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ABSTRACT In this paper, we introduce the DEEP-SEE FACE framework, an assistive device designed to
improve cognition, interaction, and communication of visually impaired (VI) people in social encounters.
The proposed approach jointly exploits computer vision algorithms (region proposal networks, ATLAS
tracking and global, and low-level image descriptors) and deep convolutional neural networks in order
to detect, track, and recognize, in real-time, various persons existent in the video streams. The major
contribution of the paper concerns a global, fixed-size face representation that takes into the account of
various video frames while remaining independent of the length of the image sequence. To this purpose,
we introduce an effective weight adaptation scheme that is able to determine the relevance assigned to
each face instance, depending on the frame degree of motion/camera blur, scale variation, and compression
artifacts. Another relevant contribution involves a hard negative mining stage that helps us differentiating
between known and unknown face identities. The experimental results, carried out on a large-scale data set,
validate the proposed methodology with an average accuracy and recognition rates superior to 92%. When
tested in real life, indoor/outdoor scenarios, theDEEP-SEE FACE prototype proves to be effective and easy
to use, allowing the VI people to access visual information during social events.

INDEX TERMS Convolutional neural networks, face recognition in video streams, assistive devices for
visually impaired users.

I. INTRODUCTION
In recent years, several frameworks based on mobile plat-
forms and dedicated to healthcare services have emerged. The
novel technologies developed aim at reducing the costs of the
health sector, by increasing the empowerment of people and,
in the same time, by improving the monitoring of patients
with chronic diseases. Through the continuous assessment of
symptoms, such systems can help the patients to managing
their condition by their own, without needing direct supervi-
sion of specialized healthcare personnel.

Currently, the patient monitoring systems based on internet
of things (IoT) or cyber physical systems (CPS) are attract-
ing considerable attention from the scientific community.
Such emerging technologies have been used to various pur-
poses: facilitate smoking cessation [1], [2], monitor patients
with chronic heart failure [3], detect early signs of arrhyth-
mia or ischemia [4], provide diabetes education [5] ormonitor
relevant physiological markers [6].

With a few notable exceptions (mental health and autism),
the people with disabilities have not been the primary target
of the emerging mobile health applications. However, indi-
viduals with disabilities are likely to engage in behaviors that
can put their health at risk [7] and there is a strong need
of technologies that can improve their daily-life conditions,
enable social relations, and increase their degree of autonomy
and safety.

In this paper, we focus on a particular case of disabil-
ity, which is the visual impairment. Nowadays, more than
285 million people worldwide suffer from visual impair-
ment (VI) [8] with 39million of blinds and 246million people
with low vision. The World Health Organization estimates
that by the year of 2020 the number of individuals affected
by VI will significantly increase [9]. The visually impaired
people adapt to normal life by using traditional assistive aids,
such as white canes or walking dogs. The white cane is
preferred because it is easy to use, cheap and widely accepted
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by the blind community. However, such an assistive element
shows quickly its limitations when confronted with the high
diversity of situations that can occur in current urban scenes.
Moreover, the white cane cannot provide additional informa-
tion to users such as the degree of danger of the encountered
obstacles or recognition of persons that are present in the
scene. In the absence of such information, the VI always
travels on known paths while trying to guess the identity of
the persons encountered. When a VI user arrives in a social
setting, the conversation has to be interrupted in order to
announce which people are present.

In this paper, we introduce DEEP-SEE FACE, a novel
assistive device based on computer vision algorithms
and offline-trained deep convolutional neural network that
extends the previously proposed DEEP-SEE [10] architec-
ture with a face recognition module. DEEP-SEE FACE is
able to identify in real-time, from video streams, a set of
characters, which can be pre-defined by the user and which
may correspond to either familiar people that the VI user
may encounter in real life or to celebrities appearing in media
streams. So, two challenges are addressed: (1) detect and rec-
ognize familiar people when navigating in indoor or outdoor
environment; (2) acquire additional information about the
identity of various people/celebrities appearing on the media
broadcasted at TV or over internet.

The proposed system is able to acquire information from
the environment, process, interpret it and transmit acoustic
messages in order to inform the VI user about the presence of
a familiar face or of a known identity.

At the hardware level, the DEEP-SEE FACE
system adopts our architecture initially proposed for
DEEP-SEE [10] that consists of: a mobile acquisition device
(i.e., a regular smartphone), a light processing unit equipped
with Nvidia GPU (i.e., ultra book computer) and bone
conduction headphones. The proposed platform is portable,
wearable and cost-effective, in order to reach the high major-
ity of blind/visually impaired population.

In the state of the art [11], [12] various authors address-
ing the issue of face recognition in video streams represent
a video face as a set of low level features extracted from
individual frames or from the final layers of various deep
neural networks [13]. Compared to still image recognition the
person identification in video streams is muchmore challeng-
ing because of noisy frames or of unfavorable poses/viewing
angles. In addition, because the same face may often include
more than 100 instances, the computation time required to
take them into account becomes significant. The key chal-
lenge in video face recognition is to develop a fixed-size
feature representation of the face, constructed at the video
level, and independent of the length of the video stream. Such
a representation should allow a constant time computation in
order to determine the identity of a particular individual.

The major contribution of the paper consist on an effective
CNN-based weight adaptation scheme that is able to deter-
mine the relevance of the features extracted from multiple
face instances, depending on the degree of motion blur, scale

variations, occlusions or compression artifacts, in order to
construct a compact and discriminative face representation.
The proposed framework extracts per-frame video-based fea-
tures using a deep face CNN model. The features are then
aggregated into a global representation that can take into
account the variations of the face appearance during its life
cycle.

Secondly, we introduce a hard negative mining stage
designed to differentiate between known faces and unknown
identities. Such an issue is essential, in order to avoid false
alarms, when designing a personalized learning procedure,
where the users can specify their own preferences in terms of
characters to be recognized.

Finally, the semantic information about the presence of
a familiar is delivered with the help of acoustic warning
messages, transmitted through bone conduction headphones.

The rest of the paper is organized as follows: in Section II
we review the state-of-the-art approaches dedicated to the
VI assistive devices based on computer vision/machine learn-
ing methods. Section III introduces the proposed architecture
and describes the main steps involved: face detection, track-
ing, recognition and acoustic feedback. Section IV presents
the experimental results obtained on a large set of videos.
We show that it is possible to obtain high recognition rates
on mobile wearable devices. Our system does not require any
dedicated hardware architecture and can be accessible to any
VI user at low cost. Finally, Section V concludes the paper
and opens some directions of future work.

II. RELATED WORK
Due to the proliferation of graphical processing units, com-
puter vision algorithms and deep convolutional neural net-
works, various systems designed to increase the mobility of
VI users such as ALICE [14], Mobile Vision [15] and Smart
Vision [16] are based on artificial intelligence. Let us review
the state-of-the-art approaches, emphasizing related strengths
and limitations.

The Microsoft Kinect has been extensively used for person
identification in the context of VI people. Li et al. [17],
Cardia Neto and Marana [18], Li et al. [19],
Goswami et al. [20] and Berretti et al. [21] introduced dif-
ferent face recognition methods. However, such approaches
are not suitable for real-time systems integrated on low
processing devices.

A real-time face recognition system dedicated to blind
and low-vision people is proposed in [22]. The framework
integrates wearable Kinect sensors, performs face detection,
and uses a temporal coherence along with a simple biometric
procedure to generate a specific sound that is associated
with the identified person. The underlying computer vision
algorithms are tuned in order to minimize the required com-
putational resources (memory, processing power and bat-
tery life). From this point of view, they are overcoming
most state-of the-art techniques, including those proposed by
Cardia Neto and Marana [18] and Berretti et al. [21].
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FIGURE 1. The hardware architecture of the proposed DEEP-SEE FACE system.

However, the range of the Kinect sensors limits the applica-
bility of the approach to solely indoor environments.

A mobile face recognition system designed to assist the
VI identification of known people is proposed in [11]. The
face detection is performed using the traditional Viola-Jones
algorithm with Haar-like features, while for recognition the
Local Binary Patterns Histograms algorithm is used. From
the experimental results it can be observed that the accuracy
of the recognition module is inferior to 70% (on less than
10 classes), while the system proves to be sensitive to face
poses or to different facial expressions.

The framework has been extended in [23], where authors
propose a CNN-based approach to perform both people
detection and recognition. Even though the method returns
good results for the detection module the performance of
the recognition system is inferior to 70% and is influenced
by lighting condition or by user/camera motion. In addition,
the system has never been tested with actual visually impaired
people and nothing is said about the hardware architecture or
about the acoustic warning messages.

The SmartCane face recognition system dedicated to blind
people is introduced in [12]. The framework functions in
real-time and is designed to identify persons around the VI,
while informing the user about their presence through a set
of vibration patterns. The face detection algorithm is based
on Adaboost, while for recognition the compressed sensing
with L2 norm classifier is used. However, because the video
camera needs to be head-worn the framework is considered
invasive.

In [24], a prototype that helps the VI people to interact
with other humans is introduced. The system uses a regular
smartphone device in conjunction with a wireless network in
order to detect and recognize people standing in front of the
VI user. The warning messages are transmitted through a set
of acoustic patterns. However, despite the efficient recogni-
tion scores reported (superior to 96%), the system was tested
solely in simulated, indoor scenarios with less than ten people
in the recognition database.

The Facial Expression Perception through Sound (FEPS)
sensorial substitution system is proposed in [25]. The system
is designed to improve the VI people participation in social
communication by perceiving the interlocutor’s facial expres-
sion. Even though the project’s goals are ambitious, the accu-
racy of the system is relatively low and the computational
time is extensive.

Recently, in [26], a real-time face recognition system that
combines face matching and identity verification is proposed.
By exploiting the temporal efficiency of matching and a
traditional classifier (SVM), the system is able to inform a
VI user about the presence of a known identity in the near
surroundings. Even though the system is designed to work in
real-time on a computer with relatively reduced processing
capabilities, the framework has never been tested with real
VI users or in outdoor scenarios.

Although the image-based face recognition systems have
reached a high level of maturity, the methods show quickly
their limitations when applied in real applications. For exam-
ple, most methods prove to be highly sensitive to various
changes in the illumination conditions, face poses, occlu-
sions or low resolution. Elaborating a robust video face
recognition system is still an open issue of research. Even
though the deep learningmethods can achievemore than 99%
accuracy for face verification [27], they cannot be efficiently
applied to wearable devices because of the reduced process-
ing speed and of the significant power consumption. In the
context of the DEEP-SEE FACE framework, the proposed
face recognition method has been specifically designed and
tuned under the constraint of achieving real-time processing
on portable assistive devices.

In a general manner, the state-of-the-art analysis highlights
that little attention has been given to the development of
a device that helps the interaction and communication of
VI with other people. Moreover, the identification of faces
from media, which can be highly helpful in the comprehen-
sion of the videos usually consumed by the general public,
still remains a challenge for the VI community.
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FIGURE 2. The proposed DEEP-SEE FACE methodological framework.

In this paper, we introduce the DEEP-SEE FACE frame-
work, illustrated in Figure 1 and designed to allow VI people
to access visual information during social encounters or to
apprehend commonly used media.

III. PROPOSED APPROACH - DEEP-SEE FACE
Figure 2 presents the DEEP-SEE FACE architecture that
involves four independent modules: face detection, multi-
ple people tracking, people identity recognition and acoustic
feedback.

A. FACE DETECTION
The face detection module is based on the Faster R-CNN [28]
with Region Proposal Networks (RPN) [29]. Following
the default settings, we have used 3 scales (128 × 128,
256 × 256 and 512 × 512 pixel blocks) and 3 aspect ratios
(1:1, 1:2 and 2:1) that translate to n = 9 anchors at each
possible location of a face. For a feature map of size W × H
(where W and H represent the width and height, respec-
tively), we obtain amaximumnumber ofW×H×n proposals.

As indicated in [29], the RPN training is performed using
the stochastic gradient descent (SGD) for both the clas-
sification and the regression branches. We train the face
detection model using the pre-trained ImageNet model of
VGG [30]. The training images are resized in order to fit
the GPUmemory constraints based on the following scheme:
1024/max(W, H), whereW and H are the width and height of
the image, respectively. The system is run for 100k iterations
with a learning rate of 0.001 and for another 50k iterations at
a learning rate of 0.00001.

B. FACE TRACKING
The tracking system takes as input, at a given frame,
the face bounding box indicated by the detection module
(cf. Section III.A). Then, the goal is to determine the face
position between consecutive frames. The tracking method-
ology is based on our previous ATLAS algorithm introduced

in [31] that is adapted to work on face tracking scenarios and
on multiple moving instances.

We decided to use ATLAS due to its high performance
and reduced computational costs. The ATLAS tracker is
based on an offline-trained convolutional neural regression
network that learns generic relations between various face
appearancesmodels and their associatedmotion patterns. The
system receives as input the target and its associated search
region and returns the target novel location (i.e., the coordi-
nates of the face bounding box).

The process is based on a set of comparisons between
high-level features representation extracted from both faces
and search regions (Figure 3). We need to emphasize that
the CNN weights are modified uniquely during training
(in the offline stage). In the online phase, the network weights
are frozen and no fine-tuning is required. The technique is
robust to important deformation, light changes or face motion
and can function at more than 50fps when running on an
Nvidia1050 GPU.

C. FACE RECOGNITION
Each face identified by the detection module is represented as
a set of features extracted from the last layer before the clas-
sification layer of a traditional CNN. In our implementation,
we have adopted the VGG16 [30] network architecture with
the batch normalization strategy introduced in [32].

Let us note that other CNNs topologies can be employed.
In our work, we have preferred to use a relatively stan-
dard representation, without focusing on any optimization
at this stage. Instead, we have put forward the adaptation/
personalization strategies. Notably, we show that such stages
can be accomplished uniquely by considering the final layers
of the network, with a light re-learning process.

The VGG output is a 4096-dimensional feature vector
representation (corresponding to the penultimate layer) of
the face, which is further normalized to a unit vector.
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FIGURE 3. Face tracking using a modified version of the ATLAS algorithm adapted to the scenario of multiple face tracking.

Each feature face representation is further fed to a weight
adaptation scheme, described in the following paragraphs.

Given a face that is tracked in successive frames of a video
stream, the face recognition module is designed to determine
the probability of a face to belong to a specific category.

Let us denote by F = {x1, x2, . . . , xL} a face tracked in a
video sequence of length L frames, where xk , k = 1, . . . ,L
is a face instance in the k th frame of the considered video.
At each frame, the considered face xk has its corresponding
normalized feature representation fk that is extracted from the
VGG16 module.

Our objective is to create a global descriptor, denoted by
r(F) and associated to face F that aggregates all the features
extracted from multiple video frames (and which correspond
to multiple face instances) into a compact, global face repre-
sentation, defined as:

r(F) =
∑
k

wk · fk , (1)

where {wk}Lk=1 is a set of weights, with wk the coefficient
associated to the feature of the k th frame. In this way,
the aggregated feature vector has the same size as a single-
frame face representation.

The key ingredient in equation (1) is the set of weights
wk . A simple approach, as the one introduced in [33], would
consist in a naive averaging, which corresponds to equal
weights wk = 1

/
L. However, such an approach is not

optimal, because all face instances are treated with equivalent
importance.

In this paper, we have designed a learning-based optimized
scheme, described in the following section that adaptively
modifies the scores depending on the degree of noise within
the frame, face poses or viewing angles.

1) WEIGHT ADAPTATION MODULE
In order to generate the set of weights, we have trained a CNN
that helps us to differentiate between various face instances.
We have adopted the VGG16 network architecture [30], for
which we have considered only two categories, defined as
relevant and irrelevant classes. They respectively correspond

to high-quality frames, appropriate for recognition purposes
and low-quality ones (e.g., blurred, profile poses. . .), whose
impact on the recognition process should be minimized.
We aim to determine for each image patch that goes through
the network the probability to be assigned to the relevant
category. Higher scores will be assigned to frontal, unblurred
and unoccluded face instances.

The CNN training is performed on the Multi-Task Facial
Landmark (MTFL) dataset [34] that contains 12995 face
images extendedwith an additional 15700 faces crawled from
the web. For each face in the dataset we have computed the
landmark localization [35] and included in the relevant class
only the images representing aligned faces with little varia-
tion for the yaw, roll or pitch angles (less than 25 degrees)
and at a resolution superior to (128× 128 pixels).

In order to determine the blurriness degree of the con-
sidered faces, we have adopted a non-referential sharpness
(NRS) metric [36] that determines the local contrast in the
neighborhood of the image edges, detected using the Sobel
operator. Only faces with a NRS value inferior to 2.0 have
been added to the relevant class. The remaining images were
included in the irrelevant class.

In addition, both classes have been extended through a set
of data augmentation techniques in order to prevent over-
fitting and to enhance the generalization ability. We used
the traditional data transformation methods [37] applied on
image sets, such as: random cropping or horizontal flipping.
For the irrelevant class we have adopted also the following
transforms: linear motion/optical blur, face resolution (scale)
variation and video compression noise in order to model the
most common causes of artifacts present in video streams.

For the linear motion blur, as in [38], we used a kernel
length that is randomly selected within the [5], [15] interval
and a kernel angle ranging between 10 and 30 degrees. For
scale variation, we have considered various down-sampling
factors between 1/12 and 1/2 of the original image size.
Finally, the face instances have been compressed using the
JPEG compression algorithm at a quality parameter randomly
selected within the [10], [50] interval. At the end, we have
obtained a database of about 1Mimages.
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The weight adaptation module receives all features and
generates the corresponding weights for them. Specifically,
for the fk face feature vector, the output is a value that
corresponds to the face significance sk , which represents the
probability to belong to the relevant category issued by the
VGG network. Finally, the sk coefficients are passed through
a softmax operator to obtain the weights wk with

∑
k wk = 1:

wk =
exp (sk)∑
j exp

(
sj
) , (2)

In this way, we ensure the robustness of our approach that
is invariant to the number of face instances (that can vary from
person to person) or to the order it receives the images (the
global face descriptor will be the same regardless if the face
instances are reversed or reshuffled).

Figure 4 presents some examples of weights com-
puted using our adaptation module on various videos:
(1) 5 video recorded in real urban scenes by actual VI users
and (2) 25 image sequence selected from the France national
television broadcast. As it can be observed, blurred, partially
occluded or profile face instances play a reduced role in the
global, aggregated face descriptor that is further used for
classification purposes.

FIGURE 4. Visual examples of face instances and their associated weights
displayed in ascending order with respect to the video content variation.

2) HARD NEGATIVE MINING
In order to deal with unknown faces, we have modified the
classifier and extended the CNN output with an additional
category, denoted by ‘‘Outlier’’.
Our goal is to develop a framework that is able to return the

highest score for the ‘‘Outlier’’ class, against all other classes
in the system, whenever the global face descriptor associated
with an unknown person is applied as input.

In addition, such an approach can be useful when the
detector (cf. Section III.A) returns false alarms. These non-
face regions should be also marked as unknown instances.

In a naive approach of a weakly supervised training
with stochastic gradient descent, the faces included in the
‘‘Outlier’’ set are selected from potential negative images not
assigned to any category. However, it is clearly intractable
to include in the unknown class all negative images from the
image dataset because the categories will become unbalanced
and all the new faces applied as input will be assigned to the
‘Outlier’’ class.
A commonly used, straightforward solution is to randomly

sample the set of negative images in order to develop the
unknown faces dataset. However, a limitation of this approach
appears when there is a very large number of negative samples
and when the known person representation is relatively good,
but far from its optimum potential. In this case, most of the
negative examples are considered ‘‘easy’’ and they will not
violate the margin returning zero loss of the gradients (when
performing back propagation). So, in this case, no updates of
the CNN weights will be performed.

In order to deal with the above-mentioned problems we
introduced a hard negative mining stage that adaptively
selects the images for the ‘‘Outlier’’ class depending on
the known people classes. First, using the VGG16 archi-
tecture, we perform an initial training of the CNNs for all
known classes. A straightforward approach in developing the
‘‘Outlier’’ class is to apply as input to the CNNs all the face
samples that are not associated to a class and to retain the first
N hardest negative examples (i.e., the images with the highest
similarity score) for each category. Nevertheless, we need to
take into account that an image dataset may contain multiple
face instances of the same person. In the extreme case, all N
hardest negative examples may correspond to the same face
identity. In order to prevent such cases, for each category we
compare, using the L2 distance, the feature vectors of the N
negative examples in a one-to-one face verification strategy.
This task eliminates duplicate instances, while allowing us to
retain the faces with the highest probability of belonging to
the current class.

Then, we perform again the training with this extra cate-
gory. However, we have observed empirically that the CNNs
will learn to solve only these particular hard cases (corre-
sponding to the N negative examples when applied as input
to the system) without providing significant difference from
the initial network weights. We argue that mixing hard neg-
ative examples with randomly selected samples can ensure a
better degree of generalization for the ‘‘Outlier’’ class. The
faces included in the negative examples category have been
selected from the extended version of the Multi-Task Facial
Landmark (MTFL) dataset as presented in Section III.C.1.
In the experimental evaluation section, we also analyze the
impact of the parameter Nover the system’s performance.

D. ACOUSTIC FEEDBACK
The acoustic feedback is responsible of improving the cog-
nition of the visually impaired user about various people
existent in their near surrounding. In the context of the
DEEP-SEE [10] framework, the acoustic warning messages
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are transmitted through bone conduction headphones that
satisfy the hands free and ears free conditions imposed by the
VI people and enable the user to hear other external sounds
from the environment.

For the DEEP-SEE FACE module, the recognized faces,
are transmitted to the VI user as verbal messages, explic-
itly indicating the person’s identity. Our major concern was
to develop a warning system that is intuitive and does not
require an extensive and laborious training phase. In addi-
tion, in order to provide some location information about the
position of the recognized person, the warning messages are
recorded in stereo using either right, left or both channels
simultaneously. Thus, when the person is situated on the left
(resp. right) side of the subject, the message is transmit-
ted on the left (resp. right) channel of the bone conduction
headphones. For people situated in front of the subject, the
messages are transmitted in both channels.

The proposed strategy is illustrated in Figure 1, where our
system transmits an acoustic warning message to the VI user
in order to inform him/her about the presence of ‘‘John’’
within the scene.

In order not to overwhelm the VI user with redundant infor-
mation, our system is designed to generate a new warning
message for the same person only if the subject is present in
the scene for more than 5 minutes.

IV. EXPERIMENTAL SETUP
The DEEP-SEE FACE prototype proposed in this paper
shows how a robust face recognition system working directly
on video streams can be used to assist the visually impaired
persons when interacting with normal humans. This section
highlights the major components of our system focusing
our attention of the weight adaptation and the hard negative
mining stages and presents the experimental results of the
proposed methodology. Furthermore, tests performed in real-
life scenarios, when the framework is integrated on a mobile
device are presented and discussed.

A. THE BENCHMARK
Due to the novelty of the application and the unavail-
able free data that can be used for testing the perfor-
mance of the proposed architecture, we have created a video
dataset of 30 video sequences, with an average duration
of 10 minutes, recorded at a resolution of 1280 × 720 pixels
and with 30 fps. Five video streams have been recorded with
a regular smartphone by real visually impaired users, walking
in indoor/outdoor scenes, while 25 image sequences have
been provided by the France national television. We need to
highlight that the videos recorded in real-world conditions by
the VI users are highly challenging: they are trembled, noisy,
include different lighting conditions, motion blur, rotation
and scale changes.

B. CNN TRAINING FOR FACE RECOGNITION
In the training phase, we have considered a dataset
with 100 categories of known persons that contain faces

representing user family members and friends and also some
celebrities (politicians, movie stars or singers) appearing
on TV. For each person, a maximum number of 800 face
instances were stored in the dataset. The faces have been
detected (cf. Section III.A) and aligned using the facial
landmarks [35].

The input image size plays an important role in the training
process since it can bring additional information and sam-
ples for the convolutional filters. Even though the system
accuracy depends linearly on the image size, the computa-
tional resources grow quadratically. In our case, we have
considered input images of size 224 × 224 pixels. Then,
we applied batch normalization (BN) that solves the gradient
exploding or vanishing problem and guaranties near optimal
learning regime for the convolutional layers following the
BN. Regarding the image batch size, this is always a tradeoff
between the computational resources and the system accu-
racy. Experiments show [39] that keeping a constant learning
rate for different min-batch sizes has a negative impact on the
system’s performance. Batch sizes superior to 512 or batches
with single examples can lead to a significant decrease in
performances. The learning rate is one of the most important
hyper-parameter that needs to be adjusted when training deep
neural networks, since it controls the weight variation in the
direction of the gradient for a mini-batch. In our case, we used
for training 50k iterations, at a learning rate of 0.0001 and a
batch size of 64.

Based on transfer learning, the initialization of the CNN
weights is performed using the pre-trained VGG face
model [33] that achieves state of the art results in face recog-
nition tasks. Based on the observation of [40] that copying
all but last layer of the CNN is generally the best practice for
fine tuning on new small datasets, in our workwe have trained
only the last layer of the CNN. So, in the training stage only
the weights of the final layer of the model are updated. After
training, the CNN weights remain fixed.

The weight adaptation module uses for the CNN training
the same parameters as the recognition module. Because,
the face features are relatively compact (4096-dimensional
vectors), the training process is quite efficient: training on
∼1M face instances in total it takes less than 20 minutes
on a GPU (Nvidia 1080Ti) mounted on a regular desktop
computer.

In order to satisfy the requirements of a novel VI per-
son using our system, the training dataset (i.e., containing
known people identities) can be extended/updated with addi-
tional categories, at the user’s request. In this case, the CNN
weights will be pre-initialized using the previously trained
model. However, the training process cannot be performed
by VI people or blinds and require an external effort from a
technician. Once the training performed, the system can be
used by the blind users without any other assistance.

C. QUANTITATIVE SYSTEM EVALUATION
The proposed face recognition system was tested on the set
of 30 video streams (cf. Section IV.A). Because the image
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TABLE 1. Experimental results of the DEEP-SEE FACE recognition module.

sequences were recorded either in crowded urban scenes or in
studio with audience, more than 5.000 unknown individual
were identified in the videos. In addition, the same person
may appear in various environments, while in the same loca-
tion various people may be present.

In the evaluation, the testing dataset is different from the
face instances used for training.

The evaluation of the proposed face recognition system
is performed using traditional objective parameters such as
Accuracy (A), Recognition rate (R) and F1 norm, defined as
described in equation (3):

A =
TP

TP+ FP
, R =

TP
TP+ FN

, F1 =
2 · A · R
A+ R

, (3)

where TP represent the number of true positive instances
(i.e., correctly recognized faces), FP is the number of false
positive (i.e., face instances incorrectly assigned to a cate-
gory) and FN are false negative elements (i.e., miss-classified
faces that belong to a known class).

Initially, we have applied the face detection and tracking
methods presented in Section III.A and B on the dataset
of 30 videos and we cropped from each frame the regions
representing faces. At this stage, we obtained 6214 faces
that were tracked during the video sequence for more
than one second. From the 6214 tracked faces, a number
of 1108 represent known identities existent in the recognition
training database. Each face instance is passed through the
weight adaptation module (cf. Section III.C.1) in order to
determine its relevance to the global face descriptor (associ-
ated to a tracked identity). Finally, the global feature vector is
injected in the final layer of the CNN used in the recognition
module, in order to determine the person’s identity.

We have evaluated the impact of themost important param-
eters involved over the system’s performance: the first N
hardest negative examples used to construct the ‘‘Outlier’’
class (cf. Section III.C) and the Th1 probability threshold used
for assigning a face to a specific class.

Figure 5 presents the Accuracy, Recognition and F1 scores
variations with respect to the various parameters involved.

Based on the results given in Figure 5 we have selected for
N a value of 10, while the Th1 parameter is fixed to 0.7.

FIGURE 5. The system performance variation with the different
parameters involved. (a) The first N hardest negative examples; (b) The
probability threshold (Th1) of assigning a face to a specific class.

In order to evaluate the influence of each components of
the proposed framework on the recognition performances,
we have considered for comparison:

(1) A per-frame approach that applies the face recognition
algorithm to each individual frame and then takes a decision
based on the dominant class;

(2) A video-based system that aggregates the face features
from different instances in order to obtain a single compact
representation using the baseline VGG CNN, i.e., extract the
L2 normalized features followed by an average pooling [41];

(3) A compact face representation method that for each
face tracked between successive frames uses a weight adap-
tation method as presented in Section III.C;

(4) A face recognitionmodule that contains both theweight
adaptation scheme and an ‘‘Outlier’’ class constructed with
randomly selected samples.

(5) The complete framework that includes the compact
face representation based on a weight adaptation scheme and
constructs the ‘‘Outlier’’ category using the proposed hard
negative mining methodology.

The experimental results obtained are presented in Table 1.
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FIGURE 6. DEEP-SEE FACE performance evaluation with various indoor/outdoor conditions.

From the results presented in Table 1 the following conclu-
sions can be highlighted: (1) the lowest performance, (with
a F1-score of 69.29%) is obtained by the frame-based face
recognition approach. This behavior can be explained by
the fact that the video stream may contain faces captured at
various conditions of lighting, resolution, and pose. Treating
each frame as an independent image makes it impossible to
differentiate between discriminative and poor face instances.
(2) The average-based aggregation of the face features rep-
resentation improves the recognition scores with more than
10% gain in F-score. However, it is obvious that high-quality
frames return higher recognition scores than low-quality
ones. The results obtained by the adaptive weighting scheme
clearly show that such an approach is more appropriate with
an F1-score of 85.25%. Finally, we can observe that when
unknown face identities are applied as input it is important
to develop an ‘‘Outlier’’ category that significantly reduces
the number of false alarms. In this case, the F1-score are sig-
nificantly increasing, with 89.72% for the random selection
strategy and 93% for the hard mining approach.

From the computational point of view, in order to ensure
real-time performances, the system performs an initial assign-
ment to a category as soon as more than 10 face frames are
included in the relevant class, and not when the face tracking
is completed.

Concerning the 30 videos acquired by VI users, they led to
a total number of 1108 known face instances (frames). In the
results presented in Table 1, we have considered for classi-
fication purposes only faces situated at a distance inferior to
5 meters relative to the video camera attached to the VI user.
In this context, we have constrained the face size applied as
input to the recognition module to have a resolution superior
to 64× 64 pixels.

The 1108 known faces instances were further analyzed in
order to evaluate the robustness of the approach with respect
to various disturbing factors. Thus, the tracked faces have
been divided into the following categories: frontal face tracks,
faces with important pose variation, face tracks affected by
illumination changes (e.g., artificial light, daylight, sunset),

partially occluded faces and faces affected by important
motion/camera blur. In Figure 6, we present the obtained
performances on each of the considered category.

As it can be observed, our framework returns an F1 score
superior to 85% regardless the lighting conditions, face
pose or various types of motion existent in the scene. The
lowest performances are obtained for blurred face instances,
while the highest scores are obtained for frontal faces.

From a practical point of view, the battery usage of the
proposed hardware architecture is one of the most important
parameters that need to be taken into account. First, the video
camera embedded on the smartphone is used as an acquisition
device that constantly records the surrounding scene and
transmits the video stream to the processing unit situated on
the VI user backpack. Second, the ultrabook computer pro-
cesses the acquired frames and applies the face recognition
method that is computationally expensive. Third, the contin-
uous connection between the smartphone and the processing
unit drains the system energy. Finally, the feedback provided
to the VI user through bone conduction headphones also
consumes energy.

After analyzing the lifetime of our application when inte-
grated in the DEEP-SEE framework we observed that the
system can function continuously for more than 2 hours
without the need of an additional recharging of any of the
components. However, a major drawback of using a backpack
computer as processing unit is the ultrabook heating when
performing all computations on the GPU boards.

In terms of computational speed, when implementing the
whole framework on a regular ultrabook computer having
Linux Ubuntu (version 16.04) as operating system, with
32 GB of RAM, i7-7700 CPU at 2.8 GHz and running
on an NvidiaGTX 1050 GPU (768 cores and 4GB frame
buffer), CUDA version 9.2the average processing speed is
around 4 - 5 fps.

D. SUBJECTIVE SYSTEM EVALUATION
The qualitative system evaluation was performed with the
help of a group of 5 actual visually impaired people with ages
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ranging between 25 and 65 years. The goal of the evaluation
was to determine if: (1) the users were able to start the
DEEP-SEE FACE framework by their own, (2) the users
are informed about the presence of a novel person within
the scene using the proposed acoustic signals and (3) the
global framework is useful to complement the white cane.
The tests have been performed in various indoor and outdoor
environments for which the VI people had no initial knowl-
edge about which familiar persons were present. After our
discussions with the participants, the following conclusions
can be highlighted:

(1). The VI users have found the system friendly and
wearable, satisfying the hands-free and ears-free conditions
imposed by the blind community on any assistive device.

(2). The VI people, familiar with handling smartphones,
manifested a strong interest in the architecture even in the
presence of some classification errors.

(3) Some partially sighted people expressed interest in
using our system in daily activities and consider the proposed
acoustic warnings intuitive.

(4) At the beginning of the testing phase, we have observed
the retention and mistrust to innovations, especially for older
people. However, after short training stage, all participants
declared that the framework is easy to learn and useful.

(5) The proposed system should be used to complement
the white cane with additional functionalities, because most
of the VI people do not feel confident enough to use the
DEEP-SEE framework as a standalone assistive device.

V. CONCLUSION AND PERSPECTIVES
In this paper we have introduced a face-recognition assistive
device so-called DEEP-SEE FACE, designed to improve
cognition of visually impaired people when interacting with
other persons in social encounters.

The proposed approach does not require any a priori
knowledge about the position of various people existent in
the scene and jointly exploits computer vision algorithms
and deep convolutional neural networks (CNNs) in order to
improve cognition of VI users. By using the VGG CNNs
architecture combined with region proposal framework the
system that receives as input the entire video frame is able
to correctly detect, track and recognize, in real-time various
persons situated at arbitrary locations.

The semantic interpretation of the recognized person iden-
tity is transmitted to the VI user as a set of acoustic warnings.

From the methodological point of view, the core of the
approach relies on a novel video-based face recognition
framework able to construct an effective global, fixed-size
face representation method, which is independent of the
length of the image sequence. A weight adaptation scheme
is proposed, able to adaptively assign a weight to each face
instance depending on the video content variation. Secondly,
a hard negative mining stage is proposed that helps us differ-
entiate between known and unknown face identities.

The experimental evaluation performed on a large dataset
of 30 videos acquired with the help of VI people validate

the proposed methodology, which is able to return a recog-
nition rate superior to 92% regardless on the lighting con-
ditions, face pose or various types of motion existent in the
scene.

For further work and developments, we envisage to further
extend the DEEP-SEE assistive device with additional func-
tionalities that involves: inform the user when a recognized
person exists the users field-of-view, navigation guidance,
crossing detection or shopping assistance within large super
markets.

Moreover, when looking at the emerging trends in the
smartphone industry, we can observe that various con-
structors begin to propose hardware prototypes dedicated
to CNN applications. Within this context, let us mention
the artificial intelligence chips recently launched by CEVA
(e.g., NP4000) or Samsung (e.g., Exynos 9 Series 9810) at
the Consumer Electronics Symposium (CES’2018). We hope
that such technologies will permit us, in the recent future,
to autonomously run the DEEP SEE FACE framework on
a smartphone device.
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