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ABSTRACT In the design process of advanced semiconductor devices, statistical leakage analysis has
emerged as a major step due to uncertainties in the leakage current caused by the process variations. In
this paper, a novel statistical leakage analysis which uses Gaussian mixture model (GMM) as the density
function of leakage current is proposed. To estimate the probability density function, our proposed method
clusters the rapidly converged leakage data using the GMM. The GMM can represent any distributions, so it
is suitable to estimate the leakage distribution, which varies as the technology node or operating condition
changes. In addition, our proposed method (SLA-GMM) defines a terminating condition that guarantees the
convergence of the leakage data and prevents the underfitting or overfitting in the GMM modeling process.
With sequential addition, SLA-GMM significantly reduced the error that can occur during the addition
process. In studies with a goodness-of-fit test, SLA-GMM achieved up to 98% and 94% improvements
in the Chi-square static and the K-S static compared with the previous method based on an analytic model.

INDEX TERMS Expectation-maximization algorithm, Gaussian mixture model, machine learning, statisti-

cal leakage analysis.

I. INTRODUCTION

Low power usage is mobile computing devices. To real-
ize various strategies to reduce power use, the power must
be accurately estimated during the design stage. Especially,
leakage power is increasingly dominant in many applica-
tions [1]-[4]. Meanwhile, the process variations increase as
device size is scaled down [5]-[7]. Process variations lead
to variations in leakage current It because it is directly
dependent on process parameters. For this reason, variation-
aware [, analysis, called statistical leakage analysis (SLA),
has become an important step in the process of designing low-
power devices. The previous SLA researches can be classified
into two main approaches; sampling-based methods and ana-
lytic model-based methods.

Sampling-based methods use extracted parameter sam-
ples to simulate I;.. To reduce the complexity of traditional
Monte-Carlo (MC) simulation, efficient leakage models have
been developed [8], [9] and the convergence time of sam-
pling has been reduced [10]-[12]. Sampling-based methods
store all leakage data or histograms to estimate the leakage
distribution.

Quasi-MC (QMC) simulation is the most effective
sampling-based method in circuit simulation [11], [12].
QMC empirically reduced the number of leakage simulations
required to achieve convergence, compared to traditional MC
simulation. However, the number of simulations is difficult to
predict, because calculation of the error bound of the QMC
samples is more complicated than in traditional MC simula-
tion [13]. Hence, leakage analysis using the QMC requires
additional experiments to determine the terminating condi-
tions. In addition, the histogram from the QMC simulation
cannot generate a precise leakage distribution. The bin size
of a histogram is generally a function of the number of data
and the degree of spread of the data [14]-[16], so reduction
in the number of leakage data of the QMC can result in wide
bins and reduce the simulation accuracy.

Analytic model-based methods use an analytic model to
represent I1.. This method does not require numerous simu-
lations, so it can generate feasible models quickly. The first-
order model [17] is the most representative of these methods.
The first-order model is based on the assumptions that the
log(11) has linear relationships with process parameters, and
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distribution of a chip from sub-block leakage distributions.
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that the leakage follows a lognormal distribution. In advanced
technology nodes, the generalized extreme value (GEV) dis-
tribution is used to improve the accuracy [18]. A proposed
fourth-order model [19] is based on the assumption that the
leakage distribution follows the GEV distribution.

The shape of leakage distribution varies as the technology
node advances, and as operating conditions such as supply
voltage change. Therefore, whenever the technology or oper-
ating condition changes, a new model must be developed to fit
the leakage distribution to a well-known continuous function.
For example, the accuracy of the first-order model [17] is
significantly reduced in technologies that are more recent
than BSIM4 models [20] due to their non-lognormality char-
acteristics [21]. Furthermore, the GEV also cannot adapt to
changes in the shape of the leakage distribution.

SLA cannot readily sum the leakage distributions of small
circuits. The summation allows the leakage analysis at a
smaller level than the full-chip level. Basically, the distribu-
tion of the sum of two arbitrary distributions can be obtained
using the convolution of the two distributions. However, it is
inefficient to perform a convolution every time the summation
is performed and the convolution data points are changed.
To avoid this, if the approximation to represent that the sum-
mation result using the same density function [18], [22], [23]
is applied, the errors occurred in the summation process
seriously degrade the accuracy.

Here, we propose a novel SLA method that accurately
estimates the chip leakage distribution by using a Gaussian
Mixture Model (GMM) (Fig. 1). To estimate the leakage
distribution of a circuit, our proposed method (SLA-GMM)
can represent any arbitrary function without fixing the shape
of the leakage distribution to a particular continuous function.
The terminating condition of SLA-GMM is defined using
the error bound of Gaussian function. Finally, the summa-
tion in SLA-GMM does not require a convolution process,
because the summation result can be represented as another
GMM by using only the parameters of GMMs without any
approximation.

The contributions of SLA-GMM are:

« It can represent any leakage distribution to maintain the
accuracy even when the technology node or the operat-
ing point changes.
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FIGURE 2. An example of simple Gaussian components and a Gaussian
mixture model (GMM).

o It uses a terminating condition of leakage simula-
tion by calculating the required number of leakage
data for the convergence. The terminating condi-
tion can prevent the underfitting or overfitting during
GMM clustering.

o It uses a new summation process, which is a necessary
operation in leakage analysis. The summation operation
in our method represents results in the same form with-
out any approximation, and therefore greatly reduces the
error.

Section II explains the background related to GMM.
Section III presents SLA-GMM in detail. Section IV
verifies the existence and uniqueness of SLA-GMM.
Section V presents experimental results to validate SLA-
GMM. Section VI concludes.

Il. PRELIMINARY
A. GAUSSIAN MIXTURE MODEL

A GMM is the weighted sum of N Gaussian components
(Fig. 2):

_G=np)?
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px) : o) (x| i, i) : 10) ,'\/2_6
(D

where w; is the mean, o; is the standard deviation, and w;
is the weight of the i™ Gaussian component. Because the
GMM consists of several Gaussian functions, it can represent
various classes of continuous functions with reasonable accu-
racy. Hence the GMM can be used to estimate the probability
density function (PDF) of the observed data. To utilize the
GMM to estimate the distribution, the data must be clus-
tered with several Gaussian components. The parameters of
GMM such as Ngym, Ui, 0i, and w; are determined dur-
ing the clustering process. The most frequently-used method
for GMM clustering is the expectation-maximization (EM)
algorithm.
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B. EXPECTATION-MAXIMIZATION ALGORITHM

EM algorithm iteratively finds the maximum likelihood esti-

mates of the parameters of statistical models. It performs an

E-step and an M-step iteratively. In the E-step, a function for

likelihood is created using current parameter estimates. In the

M-step, the parameters are updated by maximizing the likeli-

hood function generated in the E-step. If the EM algorithm is

used for clustering in GMM modeling, the following E- and

M-steps are performed iteratively.

1) E-step: For each data point and Gaussian component,
a membership weight «; ; is calculated. oy is the
probability that the i data point belongs to the k™
cluster Cr. When N is the number of data and K is the
number of clusters, the result of this step is an N x K
matrix of membership weights where the elements sum
to one in each row.
2) M-step: Using the data and the matrix of membership

weights, a new parameter set is determined as (2).

Ni

N

1 N
new __ [ oy
ppe = (N)z "
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w

where N, = Zf’: | @ik 1s the effective number of data that
are included in the k™ Gaussian component.

Ill. STATISTICAL LEAKAGE ESTIMATION USING
GAUSSIAN MIXTURE MODEL

SLA-GMM estimates the leakage distribution of sub-block
circuits and adds more than two leakage distributions sequen-
tially. SLA-GMM consists of two main parts (Fig. 3). The
first part is GMM modeling to estimate the leakage distri-
bution. This step generates the leakage data for the GMM
modeling, then after clustering, calculates the required num-
ber of leakage data. If the current number of data is less
than the required number to ensure convergence, then addi-
tional leakage data are generated. The second part is sequen-
tial addition, which is essential in the SLA and helps to
improve the scalability of SLA-GMM. SLA-GMM adds
multiple leakage distributions sequentially, using the GMM
parameters. This step can be useful to obtain the leak-
age distribution of a huge system that consists of many
sub-blocks.

A. ESTIMATION OF THE LEAKAGE DISTRIBUTION

USING GMM

In the SLA-GMM, we use three steps to estimate the leakage
distribution. (1) We utilize the rapidly-converged samples to
reduce the required number of simulation data. To achieve
this goal, we use a Sobol sequence [24] for parameter sam-
pling instead of pseudorandom numbers. (2) We use the
GMM as the leakage distribution model to compensate for
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FIGURE 3. Overall flow of our statistical leakage analysis.

the loss of accuracy caused by use of the reduced number
of simulation data. (6) We use a new method that calcu-
lates the number of simulation data required for conver-
gence, and dynamically supplement the additional data if
necessary. The calculated number of simulations can be used
as a terminating condition and is useful to prevent over-
fitting or underfitting when estimating the parameters of
the GMM.

The estimation steps of the leakage distribution con-
sist of three processes (Fig. 4). (1) Leakage data are
generated for the GMM modeling, and clustering is per-
formed. (2) The clustering is validated using a certain index.
(6) After optimal clustering is performed, the required num-
ber of data is calculated and compared with the current
number of data. If the current number of data is insufficient,
leakage data for modeling are added. Details follow.

1) GENERATION OF LEAKAGE DATA FOR GMM MODELING
To generate leakage data to be used for the GMM mod-
eling, parameter samples for the leakage simulation are
extracted from the parameter spaces. The process parameters
are assumed to follow Gaussian distributions. Therefore, after
uniformly-distributed samples are extracted, we use the Box-
Muller method to transform them to normally-distributed
samples.

The purpose of SLA-GMM is to reduce the number of MC
runs for efficiency. Therefore, the parameter samples should
be extracted with a high convergence rate. SLA-GMM uses
the Sobol quasi random sequence [24] rather than pseudoran-
dom numbers as the uniform samples. The Sobol sequence
converges faster than the pseudo random numbers because
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FIGURE 5. 256 samples transformed from (a) the pseudo random
numbers and (b) the Sobol sequence.

it is determined by considering the discrepancy, which is a
mathematical quantity that represents the non-uniformity of
the points. Transformation using the Sobol sequence is closer
to Gaussian than is transformation using pseudorandom num-
bers (Fig. 5).

Clustering is performed on leakage data obtained using
any leakage model and the parameter samples. Then the
quality of clustering is evaluated in two ways. (1) Cluster
validation is performed to evaluate the degree of density
and separation of data. (2) The required number of data is
calculated. If the required number of data is larger than the
current number of data, additional data are collected. Details
follow.
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2) CLSUTER VALIDATION

The clustering result is first validated using cluster cohesion,
which evaluates the tightness of the cluster of leakage data;
the measure is the sum of squares within cluster (SSW)

SSW = Z Z (x — m;)? 3)

i xeCj

where x is a datum in the i cluster C; and m; is the mean of
the data in C;.

Then the separation of clusters is calculated as the sum of
squares between clusters (SSB)

SSB =Y " |Cil(m — m;)* )

where |C;| is the number of data in C; and m is the mean of
all data.
To optimize the number « of clusters, we used the WB
index [25].
SSwW 5
SSB %)
The index is calculated sequentially. Usually, « is initialized
to two [26], then increased and WB-index is calculated each
time. After the maximum « (+/L/2 as a rule of thumb [27])
is reached, « that fields the smallest WB_index is selected as
the optimal «.

WB_index =« -

3) CALCULATION OF THE REQUIRED NUMBER OF DATA
To define the terminating condition and to prevent underfit-
ting or overfitting, the number of required data should be
calculated. The calculation for the convergence is simplified
when the data are extracted from Gaussian distributions.
SLA-GMM defines the required number of leakage data by
applying the error for data obtained from Gaussian distribu-
tion as follows.

The required number of data from a Gaussian distribution
with mean x and standard deviation S, can be determined

as [28]
2
N — |: IOOZfoi| ©)
Ex
where E is the allowed percentage error, z¢ is the confidence
level coefficient. If zc = 1.96 and E = 1, the meaning of (6)
is that using N data, we are 95% confident that the Gaussian
distribution fitted from the data does not differ by more than
1% from the real Gaussian distribution.

Each component of the GMM is a Gaussian distribution
and its clustered data, so each cluster must have more data
than N in (6). Therefore, after leakage data are obtained and
GMM modeling is completed with optimal «, we test whether
the numbers of data in all clusters satisfy (6). If this condition
is satisfied, the data of each cluster can be regarded with
z¢ confidence level to come from a Gaussian distribution
that is within E error. However, if one of the clusters does
not satisfy the condition, additional data for GMM modeling
are added. This step exploits the increase in accuracy of a
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FIGURE 6. Total leakage distribution by adding two leakage distributions represented in GMM.

Sobol sequence as samples are added while fully reusing the
existing sequences.

When cluster validation is finished and the required num-
ber of data is satisfied, the GMM represents the distribution
of the leakage data. The next step is the sequential addition of
two or more leakage distributions represented in the GMM:s.

B. SEQUENTIAL ADDITION OF THE LEAKAGE
DISTRIBUTION

The separately designed and analyzed data of sub-systems
can be summed to estimate the full-chip leakage distribution
(Fig. 6). Block-based design is common in modern designs,
so the SLA should be applied to the sub-blocks in parallel,
and the analysis results for the SLA should be applied to the
full chip.

For this reason, we propose to use summation of the leak-
age distributions of the sub-systems to estimate the full-chip
leakage distribution. Generally, the modeling errors before
the summation operation are accumulated as summation
errors. Therefore, the accuracy of estimating the leakage dis-
tribution degrades with each summation operation. This error
is exacerbated when approximations must be used to allow
sequential addition. The sum of two distributions represented
in the GMMs can be also expressed in the GMM without any
approximation, so SLA-GMM extremely reduces the rate of
error accumulation during the summation step.

Let X and Y be random variables of I, in two subsystems,
and Z = X +7Y be arandom variable of I of the total system.
The PDF f,(z) of Z can be generally obtained by convoluting
the PDFs fx(z) of X and fy(z) of Y as

f72(2) = fx (@) * fr(2)
= /fx(z -y -frdy @)

For a Gaussian distribution, f,(z) can be simply summa-
rized after (7) is solved. The complexity of this calculation is
greatly reduced using (8).

X:N ~ (u1.07), Y :N~(uz03)
— Z: N~ (@1 + pa, of +03) (®)
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SLA-GMM uses GMM as the leakage distribution, so

2
N ! _(X—/g)
X:p1 = w;j e
; Joj«/2n
Ny 1 7(%#5)
Yipp=) o e i ©)

We will use the characteristic function
(PX — E |: eil‘x:l
and the fact that the characteristic function of the sum of
two random variables is the product of their characteristic
functions. Using (10), the characteristic function of X is

oo

ox = E [eitx] — / pleitxdx

—00

(10)

0 )’
_ /Zw'#e 251.2
; Jaj«/er
()’

o0
Z / 1 20,.2
= (O e .
— ojv2r
J [

The characteristic function of a Gaussian component with
the mean p and variance o2 is exp(itn + o2i12/2), so (11)
can be simplified to

Nl 125.2
P — J
ox =y @i,
j
and the characteristic function of Y can be represented as
Ny 202
oy = E a)ke”’”‘_ 2.
k

The characteristic function of X 4 Y is equal to the product
of the characteristic functions of X and Y:

eltxdx

e”xdx

(11)

(12)

(13)

N1 N> ' 2 (5]'2"'"1(2)
oxrY =oxpv =) 3w axe )T (14)
ik
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FIGURE 7. Accuracy comparison of the proposed method with other benchmark methods when estimating the leakage distribution of (a) c17, (b) c1355,
and (c) c¢3540. Gaussian components and Gaussian mixture model which represents the leakage distribution of (d) c17, (e) c1355, and (f) c3540.

which implies that the PDF of Z is

2
N s _ G-(ytm))

1 w2402
Z:p3=ZZa)j-a)k e Aoftad)
ik /(ajz ~|—ok2)\/ 2

15)

Equation (15) means that the density function of Z is
represented using Gaussian pairs from the GMMs of X and Y.
Each Gaussian component of X forms a pair with a Gaussian
component of Y. Each pair of Gaussian components gener-
ates a new Gaussian component of Z. The mean and variance
of the newly- generated Gaussian component are respectively
the sum of mean and variance of the Gaussians the pair. The
weight of the new Gaussian component is the product of the
weights of the Gaussians of the pairs. The new Gaussians of
all pairs from X and Y form the GMM for Z. By exploiting
these characteristics, the addition can be simply implemented
in SLA-GMM without any approximation. This advantage
slows the accumulation of error during the summation
step.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL ENVIRONMENT

The proposed leakage analysis method was compared with
existing methods. As a benchmark method, we used the
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most recent sampling-based method [12] which is the most
effective smart sampling [11]. We also compared the state-
of-the-art analytic model-based method, which uses the
generalized extreme value distribution [18]. One hundred
thousand MC data were used as the basis for evalua-
tion of the accuracy of SLA-GMM and the benchmark
methods.

In the following experiments, ‘““‘16-nm predictive technol-
ogy model high-performance” was used as the transistor
model [29]. Variations in gate length, width, oxide thickness,
and threshold voltage were considered. The 3o values of the
process parameter distributions were set to 18% of their mean
values. For all benchmark methods, the BSIM4 model [20]
was used as the leakage model, and HSPICE [30] was used
as the leakage simulator. This is to exclude the impact on the
accuracy of the leakage model when comparing the accuracy
of each method. Ten ISCAS 85 circuits were used as the
benchmark circuits.

Gaussian mixture modeling using the EM algorithm was
implemented in Python language, and was based on open
sources related to the machine learning algorithms provided
by Tensorflow [31]. The other processes of SLA-GMM
and the benchmark methods were implemented in C++.
All implementations were done on Intel(R) Xeon(R) CPU
E5-2690 @ 2.90 GHz.
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TABLE 1. Goodness-of-fit test of the proposed method and the benchmark methods with MC simulation.

Circuit

Chi-square statistic y”

K-S statistic D

GEV QMC Proposed GEV QMC Proposed
cl7 7.69 x 10" 9.53x 10" 1.23 x 10" 0.198 0.00596 0.00464
c432 1.54x 10" 1.68x 10" 2.52x10° 0.188 0.0063 0.00434
c499 1.05x 10" 1.68x 10" 1.42x10° 0.161 0.00995 0.00671
c880 8.16x 10" 3.05x 10" 1.18x 10° 0.173 0.00689 0.00561
c1355 9.49 x 10" 2.40x 10" 7.10 x 10° 0.204 0.0092 0.0089
c1908 3.70x 10" 1.20x 10" 1.95x 10° 0.143 0.00679 0.0296
€2670 321x10" 6.54x 10" 1.02x10° 0.146 0.00813 0.0136
¢3540 220x 10" 1.98x 10" 8.94 x 10 0.145 0.01 0.00622
c5315 1.30x 10" 6.93 x 10° 8.15x 10 0.147 0.012 0.0102
c6288 3.60 x 10" 1.25x 10° 2.51x 10 0.189 0.0144 0.0106
¢7552 4.68x10° 2.01x 10" 6.27x 10 0.151 0.013 0.00991
’ﬁivzgé d“;’:gf' 1.00 1.22 0.0170 1.00 0.0556 0.0598

B. VALIDATION OF THE ESTIMATION OF THE LEAKAGE
DISTRIBUTION USING GMM

1) ACCURACY COMPARISON

We used goodness-of-fit statistics to quantify the accu-
racy of SLA-GMM, and verified the WB index by com-
paring the estimated « with the actual optimal number of
clusters.

Firstly, the PDFs of the golden MC simulation, Quasi-
MC (QMCOC), the GEV distribution, and SLA-GMM were
graphically compared (Fig. 7a-c). The required number of
QMC data is not defined, so the same number of data used
for SLA-GMM was used for the QMC simulation and for
fitting to the GEV distribution. The bin size of the QMC
histogram was very large as expected because the bin size
is proportional to the number of data. Therefore, even though
the QMC helps improve the convergence rate of the leakage
data, the QMC did not accurately estimate the PDF. Also,
the GEV distribution was far from the actual leakage dis-
tribution, even though the GEV distribution has been known
as the most accurate continuous function to approximate the

VOLUME 6, 2018

leakage distribution. This failure occurred because the actual
leakage distribution changes as the technology or supply
voltage varies. Therefore, a fixed continuous function is not
appropriate to estimate the leakage distribution.

The PDF of SLA-GMM consists of several Gaussian com-
ponents (Fig. 7d-f). Thus, SLA-GMM can represent any
functions, unlike a method that uses on class of continuous
function. Therefore, even if the technology or the operating
conditions such as supply voltage change, SLA-GMM can
estimate the leakage distribution adaptively.

The shape of leakage distribution changes as the supply
voltage changes (Fig. 8). However, the existing methods
based on analytic models assume that the leakage distribu-
tion follows a certain fixed distribution function, and there-
fore they cannot estimate leakage distribution whose shape
changes; in contrast SLA-GMM is resilient to changes of the
shape of leakage distribution because the GMM can represent
any continuous function. Under high or low supply volt-
age, SLA-GMM estimated the leakage distribution accurately
(Fig. 8).
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FIGURE 9. Chi-square statistic ((a)-(c)) and K-S statistic ((d)-(f)) with WB index in terms of the number of clusters in order to validate WB index for
determining the optimal number of clusters using (a) c499, (b) 2670, (c) c5315, (d) c1355, (e) ¢3540, and (f) c7552 circuits.

TABLE 2. Chi-square statistic and K-S statistic when the optimal number of clusters determined by WB index is used are compared with those when the
real optimal number of clusters is used.

Chi-square statistic

K-S statistic

R G e L R vl Sy ol
cl7 9 0.0456 5 0.0412 0.441 9 0.0312 32 0.0295 0.164
c432 9 0.0352 6 0.0329 0.235 9 0.0826 23 0.079 0.356
c499 7 0.0257 7 0.0257 0.000 7 0.0667 18 0.0637 0.301
c880 12 0.0317 16 0.0308 0.089 12 0.103 8 0.103 0.049
cl355 10 0.0498 5 0.0474 0.236 10 0.268 3 0.262 0.571
c1908 9 0.0344 5 0.033 0.136 9 0.251 18 0.248 0.223
c2670 9 0.0266 23 0.0259 0.072 9 0.141 5 0.138 0.299
c3540 9 0.0343 0.0321 0.219 9 0.0823 10 0.0799 0.246
c5315 7 0.0346 0.0329 0.163 7 0.0832 9 0.0811 0.207
c6288 8 0.0775 26 0.0605 1.70 8 0.357 0.282 7.45
c7552 9 0.0494 29 0.0449 0.448 9 0.0998 0.0938 0.596

The Chi-square statistic x> and the Kolmogorov-Smirnov
(K-S) statistic D were used to quantify the similarity between
two distributions by comparing the PDF and cumulative
density function (CDF), respectively [10] (Table I). Small
values of x2 and K-S D indicate accurately-estimated distri-
butions. Average x> of SLA-GMM was 1.28 x 10'°, which
is 98.3% and 98.6% smaller than those of GEV and QMC,
respectively. Similarly, the average K-S D of SLA-GMM
was 0.01, which is 94.0% smaller than that of GEV, and

51946

comparable to that of QMC. These results showed that SLA-
GMM is the most accurate of these methods to estimate the
PDF and the CDF. K-S D of our method is expected to be
much smaller than that of the QMC after the summation
operation, because x > has a large influence on the accuracy of
the summation step. This effect will be described in the next
section.

We chose the WB index as the cluster validation index.
In our experiments, the trend of the WB index followed

VOLUME 6, 2018



H. Kwon et al.: Statistical Leakage Analysis Using GMM

IEEE Access

TABLE 3. Total runtime for benchmark methods and the proposed method.

GMM modeling

Collecting data

Circuit (A) [s] Clustering  Cluster validation  Calculation of required # of data ~ Total (B) ~ Overhead (B/A) MC [s]
[s] [s] [s] [s] [%]
cl7 698 454 1.44 0.00742 457 65.5 20,016
c432 3,888 2,866 17.2 0.0374 2,884 74.2 65,160
c499 3,816 490 1.67 0.0125 490 12.8 108,720
c880 5,436 1,130 4.64 0.0164 1,134 20.9 99,000
c1355 6,264 731 2.72 0.0156 734 11.7 138,960
c1908 5,364 446 1.47 0.00842 450 8.39 153,720
c2670 7,092 450 1.44 0.00760 450 6.35 202,320
c3540 7,056 243 0.623 0.00475 244 3.46 281,520
c5315 11,052 239 0.634 0.00619 240 2.17 442,800
c6288 35,388 1,696 8.35 0.0544 1,703 4.81 504,000
c7552 14,220 239 0.626 0.00742 240 1.69 568,300
TABLE 4. Results of K-S statistic and runtime profiling of the sequential addition.

# of QME Proposed Overhead
Circuit sub- K-S Estimation ~ Summation  Total (A) K-S Estimation ~ Summation  Total (B) (B-A)/A

blocks  gatistic [s] [s] [s] statistic [s] [s] [s] [%]

0 0.012 11,052 - 11,052 0.010 11,292 - 11,292 2.17

C5315 2 0.834 7,500 0.0458 7,500 0.179 7,740 0.0005 7,740 3.20

4 0.876 5,040 0.148 5,040 0.346 5,346 1.08 5,347 6.09

8 0.901 2,160 0.306 2,160 0.496 2,178 9.10 2,187 1.24

0 0.014 35,388 - 35,388 0.011 37,091 - 37,091 4.81

C6288 2 0.688 8598 0.0603 8,598 0.129 8664 0.0004 8,664 0.77

4 0.813 5523 0.171 5,523 0.300 5657 0.0003 5,657 242

8 0.992 2758 1.069 2,759 0.457 2817 9.36 2,826 242

0 0.013 14,220 - 14,220 0.009 14,460 - 14,460 1.69

755 2 0.839 11,820 0.0404 11,820 0.183 12,060 0.0002 12,060 2.03

4 0.893 6,660 0.105 6,660 0.357 6,900 1.08 6,901 3.62

8 0.899 2,640 0.196 2,640 0.500 2,664 9.03 2,673 1.24

the trend of goodness-of-fit test results (Fig. 9). Small WB
index, x2, and K-S D mean good estimation, so we can
determine the number of clusters that reduce the goodness-
of-fit statistics by using the smallest WB index value; i.e.,
we first use the WB index to select the number of clusters
(filled circle, Fig. 9). This process yields clustering results
that have goodness-of-fit that are not far from the real solution
(filled diamond, Fig. 9)

We tabulated (Table 2) the numerical evaluation results
of Fig. 9 for all benchmark circuits The optimal number of
clusters determined by the WB index increased the statistics
by < 8%. Therefore, the WB index is effective to determine
the optimal number of clusters when goodness-of-fit results
are unknown.

2) RUNTIME
Runtime of SLA-GMM consists of data-collection time and
GMM-modeling time. The number of QMC data was set
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as the same as that determined by SLA-GMM, so data-
collecting time required by the QMC was equal. The GMM
modeling time was divided into clustering, cluster validation,
and time required to calculate the required number of data.
Data clustering was performed repeatedly until optimal num-
bers of clusters and data were determined. Generally, the one-
time clustering time was several seconds, and increased as the
number of clusters and data increased.

Data-collecting time was greater than the GMM-modeling
time (Table 3). The accurate results of SLA-GMM were
achieved at the expense of 19.27 % average runtime overhead
compared to the data-collecting time. This overhead of the
GMM modeling decreased as the circuit size was increased,
because the data-collecting time increases linearly as the
circuit size increases, whereas the modeling time does not
increase. Considering the increased accuracy of SLA-GMM
(Table I), this overhead is less than the cost of collecting
additional data.
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FIGURE 10. GMMs representing the leakage distribution of the
sub-blocks and the result of the sequential addition module when using
(a) ¢5315 and (b) c7552.

3) VALIDATION OF SEQUENTIAL ADDITION

SLA-GMM is effective to analyze the leakage distribution
of a system that consists of several sub-blocks. To show the
effectiveness of the sequential addition, we used a partition-
ing algorithm to break ISCAS 85 circuits into several virtual
blocks.

We used the MLPart for the multi-level min-cut partition-
ing [32]. We used the Fiduccia-Mattheyses algorithm to per-
form the top-level partitioning, and the heavy-edge matching
method for coarsening. We use V-cycling, which is composed
of the repeated clustering-partitioning-refinement procedure,
to use a solution that had been generated by a previous
execution. We used a clustering ratio of 1.3, which has been
shown empirically to be optimal [33].

We used the three largest ISCAS 85 circuits in this exper-
iment. We first used the idea in Section III-A to estimate
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FIGURE 11. Cumulative density functions of the estimated leakage
distributions of ¢7552 when the number of sub-blocks is (a) two and
(b) four.

o
o

the leakage distributions of sub-blocks. Then we sequen-
tially added the leakage distributions of the sub-blocks only
using the parameters of the GMMs (Section III-B) to obtain
Gaussian components of the GMMs of two sub-blocks and
the resulting final leakage distribution of the total sys-
tem (Fig. 10). The summation of the separately-modeled
GMM distributions accurately estimated the full-chip leak-
age distribution. The CDF of SLA-GMM was much closer
to the MC simulation result than was CDF of the QMC
(Fig. 11).

The summation of the distributions is performed by the
convolution of PDFs, so the error of estimating the PDF of
a sub-block directly affects the summation of the PDF. For
this reason, the QMC, which showed higher X2 than SLA-
GMM (Table 1) showed abrupt increase in D (> 0.6) after
just one summation, compared to D of SLA-DMM (Table 4).
In addition, as the number of summation operations increases,
the error of the estimate of the PDF increases so the accuracy
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of the summation generally degrades. Due to the low error
of SLA-GMM in each summation step, SLA-GMM slowed
the rate of degradation of the accuracy compared to QMC,
when leakage distributions of two or more sub-blocks were
summed (Table 4).

We compared the runtime of the QMC and SLA-GMM
including the sequential addition module (Table IV). We used
the most common fast convolution algorithm which uses the
fast Fourier transform. Also, we parallized the process to
use the same number of cores as the number of sub-blocks.
Although the runtime for the summation of the QMC was
less than that of SLA-GMM, the summation of the QMC
must be performed every time the data points of interest
change. However, the summation results are represented in
an analytic function of GMM in SLA-GMM, so it does
not require additional operations even when the data points
change. In addition, the results showed that SLA-GMM esti-
mated the summation results with lower K-S D than QMC,
which imposing only 2.64 % overhead on average, compared
to QMC (Table IV). These results show that SLA-GMM has
the high scalability and therefore can be used in SLA on a
large circuit that consists of sub-blocks.

V. CONCLUSION

We proposed a method to use the Gaussian mixture model
(GMM) in statistical leakage analysis (SLA). SLA-GMM
consists of various shapes of leakage distribution modeling
and sequential addition. The GMM can represent arbitrary
functions and can be added sequentially with no assumptions,
so it was considered to be a suitable model of leakage distri-
bution. We also proposed a method based on the error bound
of Gaussian distribution to calculate the required number of
data. In experiments, SLA-GMM reduced x2 by 98% and
K-S D by 94% compared to the GEV distribution. The
advantage of accuracy was achieved with 19.27% runtime
overhead on average, compared to generating leakage data.
Experiments on the sequential addition module showed the
scalability of SLA-GMM. SLA-GMM reduced the accuracy
loss more than the QMC did. Using the incremental and
parallel characteristics, SLA-GMM can for SLA analysis of
large circuits that consist of sub-blocks.
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