for dynamic network analysis.

To facilitate dynamic network analysis with MSV, this
paper proposes an edge overlapping degree (EOD) con-
cept for edge sampling to reduce visual clutter in MSV
while preserving the time-varying features of a network.
EOD is designed to quantitatively measure the degree of
an edge in MSV overlapping with its neighboring edges,
i.e., the amount of visual clutter in the corresponding area
of the edge. As an edge level indicator of visual clutter,
EOD facilitates fine-grained sampling examination and sup-
ports other edge operations, such as interactive local explo-
ration. To preserve the time-varying features of network
communication in clutter-reduced MSV, we first use kernel
density estimation (KDE) to generate probability density
functions (PDFs) for characterizing such features between
node pairs. Then, referring to accept-reject (AR) sampling,
a type of Monte Carlo method known for the capability of
sampling arbitrary target PDFs if given suitable proposal
PDFs, we generate EOD-based proposal PDFs to achieve
our expected sampling to balance visual clutter reduction
with feature preservation in a bottom-up manner. To further
enhance the sampling effect, we consider the influences of
edge lengths and the discreteness of edges on visual clutter
reduction and temporal feature representation.

To evaluate our method, we apply it to two well-known
real-world dynamic network datasets. The two case stud-
ies demonstrate that the overall readability of MSV can be
effectively improved after applying our sampling method.
Consequently, the time-varying features of both node pair
and global network levels presented in sampled MSV are
clear and accurate, revealing many visual patterns hidden
in the original MSV. We also perform an evaluation with
three quantitative indicators by comparing our method with
AR sampling and random sampling. The first indicator,
KS distance, measures the sampling performance on the
time-varying feature preservation of a dynamic network. The
other two indicators, edge overlapped rate and edge hidden
rate, measure the ability of reducing MSV’s visual clutter.
Results show that our method achieves good performance to
feature preservation, and generally outperforms AR sampling
and random sampling with respect to visual clutter reduction.

The proposed sampling method can be considered a novel
attempt to improve MSV and the first step to extend graph
sampling to dynamic network analysis.

The main contributions of this paper are summarized as
follows:
• We propose a quantitative indicator called EOD for mea-
suring edge-level visual clutter in MSV;

• We propose a flexible edge sampling method that can
achieve the trade-off between visual clutter reduction
in MSV and time-varying feature preservation of a
dynamic network.

The remaining parts are organized as follows. Section 2
summarizes related work. Sampling considerations are
described in Section 3. Section 4 first details design
challenges and then presents EOD edge sampling. Two case
studies are showed in Section 5, followed by a quantita-
tive evaluation. Parameters, limitations and future work are
discussed in Section 6. Finally, we conclude this paper in
Section 7.

II. RELATED WORK
A. DYNAMIC NETWORK VISUALIZATION
Dynamic network visualization is an active research field
in visualization and visual analytics community. A recent
survey [1] provides a systematic review of the growing
number of dynamic network visualization techniques by
classifying the existing techniques into two main categories:
animation-based and timeline-based. Animation-based tech-
niques typically use animated node-link diagrams to
show transitions across individual snapshots of dynamic
networks [14], [15]. These techniques have a common draw-
back that it is hard for users to track various network changes
in animation. Timeline-based techniques draw a network at
each time step and simultaneously display the complete set
of time steps along a timeline in a static way [16]–[18]. This
time-to-space mapping is able to provide a better evolution
overview and facilitate insightful interactive exploration. It is,
however, generally hard to determine an appropriate number
of time steps to divide the entire period of time, particularly
for continuously changing networks. Excessive time steps
would reduce the readability of visualization in a limited
screen space, while insufficient time steps may eliminate
important information. Among existing timeline-based tech-
niques, Massive Sequence View (MSV) [2], [3] could present
dynamic network at a fine-grained level without the time step
issue as detailed below.

B. MASSIVE SEQUENCE VIEW
MSV’s history may trace back to Message Sequence
Chart (MSC) [19], a standardized and widespread tech-
nique to visually describe the communication behavior
between components within complex systems. Execution
mural [8] is the early prototype of MSV, which extends
MSC for visualizing object-oriented program executions.
Later, Cornelissen et al. [4] and Holten et al. [20] designed
a multi-view visualization system to analyze large program
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execution traces, with a view called MSV. Recently,
Van et al. [3] noticed a striking similarity between execution
traces and network evolutions. They first introduced MSV
into the dynamic behavior analysis of email networks and
social networks.

MSV in these years has undergone a series of
technical improvements. Linked-views [21], hierarchical
navigation [21] and rich interactions [6] (i.e., filtering, brush-
ing and zooming) enable users to explore industrial-sized
MSCs and large program execution traces at different lev-
els of detail. Density-based [4] and importance-based [8]
anti-aliasing techniques make the compressed representa-
tions of the entire dynamic networks more accurate. Node
reordering [3], [10], radial layout [2] and curved link [9]
could reduce visual clutter. However, in difficult cases
(e.g., communications betweenmass nodes occur densely and
irregularly), these techniques may be unable to provide an
effective global overview of MSV. In this paper, we propose
to utilize sampling-based strategy to increase the overall
readability of MSV.

C. SAMPLING FOR VISUAL CLUTTER REDUCTION
In the taxonomy proposed by Ellis and Dix [22], techniques
for visual clutter reduction can be divided into three cate-
gories: spatial distortion, temporal and appearance. As one
of the appearance techniques, sampling is relatively effective,
low-cost and easy-to-implement, and consequently becomes
popular [23]–[25] with various visualization techniques to
improve readability. Chen et al. [26] employed a hierarchical
multi-class sampling technique to declutter scatterplots. Ellis
and Dix [27], Johansson and Cooper [28] and Bertini and
Santucci [29] investigated visual clutter reduction in paral-
lel coordinates with sampling. Cui et al. [30] measured the
abstraction performance of sampling in parallel coordinates
and scatterplots with their proposed metrics. Liu et al. [31]
developed a blue-noise sampling scheme to reduce visual
clutter in massive timeline visualization. To our knowledge,
no work has been done to study sampling technique for
reducing MSV’s visual clutter.

Sampling is commonly used in graph visualization. Graph
sampling randomly picks a subset of vertices and/or edges to
construct a subgraph of original unfiltered graph. The usage
includes graph drawing and graph mining to achieve highly
readable network visualization and efficient analysis of large
scale graphs. Graph sampling has three types of strategies:
node-based, edge-based and traverse-based [11], [12], [32].
A number of graph sampling methods have been proposed to
preserve various properties of the original graph in its sam-
pled subgraph as far as possible, such as degree distribution,
the number of triangles and cluster coefficients [33]. Graph
sampling is closely associated with our work as MSV is a
technique for analyzing dynamic network (graph). However,
most existing graph sampling techniques are designed for
static graph analysis without considering the temporal aspect.

Ahmed et al. [34] recently proposed a family of stream-
ing graph sampling methods with consideration of the time

dimension of network. They assumed that large scale graphs
cannot fit in the main memory of computers at once for
subsequent sampling operations. Therefore, their proposed
methods adopted the streaming data input and continually
update the sampled subgraph. In other words, the subgraph is
still a static representation of the original graph in a streaming
environment. Our sampling method emphasizes on maintain-
ing the time-varying characteristics of the network. To some
degree, our work is the first step to extend graph sampling to
dynamic network analysis.

III. SAMPLING CONSIDERATIONS
Our goal is to achieve a highly readable overview of dynamic
network in MSV. We employ the idea of removing the over-
lapping edges visualized on the screen while fulfilling feature
preservation for dynamic network analysis. The idea can be
formulated as a graph sampling problem. Given an initial
dynamic network, we seek to find a subset of edges to con-
struct a sampled dynamic network that preserves the evolving
properties of an original dynamic network. Before doing so,
we must consider a series of questions.

A. DATA MODEL
The data model of dynamic network is defined as directed
graph G = (V ,E), where V denotes the set of all ver-
tices, E ⊆ V × V × T is the set of all edges, and T =
[tmin, tmax] denotes the entire period of time. Each edge e ∈ E
occurs at a specific time point te ∈ T and consists of a
vertex tuple (vsrc, vsink), which gives the source and sink
vertex of edge e respectively. For two arbitrary vertices vp
and vq, we define an edge sequence of vertex pair

(
vp, vq

)
as E

(
vp, vq

)
= [e0, . . . , ei, . . . , en], where ei ∈ E ∧((

vi_src = vp ∧ vi_sink = vq
)
∨
(
vi_src = vq ∧ vi_sink = vp

))
∧
(
te0 ≤ . . . ≤ tei ≤ . . . ≤ ten

)
, that is, the sequence of all

edges between the two nodes is arranged chronologically.

B. FEATURE PRESERVATION
A dynamic network has various features. Empirically, no sin-
gle sampling method can preserve all the features [13], [35].
In this sense, the first step toward our desirable goal is to
determine which features to preserve. Through the Gestalt
principle, Van et al. [3] pointed out that MSV is an expert at
presenting the tendency changes of network communication
traffic, such as increase or decrease. Our sampling method is
therefore expected to preserve such temporal features.

We notice that the features may behave differently or even
oppositely at node and global levels. For example, the number
of contacts between some nodes may decrease over time,
whereas the communication traffic of the entire network may
increase. We suggest the preservation of the features initially
from the node level and then achieve the preservation of
aggregated features at the global level. A single node and a
node pair are both at the bottom level of a dynamic network.
We are interested in node pairs because of MSV’s block
effect. Leveraged by the closure, proximity, and similarity of
the Gestalt principle, many closely positioned edges between
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two nodes are perceived as a solid block. Groups of sequential
blocks will produce the block effect that helps users easily
identify the temporal features. In summary, we plan to adopt
a node-pair-wise and bottom-top manner to achieve feature
preservation.

How can such temporal features be quantitatively mea-
sured? KDE is a well-studied statistical tool that can create
a continuous density scalar field for all edges between two
nodes to depict their time-varying contact frequency. In this
work, we use KDE to generate a PDF for edges between a
node pair. Specifically, KDE with Gaussian kernel is used.
Gaussian kernel can depict the time-varying trend of com-
munication frequency between nodes, and the resulting PDF
is endowed with smoothness. Consider an edge sequence
E
(
vp, vq

)
with n edges between nodes vp and vq. The proba-

bility density of an edge e occurring at the time point t can be
computed by using the following PDF:

f
(
vp, vq, t

)
=

1

σ
√
2π

n∑
i=1

e−
(
t−tei

)2
/2σ 2 , (1)

where σ is a parameter called bandwidth controlling the
smoothing degree of the density scalar field.

C. SAMPLING STRATEGY
The next consideration is to determine the basic sampling
strategy. Graph sampling has three types of typical strate-
gies: node-based, edge-based, and traverse-based [13]. The
traverse-based strategy is appropriate for preserving network
structural features. Nodes inMSVmay stay active throughout
the whole observation period. Edges only occur instantly at
specific time points. Therefore, the edge-based strategy is
relatively simple and flexible with consideration of only a
specific local period.

After choosing the edge-based strategy, we wonder
whether certain classic sampling methods can inspire us.
Accept-reject (AR) sampling, a type ofMonte Carlomethods,
is known for its capability of generating random samples from
arbitrary target probability distributions (PDFs). It applies
to easy PDFs and difficult ones if given suitable proposal
distributions (i.e., proposal PDFs) [36]. Such an advantage
is highly appropriate to deal with various and unpredictable
PDFs generated from numerous node pairs in a dynamic net-
work. The idea behind AR sampling is as follows. AR sam-
pling generates random samples from a target probability
distribution f (x) by using a proposal distribution g (x). It first
demands a suitable proposal distribution from which candi-
date samples can be drawn. These candidate samples are then
either accepted or rejected depending on a test involving the
ratio of the target and proposal densities as shown below:

u ≤ f (x) /Fg (x), (2)

where u is a 0-to-1 random variable generated for each can-
didate sample, and F is a pre-defined constant that controls
the overall sample size. As F increases, the sample size
decreases, indicating fewer accepted edges.

IV. EOD EDGE SAMPLING FOR MSV
Though detailed consideration is given, designing a desired
sampling algorithm is still non-trivial. In this section, we first
present design challenges. Then, we address them one by one
and finally outline the complete sampling algorithm.

A. DESIGN CHALLENGES
After determining the sampling strategy and the features
to preserve, we now have a clear picture of our sampling
method. Referring to the basic idea of AR sampling, we sam-
ple a dynamic network following the probability density
of edges from various node pairs. The goal is to preserve
the time-varying features of network communication in a
bottom-up way (from node pair level to global level) while
improving the overall readability of MSV. Our goal and idea
become clearer, but how to realize them is not immediately
apparent. We still face many challenges coming from three
aspects.

The first challenge is balancing feature preservation with
visual clutter reduction. In general, edge dense areas contain
much visual clutter in MSV. AR sampling only strives to
ensure the density consistency before and after sampling.
It does not provide any guarantee of visual clutter reduction,
especially in high-density areas where readability may not
be improved. In fact, this is a problem concerning how to
generate a suitable proposal PDF for the relevant target PDF.
In many scenarios, using a uniform distribution as proposal
PDF is practical due to excellent computational efficiency
and acceptable density retention. Using node pair (b, d) in
Fig.3 as an example, since the peak area of the target PDF
is close to the uniform distribution, the edges in this area
are likely to be accepted in AR sampling. This characteristic
is beneficial to maintain visual patterns in sampled MSV
because the Gestalt principle indicates that high-density areas
in MSV contain easy-to-perceive visual information, namely,
the block effect. However, numerous edges among (a, b),
(c, e), and (a, e) run across (b, d) in later part of MSV, causing

FIGURE 3. Illustration of target PDF and proposal PDF (uniform
distribution). The orange curve is the target PDF of the highlighted node
pair (b, d). The purple line is the proposal PDF in the form of a uniform
distribution drawn using the maximum value of the target PDF.
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severe visual clutter. The uniform distribution does not take
into account this situation, and MSV’s readability is not
improved after sampling. In summary, the first challenge is
to design a method for generating a suitable proposal PDF to
realize the trade-off between feature preservation and visual
clutter reduction.

The second challenge is related to edge length. The length
of an edge is the distance between the positions on MSV’s
Y-axis of the source and sink vertices of that edge. All the
vertices of a dynamic network are equally spaced on MSV’s
Y-axis, and their positions on this axis are fixed. As a con-
sequence, the lengths of edges between different node pairs
vary from one to another, whereas the edges between the
same node pair have an identical edge length. The node-
pair-wise sampling strategy we planned ignores the diver-
sity of edge length, resulting in two problems. First, long
edge is more likely to cause visual clutter than short edge
because the former spans more nodes on the Y-axis of MSV.
Second, the amount of edges of different lengths are often
unevenly distributed, especially after applying node reorder-
ing strategies [3]. For example, minimizing edge length,
a type of node reordering strategy, can increase the number
of short edges and decrease the number of long edges. In this
case, most visual patterns are presented by short edges, and
the overall readability of MSV is improved. We should think
about this challenge in our sampling process.

The third challenge concerns the discreteness of a dynamic
network. AR sampling can only generate continuous candi-
date samples from continuous PDFs, but edges of dynamic
networks are all discrete. Additionally, AR sampling ran-
domly examines samples from the whole sample space, caus-
ing some samples never to be examined. Therefore, we should
consider discrete sampling and full sample examination.

B. EDGE OVERLAPPING DEGREE
To solve the first challenge, we introduce the concept of
edge overlapping degree (EOD). EOD is an indicator that
quantitatively measures the overlapping degree of an edge
in MSV by its neighboring edges, i.e., the amount of visual
clutter in the area where the edge of interest is drawn. Consid-
ering the conceptual and computational complexity of EOD,
we first introduce two auxiliary concepts: indistinguishable
pixel area (IPA) and edge overlapping set (EOS). We then
present an auxiliary operation used for easy calculation of
EOD: edge decomposition (ED). Finally, we describe how to
calculate EOD in detail.

1) INDISTINGUISHABLE PIXEL AREA
Empirically, when two edges occur at (approximately) the
same time in a dynamic network, it is hard to visually dis-
tinguish them due to insufficient horizontal pixels. We thus
define indistinguishable pixel distance (IPD) within which
users cannot completely distinguish two separate edges:

IPD = ceil
(
Wedge

2

)
+ ρ, (3)

where Wedge is the width of an edge in pixel, ceil(·) is the
rounding up function, and ρ (ρ ≥ 1) is a user-defined param-
eter that is used to adjust the size of IPD and set to 1 by
default. For an edge e, we use function HP(·) to obtain the
central position of the edge on the X-axis:

HP (e) =
WMSV

tmax − tmin
(te − tmin), (4)

where WMSV is the length of MSV’s timeline in pixel;
tmin and tmax are the beginning and end time of dynamic
network, respectively; and te is the occurring time of edge e.

With the preceding basis, we define that the IPA of edge e is
centered around its central position, extending pixels of IPD
to the left and right such that IPA forms a rectangular area
with the width of two IPDs and the height as that of MSV
canvas. Mathematically, IPA can be expressed as follows:
[HP (e)− IPD,HP (e)+ IPD]. As shown in Fig.4, edge e1
occurs at time t1. We take the t1 time point as the center and
extend one IPD left and right to obtain the IPA of e1.

FIGURE 4. Illustration of IPA and EOD.

To conclude, if other edges fall into the range of a specific
edge’s IPA (considering the width of edge, those edges are
also included that only a portion of their width falls into the
IPA), then we are unable to visually distinguish these edges
from the edge.

2) EDGE OVERLAPPING SET
For an edge, will all the edges in its IPA overlap it and result in
visual clutter interfering with users’ perception? The answer
is negative. We need to consider the relationship between
the vertices of IPA edges and the vertices of the edge from
the perspective of the Y-axis. IPA edges can be divided into
three categories based on different relationships: trivial edge,
similar edge, and overlapping edge.

We first introduce how to determine the location of vertices
on the Y-axis. All vertices of a dynamic network are equally
spaced on the Y-axis of MSV. Every edge has two vertices,
each of which has a corresponding position on the Y-axis.
We assume that the origin of the Y-axis is located in the
top-left corner of MSV canvas, and each edge’s source vertex
is closer to the origin of the Y-axis than the sink vertex.
We define functions VPbegin(·) and VPend(·) to derive the
vertical position of source vertex and sink vertex of an edge,
respectively.

We can now easily classify the three categories of IPA
edges according to the vertical positions of their vertices.
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Assume that edge e is the edge of interest and ei is an
arbitrary edge inside the IPA of edge e. If VPend (ei) <=
VPbegin (e) or VPbegin (ei) >= VPend (e), then ei is called
a trivial edge that does not overlap edge e, thereby intro-
ducing no visual clutter. If VPbegin (ei) = VPbegin (e) and
VPend (ei) = VPend (e), then ei is called a similar edge
produced by the same vertex tuple as edge e. Such edges
benefit the block effect in MSV that facilitates the percep-
tion of visual patterns. Except for trivial edges and similar
edges, other IPA edges are all overlapping edges that really
overlap edge e and lead to MSV’s visual clutter. For example,
in Fig.4, there are three edges in the IPA of edge e1: edges eae,
eab and ebd . Edge eae is an overlapping edge, eab is a trivial
edge, and ebd is a similar edge. Through similar analysis,
e2 has two edges in its IPA, and edges ecd and eac are all
overlapping edges.

To quantify the degree of edge overlapping, we define the
set of all overlapping edges within the IPA of a specific edge
as EOS (e). For example, in Fig.4, EOS(e1) is {eae} and
EOS(e2) is {eac, ecd }.

3) EDGE DECOMPOSITION
Edges in EOS (e) can overlap with edges e in different ways:
some edges may overlap edge e completely, while others may
overlap only a portion of edge e. For instance, edge e1 in
Fig.4 is 100% overlapped by eae, whereas e2 is only 50%
overlapped by ecd .We thus introduce an operation called edge
decomposition for easy calculation of overlapping degree.
Considering that all vertices of a dynamic network are equally
spaced on MSV’s Y-axis, we can decompose an edge into a
set of node pairs that are directly adjacent and equidistant.
In general, for edge e with vertex tuple

(
vi, vj

)
, edge decom-

position can be defined as:

ED (e) =
{
(vi, vi+1) , (vi+1, vi+2) , . . . ,

(
vi+n, vj

)}
, (5)

where nodes vi+1, vi+2, · · · , vi+n represent all the nodes
between nodes vi and vj, and the Y-axis positions of
vi, vi+1, vi+2, . . . , vi+n, vj increase gradually. After decom-
position, the length of each small segment of the original edge
is HMSV

Nnode−1
, where Nnode is the number of all the nodes in the

dynamic network, andHMSV is the height of theMSV canvas.
For example, the vertex tuple of edge e1 is (b, d) in Fig.4; we
can decompose edge e1 into {(b, c) , (c, d)} (c is vertically
located between b and d).
We notice that different edges in the same EOS may

repeatedly overlap the same part of the edge of interest. The
repeated overlapping will not always enhance visual clutter.
In Fig.4, edges eac and ebc both overlap the upper half of e3,
resulting in repeated overlapping. When the opacity is set to
over 50%, the resulted visual effects are the same between
three overlapped and two overlapped edges. In this work,
we do not consider repeated overlapping when measuring
visual clutter. To this end, we decompose all the edges in EOS
and apply a union operation to the EOS to eliminate repeated
overlapping. For edge e, the EOS that eliminates repeated

overlapping can be expressed as:

EOS∗ (e) = ED (ei1) ∪ ED (ei2) ∪ . . . ∪ ED (ein), (6)

where ei1, ei2, . . . , ein ∈ EOS (e). For example, for edge e3 in
Fig.4, the two edges of its EOS are decomposed into {(b, c)}
and {(a, b) , (b, c)}. The EOSwithout repeated overlapping is
{(a, b) , (b, c)}.

4) EOD COMPUTATION
We first use three examples to demonstrate how to intuitively
calculate EOD. For edge e1 in Fig.4, its EOS only contains
edge eae that overlaps e1 completely in the vertical direction.
We thus define the EOD of edge e1 as 1. For edge e2, edge eac
overlaps the upper half of edge e2, whereas the lower half is
overlapped by edge ecd . Given that edges eac and ecd together
overlap edge e2 completely, the EOD of e2 is also set to 1. For
edge e3, its EOS includes edges eac and ebc, both of which
overlap the same upper half of e3; the EOD of edge e3 is
set to 0.5.

Through the above examples, the calculation of EOD is
concluded into two steps. The first step is to obtain the EOS
of an edge. The second step is to accurately measure the
degree of visual clutter introduced by overlapping between
the edge and its EOS. To complete the second step, we employ
edge decomposition and intersection operation. For exam-
ple, in Fig.4, EOS∗ (e3) is {(a, b) , (b, c)} after elimina-
tion of the repeated overlap, and the edge decomposition of
e3 is {(b, c) , (c, d)}. After the intersection of the two sets,
the resulting set is {(b, c)}. This means only the upper half of
e3 is overlapped by its EOS. The normalized EOD of e3 is
0.5. In general, for edge e, we define EOD (e) as:

EOD (e) =
|ED (e) ∩ EOS∗ (e)|

|ED (e)|
, (7)

where |·| is used to count the number of set elements. The
value of EOD ranges from 0 to 1. A value of 0means an empty
EOS of which no edges introduce visual clutter, and a value
of 1 indicates that the edges in EOS completely overlap the
edge of interest.

EOD is an edge-level indicator for visual clutter. We can
use EOD to generate a new proposal PDF for replacing
uniform distribution in AR sampling. We first calculate the
EOD of each edge between vertex tuple

(
vp, vq

)
and add

the maximum value of the corresponding target PDF to
each EOD value. Finally, we generate a new proposal PDF
by smoothly connecting these EOD values. To summarize,
we can compute the proposal PDF value of an edge e at time
point t by using the following formula:

gF
(
vp, vq, t

)
= F

(
max

(
f
(
vp, vq, t

))
+ EOD (e)

)
, (8)

where f
(
vp, vq, t

)
is the target PDF, and F is a user-defined

constant as in AR sampling which we have introduced in
Section 3.3. Here, gF

(
vp, vq, t

)
with subscript F indicates

that F is a hyperparameter of g
(
vp, vq, t

)
.
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The new proposal PDF possesses three advantages. First,
it takes the maximum value of the target PDF as the bench-
mark and therefore can obtain a similar functionality as
uniform distribution to maintain the probability density dis-
tribution of edges before and after sampling. Second, the PDF
can further reduce visual clutter because it adds a correspond-
ing EOD value to each edge on the benchmark by considering
edge overlapping. Third, the overlapping information can
be stored as a new property of edge for future use such as
facilitating local interactive exploration in MSV.

C. EDGE LENGTH FACTOR
The new proposal PDF can achieve the balance between
feature preservation and visual clutter reduction. However,
sampling phenomenon related to edge length exists. When
the length of an edge is large, its EOD tends to be small,
and it can be easily accepted in sampling. By contrast, when
the length of an edge is small, the edge is more likely to
be completely overlapped, resulting in a large EOD value
and a high rejection probability. In general, the influence of
edge length on sampling probability is undesirable. The two
main reasons have been described as the second challenge
in Section 4.1.

To address this challenge, our idea is that long edges should
be accepted with relatively small probability while consid-
ering the quantity distribution of edges of different lengths.
We introduce edge length factor (ELF) into the design of
EOD-based proposal PDF:

gF (vp, vq, t) = F
(
max

(
f
(
vp, vq, t

))
+ EOD (e)

)
+ (1− we) le, (9)

le =
length (e)
HMSV

, wl e =
num (length (e))

Nedge
, (10)

where le is the normalized length of the edge of inter-
est, wl e is the weight for the corresponding edge length,
length(·) is used to obtain the length of an edge, num(·) is
a function for calculating the number of edges with specific
length, and Nedge is the total number of edges in a dynamic
network.

The new proposal PDF is optimized by ELF with a penalty
term and an incentive term. l is the penalty term. If the length
of an edge is large, then the penalty for this edge will also
be large and the resulting probability of accepting it will be
relatively low, and vice versa. w is the incentive term. If the
weight for the edges of a specific length is large, then the
accepting probability will be relatively high. In general,w can
be automatically set according to the quantity distribution
of edges of different lengths before sampling. From another
point of view, w can also be regarded as a user-defined
parameter that provides the user with free observation modes.
For example, to preserve edges of moderate length, we can set
a large weight for these edges so that the resulting probability
of accepting them increases.

D. STREAMING EDGE SAMPLING
Prior to sampling, we need to address the third challenge
stated in Section 4.1. We propose to use edge stream
to discretely process every edge. The sampling process
first arranges all edges between a vertex pair to be sam-
pled in a chronological order, which can be considered
an edge stream. The process generates candidate sam-
ples from the edge stream by sequentially taking each
edge as a candidate sample. In this manner, the sampling
process can examine every discrete edge in a dynamic
network.

The sampling process is described as follows. First,
a candidate sample is sequentially generated from the edge
stream. For the candidate sample, a random number u
between 0 and 1 is generated. The candidate sample is either
accepted or rejected according to the following Boolean
value:

u ≤
f
(
vp, vq, t

)
gF
(
vp, vq, t

) . (11)

To conclude, sampling a dynamic network with our pro-
posed method includes four steps: initialization, calculat-
ing target PDF, designing a proposal PDF, and streaming
sampling. In step one, users input a dynamic network and
the expected sample size F; we obtain the statistics of the
dynamic network and set weight w for different edge lengths.
In step two, target PDF f

(
vp, vq, t

)
for node pair

(
vp, vq

)
to

be sampled is estimated by KDE. In step three, we calculate
EOD (e) for each edge e between the node pair and derive
the proposal PDF gF

(
vp, vq, t

)
by using EOD, we and le.

In step four, we sequentially examine every edge in the edge
stream (sequence) E

(
vp, vq

)
. The pseudo-code for the entire

sampling process is given in Algorithm1.

Algorithm 1 EOD Edge Sampling
Require: dynamic network G = (V ,E), F
Ensure: sampled dynamic work G1 = (V ,E1)
1: Initialization
2: Obtain the statistics of E and set w for different edge

lengths
3: for every pair of nodes

(
vp, vq

)
in V do

4: Compute the target PDF f
(
vp, vq, t

)
by using KDE

5: Compute the EOD (e) of each edge e
6: Design proposal PDF gF

(
vp, vq, t

)
by using EOD, le

and wl e
7: for e in E

(
vp, vq

)
do

8: Generate random value u by using uniform distribu-
tion U (0, 1)

9: if u ≤ f
(
vp, vq, te

)
/gF

(
vp, vq, te

)
then

10: add e to E1
11: end if
12: end for
13: end for
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V. EVALUATION
In this section, we use two real-world datasets to demonstrate
the effectiveness of the proposed method. We then evaluate
its performance on feature preservation and visual clutter
reduction by using three quantitative indicators.

A. CASE STUDY
The first case involves the use of a popular dataset, Enron
email dataset, which is widely used in dynamic network
studies [3], [5], [37]. Enron, a former energy service com-
pany, is known for the biggest American bankruptcy due to
accounting fraud. In February 2001, Jeffrey Skilling replaced
Kenneth Lay as CEO of the company. In July 2001, Skilling
resigned suddenly and Lay took over once again. In Octo-
ber 2001, the Securities and Exchange Commission (SEC)
started an investigation into Enron. In December 2001, Enron
filed for bankruptcy and many executives were sentenced to
prison.

Fig.2(a) shows the whole dynamic network of the Enron
email dataset. All nodes are sorted by the node reordering
strategy ofminimizing edge length [3]. Each of the aforemen-
tioned events can lead to a sudden change in email traffic.
However, we cannot clearly identify these events due to
MSV’s poor readability. Fig.2(b) shows the clutter-reduced
MSV by our method. With the improved readability, we can
clearly observe three sudden drops in email communication,
reflecting the evolution of Enron scandal. As the arrows
shown in the figure, the three drops correspond to the CEO
replacement from Lay to Skilling in February 2001, the sud-
den resignation of Skilling in July 2001, and the bankruptcy
petition of Enron in December 2001.

Fig.2(c) shows the comparison of the temporal tendency
of communication traffic in the two MSVs. The X-axis repre-
sents the timeline as that of the MSVs, and the Y-axis shows
the percentage of the edge number in a time bin to all the
edges of the entire network. The timeline is divided into
50 time bins in this case. The two curves stick together most
of the time, indicating that our method effectively preserves
the time-varying features of the network traffic. In addition,
if users just focus on Fig.2(a), then they may misunderstand
that after October 2000, the email communication peaked and
lasted until February 2002. However, the actual peak only
existed after October 2001, at that time the SEC started an
investigation into Enron. The sampled MSV in Fig.2(b) helps
us observe this correct trend.

The second case involves the high-school dataset contain-
ing time-stamped face-to-face contacts between high-school
students for a week [38]. The dataset is collected by wearable
sensors with 20 second recording interval. We choose the
first day’s data from 2012/11/19 15:00 to 24:00, and the
corresponding social dynamic network has 151 nodes and
9,957 edges.

Fig.5(b) shows the sampled result on the basis of Fig.5(a).
The overall readability is obviously improved, with accurate
presentation of the temporal trend of the network traffic.

FIGURE 5. High-school student face-to-face contact dataset. The nodes in
the two MSVs are sorted alphabetically. After sampling (b), many contact
pairs with frequent communication stand out, some in orange boxes,
which are invisible before sampling (a). (a) MSV before sampling. (b) MSV
after applying our sampling method. (c) The distributions of edge counts
of the high-school dataset before and after sampling.

For example, the peak of face-to-face contacts appears at
around 16 o’clock, which may indicate that school was over
at that time; the peak is clearly presented in Fig.5(b), instead
of being identified as several possible peaks in Fig.5(a).
On close inspection, as shown in the orange boxes in Fig.5(b),
many contact pairs with frequent communication stand out,
and these pairs are invisible in Fig.5(a). We check the specific
information from the data and find that many of the contact
pairs belong to the same class and are supposed to be close
friends.

In summary, the first case reflects that our sampling
method can make MSV clear and accurate in interpreting the
time-varying features of the dynamic network from a macro
global network level. The second case suggests that from a
micro node pair level, our sampling method can effectively
facilitate the identification of contact pairs with frequent
communication.

B. QUANTITATIVE ANALYSIS
We design an indicator (KS distance) to quantify the sam-
pling performance on feature preservation and two indicators
(edge overlapped rate and edge hidden rate) to quantify the
readability improvement of MSV before and after sampling.

KS distance measures the similarity of the time-varying
trend of network traffic before and after sampling with values
ranging from 0 to 1. The smaller the value is, the more
similar the two trends of network traffic are, implying the
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TABLE 1. The time spent for both preprocessing and sampling of the three algorithms on the three datasets.

better performance of sampling algorithm to preserve such
trend. The calculation includes three steps. First, the entire
observation period of a dynamic network is partitioned into
small time bins. Then, the ratio of the edge number in each
bin to the total edge number of the entire network is calcu-
lated. Finally, the Kolmogorov−Smirnov statistics [34], [33]
is used to measure the similarity of the two distributions
before and after sampling.

Edge overlapped rate is used to measure the degree of
visual clutter caused by overlapping edges. These edges
are the major factor that reduces the overall readability of
MSV [2]. Thus, comparing the edge overlapped rates of dif-
ferent sampling results is helpful in determining which sam-
pling methods can improve the overall readability of MSV
significantly. Edge overlapped rate is defined as the ratio
of the number of overlapping edges to the total number of
edges of the network, with values ranging from 0 to 1. The
smaller the value is, the less visual clutter appears. For an
edge, we only judgewhether its immediately subsequent edge
overlaps with it, that is, whether the subsequent edge appears
in its EOS. If the judgment is true, the edge is an overlapping
edge.

Edge hidden rate measures the degree of information loss
in MSV. Due to inevitable edge overlapping and/or overplot-
ting, some edges in MSV may become unobserved. As a
result, the information about the edges gets lost in the visual-
ization result ofMSV.We use the edge hidden rate to measure
the percentage of unobserved edges in all edges of the entire
network in MSV. The values of the edge hidden rate range
from 0 to 1. The smaller the value is, the less hidden edges
appear in the MSV. We assume an edge would be completely
hidden by visual clutter, that is, invisible to users, if more than
50% of its entire length is overlapped by other edges. The
calculation method is similar to that of EOD.

Three datasets different from the two case datasets are used
in our experiment (Table 1). These datasets are commonly
used in dynamic network analysis. To carry out a comparative
analysis, we select two reference algorithms. The first one is
random sampling, which randomly selects a certain number
of edges; the second one is the classic AR sampling, which
uses the uniform distribution (set to the maximum value of
a target PDF) as its proposal PDF. The three algorithms are
used on the three datasets at 10 different sample sizes. At each
sample size, the process is repeated 10 times. We record
the average of the three indicators and the average time
consumption. In the experiment, the canvas of MSV is set

to 1650× 850 in size, the width of an edge in MSV is set to
1 pixel, the Gaussian kernel bandwidth is 5, the IPD’s ρ is 1,
and the weight w is automatically calculated by default. The
experiment is conducted on a Dell OptiPlex 7040 desktop.

Fig.6 shows the results of the indicator analysis. For KS
distance indicator, our method achieves a comparable per-
formance to AR sampling, with random sampling being the
worst. The KS value of our method is constant around 0.2 at
multiple sample sizes, which can be regarded as a good
KS value. In terms of the two indicators of visual clutter
reduction, ourmethod significantly outperforms the other two
methods. The edge overlapped rate values of AR sampling
and random sampling at most sample sizes are close to the
situation without sampling (the rightmost maximum), which
reflects that they almost fail to reduce the visual cluster in
MSV. By comparing the three datasets, we find that the latter
two indicator values increase as the data volume increases,
that is, as the number of edges increases, the difficulty of
visual clutter reduction increases.

Table 1 lists the average time consumptions of the three
algorithms. We record the preprocessing time and sampling
time of each sampling test. The preprocessing of AR sam-
pling is mainly conducted to calculate the target PDFs of node
pairs. For our method, the preprocessing mainly includes
the calculation of the target PDFs and EOD-based proposal
PDFs of node pairs. The experimental result shows that our
method consumes a long preprocessing time. The calculation
of EOD is the most time-consuming step in our algorithm.
The worst-case complexity is O

(
n2
)
, where n is the number

of edges, because the EOD calculation of each edge may
examine whether all edges overlap with the edge. The use
of IPA can greatly reduce the amount of computation, so the
actual algorithm complexity is less than O

(
n2
)
. In terms of

sampling time, all the three algorithms are very fast (less than
1 second).

VI. DISCUSSION
In this section, we discuss the parameter settings of our
proposed algorithm and present the limitations of the study
and further directions.

The most important parameter of the proposed algorithm
is the sampling factor F. As F increases, the sample size
decreases (i.e., fewer accepted edges). Through empirical
analysis, we set F between 0 and 2. Obtaining the optimized
F deserves a future study. A possible solution may be looking
for inflexions of the curves of the three indicators at different
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FIGURE 6. Quantitative evaluation results. The line charts of the same indicator are placed in the same row, with each chart showing the
result of one dataset. The green, purple, and orange curves represent random sampling (Random), AR sampling (AR), and our sampling
method (Our), respectively. The X-axes represent the size of the sample set. The origin of X-axis indicates the empty sample set, and 100%
means the entire dynamic network edge set (i.e., no sampling).

sample sizes. The algorithm includes three other parameters.
ρ controls the width of IPA. The larger ρ is, the more edges
participate in calculating EOD.We set ρ to 1 or 2 pixels (1 by
default). The second parameter is weight w for specific edge
length. The default setting is calculated automatically by the
quantity distribution of edges of different lengths. Users can
also manually set w for observing the pattern formed by the
edges of a specific length. The third parameter is the band-
width σ of Gaussian kernel, which controls the smoothing
degree of PDFs.We use the rule of thumb to select the optimal
bandwidth [42].

Our algorithm has a nature of randomness, which intro-
duces a few problems. First, applying our algorithm to a
given dataset many times may result in slightly different
sampling results. Second, some edges without overlapping
in unsampled MSVs have a certain probability to be dis-
carded after sampling. Last, in extreme cases, a few patterns
clear in unsampled MSVs may become unclear or even lost
after sampling because some edges related to the patterns
are randomly rejected. We plan to reduce the randomness
of our algorithm and investigate how to avoid discarding
non-overlapping edges.

Our algorithm spends time mostly on preprocessing, espe-
cially for calculating EOD. We will therefore enhance the
efficiency of data preprocessing. The algorithm mainly pre-
serves the time-varying trend of network communication
traffic; in fact, there are many other features in a dynamic
network, such as structural evolution. We plan to investigate

how to preserve numerous features in sampling and involve
users in evaluating the feature-preserving aspect.

VII. CONCLUSION
This paper proposes an edge sampling method to reduce
visual clutter inMSV and preserve network evolving features.
EOD is carefully designed to be an edge level indicator
of visual clutter. We use KDE to characterize time-varying
features of node pairs and generate PDFs to realize feature
preservation in a bottom-up manner. Edge length factor and
streaming processing are used to enhance sampling effect.
Both the case studies and quantitative analysis demonstrate
the effectiveness of our method. This work provides a start-
ing point that extends graph sampling to dynamic network
visualization and visual analytics.
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