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ABSTRACT Real-time process monitoring is crucial to improve the productivity, process safety, and product
quality. In this paper, a novel fault detection and diagnosis technique based on a principal polynomial
analysis (PPA) is proposed. PPA is a nonlinear modeling technique, which describes the data using a set of
flexible principal polynomial components. Compared with the PCA-based methods, PPA is more effective
in capturing the intrinsic nonlinear geometry structure of the process data. Moreover, compared with other
nonlinearmethods, such as kernel-based and neural-networks-basedmethods, PPA has the appealing features
of straightforward out-of-sample extension, volume-preservation, and invertibility. In addition, two new
types of fault detection and diagnosis statistics are derived. The effectiveness of the proposed PPA-based
monitoring method was verified through its applications to a nonlinear numerical example and an industrial
benchmark process. The application results have demonstrated that the proposed method has superior fault
detection and diagnosis performance than the conventional PCA-based and kernel PCA-based methods.

INDEX TERMS Fault detection and diagnosis, nonlinear processes, process monitoring, principal
polynomial analysis.

I. INTRODUCTION
In modern industry, it is essential to monitor the production
process in real time so as to increase overall equipment
effectiveness and improve the process safety and product
quality. Data-driven process monitoring and control tech-
niques have been widely applied to various industrial pro-
cesses including chemicals [1]–[4], pharmaceuticals [5], [6],
ironmaking [7], [8], and semiconductor manufacturing [9].
Principal component analysis (PCA) is one of the most
widely used multivariate statistical techniques [10]. Since its
good features of simplicity, invertibility, energy compaction,
and intuitive interpretation, PCA-based process monitoring
approaches have been successfully used in many indus-
trial processes [11]–[13]. However, PCA-based approaches
assume that the process is linear, which restricts their appli-
cations to nonlinear industrial processes.

To monitor nonlinear processes, several nonlinear model-
ing methods such as nonlinear PCA (NLPCA) [14], [15] and
kernel PCA (KPCA) [16], [17] have been used. NLPCA is a
nonlinear generalization of PCA by using an auto-associative
neural network to map the data into feature space. Since the
nonlinear features are not explicit in the formulation, NLPCA
is difficult to compute the contributions of the original

process variables to the fault when performing fault diag-
nosis [17]. Moreover, the selection of network structure and
model parameters directly affect the regularization ability of
the network. KPCA is another popular nonlinear extension of
PCA by using nonlinear kernel function. KPCA projects the
original data onto a kernel feature space, where a linear PCA
model is performed. The basic theory behindKPCA is that the
nonlinear relationship among variables in the original space
is most likely to be linear after kernel mapping. However,
the possibility that the intrinsic nonlinear geometry structure
of data may reside on a manifold is not explicitly considered
by KPCA [18]. Moreover, KPCA cannot guarantee that the
learned data representations are accurate in the minimum
information loss term in the original input space [19]. Fur-
thermore, KPCA is also not straightforward to invert the
Hilbert feature representation to the original input space.
Recently, some nonlinear manifold learning methods have
been proposed, such as local linear embedding (LLE) [20],
Isomap [21], diffusion maps (DM) [22], and Laplacian eigen-
maps [23]. The basic idea of these methods is to find the
lower-dimensional embedding representation of data lying
on a nonlinear manifold. However, these techniques do not
have a straightforward out-of-sample extension, which is
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important for online fault detection and diagnosis. In addition,
these methods also need to specify the number of reduced
dimensionality prior to modeling.

In this study, a novel fault detection and diagnosis tech-
nique based on principal polynomial analysis (PPA) is devel-
oped. PPA is a nonlinear modeling technique which describes
data efficiently by using a set of flexible principal poly-
nomial components. Two new types of fault detection and
diagnosis statistics are derived in the PPA setting. Com-
pared to the PCA-based methods, PPA is more effective in
capturing the intrinsic nonlinear geometry structure of pro-
cess data. Moreover, unlike other nonlinear approaches such
as NLPCA, KPCA, Laplacian Eigenmaps, and LLE, PPA
has the appealing features of straightforward out-of-sample
extension, volume-preservation, and invertibility. In addition,
PPA implements a simple and efficient sequential learning
algorithm to extract the nonlinear features. Thus, it does not
require to specify the number of reduced dimensions prior
to modeling as compared to the nonlinear manifold learning
methods. The effectiveness and advantages of the proposed
PPA-based monitoring method were verified through its
applications to a nonlinear numerical example and a bench-
mark of Tennessee Eastman process. The application results
have shown that the proposed method has better performance
than the standard PCA-based and KPCA-based methods in
feature extraction, fault detection, and fault diagnosis.

The remainder of this paper is structured as follows.
Section 2 provides a brief introduction of principal com-
ponent analysis. In Section 3, a novel fault detection and
diagnosis technique based on principal polynomial analysis is
given. In Section 4, the superiority of the proposed PPA-based
monitoring technique is illustrated through its application to a
nonlinear numerical example and a benchmark of Tennessee
Eastman process, and its application results are compared
with the standard PCA-based and KPCA-based monitoring
methods. Section 5 gives the conclusions of this paper.

II. PRINCIPAL COMPONENT ANALYSIS
PCA is an effective tool for dimensionality reduction or fea-
ture extraction. PCA aims at finding an orthogonal linear pro-
jection that projects the original data onto a low-dimensional
space, known as principal component (PC) subspace, such
that the variance of the projected data is maximized and the
reconstruction error is minimal [10], [24]. Consider a data
matrix X ∈ <N×d with N observations and d variables. PCA
decomposes X into score matrix T ∈ <N×`, loading matrix
P ∈ <d×`, and residual matrix E ∈ <N×d , as follows:

X =
∑̀
i=1

tipTi + E = TPT
+ E = X̂+ E (1)

where ` is the number of retained PCs in the PCAmodel. The
score vectors ti ∈ <N are orthogonal and the loading vectors
pi ∈ <d are orthonormal. X̂ ∈ <N×d is an estimation of
the original data (also known as the reconstructed observa-
tion data). Computationally, PCA can be calculated by using

singular value decomposition of the data matrix or eigenvalue
decomposition of the covariance matrix. If only the first few
PCs are required, the sequential NIPALS algorithm can be
used [24].

To perform process monitoring, Hotelling’s T 2 and Q (or
SPE) statistics are commonly utilized to monitor the PC sub-
space and the residual subspace, respectively. Let xnew ∈ <d

be the new observation vector. The T 2 statistic is given by

T 2
= xTnewP3

−1PTxnew (2)

where 3 ∈ <`×` is the diagonal matrix, and its diagonal
elements are the variances of the retained PC scores in the
PCA model. The Q statistic is defined as follows:

Q = ‖xnew − x̂new‖2 = ‖(I− PPT) xnew‖2 (3)

where x̂new denotes the reconstructed measurement vector
and I ∈ <d×d denotes an identity matrix. The thresh-
olds for the Hotelling’s T 2 and Q statistics can be eas-
ily determined by using the F-distribution [11], [25] and
χ2-distribution [25], [26] functions, respectively.

III. PRINCIPAL POLYNOMIAL ANALYSIS BASED FAULT
DETECTION AND DIAGNOSIS TECHNIQUE
In this section, principal polynomial analysis, which is an
effective nonlinear feature extraction technique, is first intro-
duced. Then, fault detection and diagnosis technique based
on principal polynomial analysis is proposed.

A. PRINCIPAL POLYNOMIAL ANALYSIS
In general, PCA works well when the process is linear. How-
ever, for the process with nonlinear nature, PCA performs
poorly or inefficiently due to its assumption that the process
is linear. This is primarily because the optimal linear decom-
position of PCA in (1) can be acquired if and only if the
conditional mean in each PC is constant along the considered
dimension [19]. This assumption is also known as condi-
tional mean independence restriction, as shown in Fig. 1.
In Fig. 1(a), PCA presents a good solution because of the
data meet the required symmetry; the conditional mean (red
circles) in PC2 (zero for centered data) is independent of
PC1. Inversely, PCA presents a poor solution in Fig. 1(b)
where the process variables show nonlinear nature because
the conditional mean in PC2 is not constant along PC1.
So when PCA maps the data onto PC1 along its orthogo-
nal direction, a large reconstruction error will be produced.
To handle this problem, principal polynomial analysis (PPA)
was proposed [19]. PPA learns a low-dimensional represen-
tation from process data using a set of principal polynomial
components (PPCs). By replacing straight PCs in PCA with
curved PPCs, the nonlinear characteristic of process variables
is captured by the PPA model.

Mathematically, PPA implements a sequential algorithm to
calculate the principal polynomial components. In each step,
a leading vector that best projects the data is calculated. More
specifically, given a random vector x ∈ <d , on the p-th step
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FIGURE 1. The conditional mean independence restriction.

of the sequential algorithm, PPA takes the following form:

αp = eTp xp−1 (4)

xp = ET
p xp−1 − m̂p (5)

where αp denotes the projection of xp−1 onto the leading
vector ep at step p; xp−1 is the residual derived from the
previous step. When p = 1, x0 = x is just the original input
data. m̂p represents the estimated conditional mean and xp is
the residual that will be utilized for the next step. The leading
vector ep ∈ <(d−p+1) can be found through maximizing the
variance of the projected data:

ep = arg max
‖e‖=1

{
E
[
(eTxp−1)2

]}
. (6)

ET
p ∈ <

(d−p)×(d−p+1) is the matrix whose rows consist of
d − p orthonormal vectors, and the subspace spanned by ET

p
is orthogonal to ep. Mathematically, Ep and ep meet

ET
p ep = ∅ (7)

ET
pEp = I(d−p)×(d−p) (8)

where I is an identity matrix. Note that the information loss
at the p-th step is xp. Based on the minimum information loss
criterion, PPA can also be written in the mean square error
(MSE) term as

ep = arg min
‖e‖=1

E
[
‖ET

p xp−1 − m̂p‖
2]. (9)

Since the orthonormality of the projection vector ep and Ep,
minimizing the MSE term of (9) equals to maximizing the
variance term of (6).

Theoretically, the conditional mean can be estimated by
utilizing any regression approach m̂p = g(αp). PPA employs
a polynomial function because of its enough flexibility in
giving solutions through the use of the appropriate degree rp.
The estimation equation can be defined as

m̂p =Wpvp (10)

where Wp ∈ <
(d−p)×(rp+1) represents the polynomial coeffi-

cients and vp = [1, αp, α2p, · · · , α
rp
p ]T represents the Vander-

monde vector of eTp xp−1. Wp can be calculated by solving a
least squares problem. Consider N input samples, which are
formed in the matrix X0 ∈ <d×N . Then, equations (4) and (5)
can be written as the following matrix form

αp = eTpXp−1 (11)

Xp = ET
pXp−1 − M̂p (12)

where M̂p = WpVp is the estimated conditional means
formed in column-wise and Vp = [vp,1, vp,2, · · · , vp,N ] ∈
<
(rp+1)×N denotes the Vandermonde matrix. The least

squares solution for Wp is given by

Wp = (ET
pXp−1)V†

p (13)

where † denotes the pseudoinverse operation.
To sum up, the cost function for leading vector ep in the

PPA model can be expressed as

ep = arg min
‖e‖=1

E
[
‖ET

p xp−1 −Wpvp‖2
]

s.t. ET
pEp = I

ET
p ep = ∅

Wp = (ET
pXp−1)V†

p (14)

There are two ways to solve (14). One is the PCA-based solu-
tion method, which uses the first eigenvector of the sample
covariance as leading vector ep and uses the remaining eigen-
vectors as ET

p . In such case, PPA could provide a smaller or at
least the same truncation error as compared to PCA if the
parameter rp is tuned appropriately. This is because when
rp = 1,∀p, PPA reduces to PCA. The other is the gradi-
ent descent optimation method, which solves a non-convex
problem. Although the gradient descent optimation method
may provide a better solution than the PCA-based solution
method, its computational burden is greatly increased. In this
work, the PCA-based solution method was chosen due to its
simplicity.
PPA has the following advantages: (1) Compared to PCA,

PPA is more powerful in identifying and capturing the
nonlinear features of process data; (2) Compared to other
nonlinear methods such as kernel-based and neural networks-
based methods, PPA has the appealing features of straight-
forward out-of-sample extension, volume-preservation, and
invertibility. (3) PPA does not require to specify the num-
ber of reduced dimensions prior to modeling as compared
to the nonlinear manifold learning methods such as Lapla-
cian Eigenmaps and DM. As a powerful feature extraction
approach, PPA has been successfully used for remote sensing
data processing [27], but it has not been investigated for pro-
cess monitoring and fault diagnosis of industrial processes.

B. PRINCIPAL POLYNOMIAL ANALYSIS FOR FAULT
DETECTION AND DIAGNOSIS
In this section, a novel principal polynomial analysis based
fault detection and diagnosis method that inherits all the mer-
its of the PPA feature extraction algorithm is proposed. The
proposed PPA-based fault detection and diagnosis strategy is
as follows.
For online process monitoring, two new monitoring statis-

tics T 2
PPA and QPPA are derived in the PPA setting to measure

the variability in the PPC subspace and residual subspace,
respectively. When a new observation xnew ∈ <d becomes
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available, it can be projected onto the corresponding PPC
subspace and residual subspace using the learned model
parameters in the training phase. More specifically, following
the sequential decomposition steps of PPA in (4) and (5),
the p-th PPC score αnewp is given by

αnewp = eTp x
new
p−1 (15)

xnewp = ET
p x

new
p−1 − m̂p = ET

p x
new
p−1 −Wpvp (16)

where ep, vp, Ep, and Wp denote a group of learned model
parameters of the PPA model from the normal training data.
Suppose that the number of retained significant PPCs in
the PPA representation is `. In most applications, they only
require the first few ` significant PPCs. Hence, it is simple
and efficient to calculate the PPCs using the sequential algo-
rithm. Let αnew = [αnew1 , αnew2 , · · · , αnew` ]T ∈ <` denote the
score vector which corresponds to the first ` significant PPCs.
The T 2

PPA statistic is defined as follows:

T 2
PPA = αT

new3
−1
PPAαnew (17)

where 3PPA ∈ <
`×` denotes the diagonal matrix, and its

diagonal elements are the variances of the retained PPC
scores. The QPPA statistic is defined as follows:

QPPA = ‖xnew − x̂new‖2 (18)

where x̂new denotes the reconstructed observation vector
given the first ` PPCs. x̂new is acquired via recursively con-
ducting the following transformation:

x̂newp−1 =
(
ek Ep

) ( αnewp
x̂newp +Wpvp

)
(19)

where p = ` : −1 : 1, x̂new` = 0(d−`)×1, and x̂new = x̂new0 .
The threshold for the T 2

PPA statistic can be calculated as
follows [11]:

CLT 2
PPA
=

(N − 1)`
(N − `)

Fα(`,N − `) (20)

where Fα(`,N −`) denotes an F distribution with the degree
of freedoms ` and N − ` at significance level α.
The threshold for the QPPA statistic can be calculated as

follows [26]:

CLQPPA = gχ2
h,α; g =

v̄
2µ̄
, h =

2µ̄2

v̄
(21)

where χ2
h,α denotes a chi-square distribution with the degree

of freedom h at significance level α; µ̄ and v̄ denote the
estimated mean and variance of QPPA from the normal oper-
ating condition data. The process is identified as abnormal if
either T 2

PPA or QPPA statistic goes beyond its corresponding
threshold.

Once an abnormal event is detected, it is critical to identify
the possible causes of this abnormal event in order to execute
corrective actions. Contribution plots method is a well-known
diagnostic tool for providing valuable information to deter-
mine which process variables responsible for the fault [26].

FIGURE 2. Flowchart of the proposed PPA-based monitoring system.

Due to its transparency, simplicity, and interpretability, con-
tribution plots method has been widely used in various indus-
trial processes [28], [29]. In this work, two new types of

the PPA-based contribution plots called CQPPAi and C
T 2
PPA
i are

proposed to measure the contribution of each process variable
to the fault as follows.

When the QPPA statistic of a new observation is above the
confidence limits, the contribution of the i-th process variable
on the QPPA statistic is calculated as follows:

CQPPAi = x̃2new, i =
(
xnew, i − x̂new, i

)2 (22)

where x̃new, i is the residual of the new observation of the i-th
process variable. A large value of CQPPAi indicates that the i-th
process variable has a significant contribution to the current
fault.

Similarly, the contribution of the i-th variable on the T 2
PPA

statistic can be calculated as follows:

C
T 2
PPA
i =

∑̀
p=1

(
eTp x

new
p−1

(
3

(p,p)
PPA

)− 1
2
)2

(23)

where xnew0 = 4i xnew and 4i is a d-by-d square matrix in
which the (i, i)-th element is one and all the other elements
are zero. 3(p,p)

PPA denotes the p-th diagonal element of 3PPA.

The larger of C
T 2
PPA
i , the higher of the contribution of the i-th

process variable to the current fault.
The detailed steps to perform the proposed PPA-based

fault detection and diagnosis method are summarized in the
following two parts. The flowchart of the proposed PPA-
based monitoring technique is given in Fig. 2.

Offline modeling:
1) Acquire the process data X under normal operating

condition, and then scale it to zero mean and unit
variance.
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2) Construct the PPA model on the data matrix to get the
PPC subspace and residual subspace.

3) Compute the monitoring statisticsQPPA and T 2
PPA in the

residual subspace and PPC subspace, respectively.
4) Compute the corresponding thresholds CLQPPA and

CLT 2
PPA

for the QPPA and T 2
PPA statistics.

5) Store the learned model parameters ep, vp, Ep, andWp.

Online monitoring:

1) Obtain a new observation xnew, and then scale it using
the mean and variance of the modeling data.

2) Map xnew into the residual subspace and PPC subspace
using the learned model parameters, and then compute
the monitoring statistics QPPA and T 2

PPA.
3) Compare QPPA and T 2

PPA with the corresponding
thresholds CLQPPA and CLT 2

PPA
, respectively. If either

QPPA or T 2
PPA exceeds the corresponding threshold,

the process is considered as faulty and the fault diag-
nosis step is performed to identify the root cause.

IV. CASE STUDIES
In this section, the efficiency and advantages of the pro-
posed PPA-based fault detection and diagnosis method were
illustrated through its application to a nonlinear numerical
example and a benchmark of Tennessee Eastman process.
The application results were compared with those of the
standard PCA-based and KPCA-based monitoring methods.
The calculations were conducted in the software environment
of Windows XP and MATLAB R2018a.

A. NONLINEAR NUMERICAL EXAMPLE
A nonlinear simulation example is given to illustrate the
effectiveness of the proposed PPA-based method in feature
extraction, fault detection, and fault diagnosis. The nonlinear
system is described by the following equations:

x1 = u2 + 0.7 sin(2πu)+ ε1
x2 = u+ ε2
x3 = u3 + u+ 1+ ε3 (24)

where u is a random number uniformly distributed in the
interval [−1, 1] and εi is the zero-mean white noise with a
standard deviation of 0.01.

First, the feature extraction capacity of PPA for nonlinear
process data was investigated. To construct the PCA and PPA
models, 300 samples were generated. Fig. 3 displays the fea-
ture extraction results using PCA and PPA, where the green
dots denote the original data and the red asterisks denote
the one-factor representations (or reconstructions). KPCA
was not presented since the intractable kernel transformation
makes it practically not possible to implement direct reverse
projection. The polynomial degree was set to 15 in the PPA
model. As shown in Fig. 3(a), PCA failed to identify the
underlying structure of the data and gave a straight line fit
of the data, which is obviously inappropriate for the data.
By contrast, PPA succeeded in identifying the underlying

FIGURE 3. Feature extraction results using (a) PCA and (b) PPA.

FIGURE 4. Fault detection rates of PCA-based and PPA-based methods
with respect to the number of retained features.

nonlinear structure of the data and gave amore accurate curvi-
linear fit of the data, as shown in Fig. 3(b). Consequently, PPA
is more efficient in describing the nonlinear data than PCA.

To show the fault detection performance of the proposed
PPA-based method, a ramp fault was induced by adding
0.01(n − 100) to x1 from sample 101 to sample 300, where
n is the sample number. Fig. 4 shows the fault detection
rates (FDR) of PCA-based and PPA-based methods with
different numbers of features retained in each model. Here,
the number of retained features represents the number of
retained principal components (PCs) and principal poly-
nomial components (PPCs) in PCA-based and PPA-based
monitoring models, respectively. The higher of FDR, the
better performance of the corresponding monitoring statistic
provides. The confidence limit was specified as 99% for
each method. From Fig. 4, it can be clearly seen that the
proposed PPA-based method provided a higher FDR than
the PCA-based method with respect to the same number of
retained features. More interestingly, using one feature is
enough in the proposed PPA-based method (PPA-Q statis-
tic) to outperform the monitoring results of the PCA-based
method using any number of features. Fig. 5 shows the
detailed monitoring results of PCA-Q and PPA-Q using one
feature. From Fig. 5(a), it can be clearly observed that the
PCA-Q statistic cannot detect the fault efficiently since the
majority of fault samples are below the threshold. In compar-
ison, the monitoring results of the proposed PPA-Q statistic
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TABLE 1. Fault detection rates of different methods.

TABLE 2. Process variables used for process monitoring in TE process.

FIGURE 5. Process monitoring results of (a) PCA-Q and (b) PPA-Q.

are much better than those of PCA-Q, as shown in Fig. 5(b).
In addition, the proposed PPA-Q statistic can detect the fault
earlier than the PCA-Q statistic. It is also noteworthy that the
threshold of the PPA-Q statistic is smaller than in PCA-Q
statistic, which is consistent with the theoretical principle of
improved reconstruction errors in PPA. After the fault was
first detected, the variable contribution plots corresponding
to the PCA-Q and PPA-Q statistics are provided to iden-
tify the variables responsible for the out-of-control situation,
as depicted in Fig. 6. As shown in Fig. 6, both the PCA-Q
and PPA-Q contribution statistics clearly identified that the
variable responsible for the out-of-control situation is x1,
which agrees well with that of the induced fault. Moreover,
it is interesting to notice that x1 has a higher contribution
to the proposed PPA-Q statistic as compared to PCA-Q,
as shown in Fig. 6. It indicates that the proposed PPA-Q
contribution statistic is more sensitive than the PCA-Q con-
tribution statistic. All of these results demonstrate the feasi-
bility and superiority of the proposed PPA-based method in

FIGURE 6. Variables contribution to (a) PCA-Q and (b) PPA-Q.

monitoring the nonlinear process than the PCA-based
method. In order to further verify that the proposed
PPA-based method is also superior to other nonlinear meth-
ods in monitoring performance, the standard KPCA-based
method was performed in the same data, and its FDR is
summarized in Table 1. The number of kernel principal com-
ponents (KPCs) retained in KPCA-based method was 4 and
the kernel parameter is chosen as 5m (m is the dimension of
input space), which is suggested as in [17] and [30]. As shown
in Table 1, the KPCA-Q statistic is more sensitive than its
corresponding KPCA-T 2 statistic. The FDR of KPCA-Q is
higher than that of the PCA-basedmethod, whereas it is lower
than that of the proposed PPA-based method. As a result,
the proposed PPA-based method achieved the highest FDR
among the three methods, as shown in Table 1.

B. TE BENCHMARK PROCESS
The Tennessee Eastman (TE) process is an industrial
benchmark for testing the efficiencies of fault detection
and diagnosis methods in process system engineering [10],
[31]–[34]. Fig. 7 shows the flowchart of the TE process,
which comprises five major units: a reactor, a condenser,
a vapor-liquid separator, a recycle compressor, and a product
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FIGURE 7. The flow diagram of the Tennessee Eastman process.

stripper. Four raw materials of A, C, D, and E are fed into
the reactor in which the liquid products G and H are formed.
The process includes 12 manipulated variables, 22 process
measurement variables, and 19 composition variables. Since
the composition variables are measured with dead time and
time delays, they are not used for building the online mon-
itoring models. In addition, the agitation speed variable
is excluded since it is not manipulated. Thus, 22 process
measurement variables XMEAS (1-22) and 11 manipulated
variables XMV (1-11) were finally used to construct the
monitoring models. Table 2 shows the selected process vari-
ables. The training data containing 500 observations col-
lected under normal operating condition was used to build
the model. The testing data contains a set of 21 different
process faults, which were introduced into the process at
sample 161. That is, the process ran normally in the first
160 samples, and then the faults occurred from sample 161 to
the end. A detailed description of the faults is listed in Table 3.
In Table 3, Faults 3, 9, and 15 are small faults, which have
little effect on the overall process behavior due to feedback
control. Each testing dataset consists of 960 observations. The
sampling interval of manipulated and measured variables is
3 min. All the training and testing datasets are available at
http://web.mit.edu/braatzgroup/links.html.

The superiority of the proposed PPA-based method was
investigated for fault detection of the 21 faults of the TE
process. The number of retained PCs and KPCs in the
PCA-based and KPCA-based method was respectively
14 and 22, which can explain most of the process data
information. The number of PPCs retained in the proposed

TABLE 3. Induced process faults in TE process.

PPA-based method was 4 and the polynomial degree was
set to 4, which are determined by cross-validation. The
confidence level was specified as 99%. The quantitative
fault detection results of PCA-based, KPCA-based, and
PPA-based methods are summarized in Table 4, where the
FDRs of each monitoring statistic for all 21 faults were calcu-
lated. The highest FDR is highlighted in bold. Table 4 reveals
that the proposed PPA-Q statistic provides the best monitor-
ing results in most of the faults of the TE process as compared
to the other monitoring statistics. For the purpose of illustra-
tion, two types of representative faults, Faults 15 and 20, are
taken as the examples to show the fault detection performance
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FIGURE 8. Process monitoring results of fault 15 by (a) PCA, (b) KPCA, and (c) PPA.

TABLE 4. Fault detection rates for all 21 faults by different methods in TE
process.

of the proposed PPA-based method. Fault 15 is a typical
small fault, which is associated with the sticking of the con-
denser cooling water valve. As discussed in [10], traditional
statistics are hard to detect this type of fault. Fig. 8 shows
the process monitoring charts of Fault 15 using PCA-based,
KPCA-based, and PPA-based methods. Compared to PCA-
based and KPCA-based methods, the proposed PPA-based
method is more sensitive to this fault, since the changes of
PPA-T 2 and PPA-Q statistics are much more significant than
those of PCA-based and KPCA-based statistics. Moreover,
the proposed PPA-Q statistic can detect the fault earlier than
the other monitoring statistics as shown in Fig. 8. The FDR
of the proposed PPA-Q statistic for Fault 15 is the highest
among all the monitoring statistics as shown in Table 4.
In addition, the improvement of fault detection performance
of the proposed PPA-based method for other small faults
(i.e. Faults 3 and 9) is also significant as shown in Table 4.
For Fault 20, the monitoring results using PCA-based,

KPCA-based, and PPA-basedmethods are presented in Fig. 9.
Fault 20 is a type of unknown fault in the TE process [10].
From Fig. 9, it can be clearly observed that the pro-
posed PPA-based method is more sensitive than the standard
PCA-based and KPCA-based methods, since the changes of
PPA-T 2 and PPA-Q statistics are much more significant than
those of PCA-based and KPCA-based statistics. The FDR
of the proposed PPA-Q statistic for Fault 20 is higher than
the other monitoring statistics as shown in Table 4. Both the
quantitative comparison given in Table 4 and the monitoring
charts of Figs. 8-9 demonstrated that the proposed PPA-based
method performed better for most of the faults of the TE
process than the other monitoring statistics.

For fault diagnosis, Faults 4 and 10 were used to test the
proposed PPA-based contribution plots technique. Its applica-
tion performancewas comparedwith the standard PCA-based
contribution plots. KPCA-based contribution plots was not
presented since the intractable kernel transformation makes it
practically not possible to calculate variable contribution via
direct reverse projection [17]. Fault 4 involves a step change
in the reactor cooling water inlet temperature. As illustrated
in [10], the most distinct impact of Fault 4 is to cause a
step change in the reactor cooling water flow rate (X32).
Meanwhile, Fault 4 results in a sudden increase in the reactor
temperature (X9) when the fault occurs. Fig. 10 shows the
comparison of the normalized variable contributions using
PCA-based and PPA-based diagnosis methods for Fault 4.
It can be observed that variable 9 (X9) and variable 32 (X32)
were identified as the most closely related variables to Fault
4 by the PCA-T 2 contribution statistic, as shown in Fig. 10(a).
However, the PCA-Q contribution statistic failed to iden-
tify the most closely related process variables to Fault 4 as
shown in Fig. 10(b). In comparison, the proposed PPA-T 2

and PPA-Q contribution statistics correctly identified variable
9 (X9) and variable 32 (X32) as the most closely related to
Fault 4, as shown in Figs. 10(c) and 10(d). Furthermore, it is
interesting to notice that variables 9 and 32 combined have a
higher contribution to the proposed PPA-T 2 statistic (91%) as
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FIGURE 9. Process monitoring results of fault 20 by (a) PCA, (b) KPCA, and (c) PPA.

FIGURE 10. Variables contribution of fault 4 to (a) PCA-T2, (b) PCA-Q,
(c) PPA-T2, and (d) PPA-Q.

FIGURE 11. Variables contribution of fault 10 to (a) PCA-T2, (b) PCA-Q,
(c) PPA-T2, and (d) PPA-Q.

compared to PCA-T 2 (88%). Similarly, variables 9 and
32 jointly contribute 48% to the proposed PPA-Q statistic
whereas it is only 26% for the case of PCA-Q statistic.
To further demonstrate the identification performance of the
proposed PPA-based contribution statistics, theywere applied
to Fault 10. Fault 10 involves an abnormal variation in
the C feed temperature (X4). Once the fault is introduced,
it directly affects the downstream unit of product stripper and
thus results in an abnormal change in the stripper temper-
ature (X18) [28]. The variable contributions to PCA-based

and PPA-based statistics for Fault 10 are shown in Fig. 11.
As shown in Figs. 11(a) and 11(b), variable 18 (X18) was
identified as the most likely related variable to Fault 10 by
the PCA-T 2 and PCA-Q contribution statistics. However,
both the PCA-T 2 and PCA-Q contribution statistics failed
to locate the faulty variable 4 (X4). By comparison, the pro-
posed PPA-T 2 and PPA-Q contribution statistics jointly suc-
ceeded in identifying variable 4 (X4) and variable 18 (X18)
as the most likely related variables to Fault 10, as shown
in Figs. 11(c) and 11(d). The identification results of Fault 10
have further consolidated the feasibility of the proposed
PPA-based diagnosis statistics. Consequently, the pro-
posed PPA-based diagnosis statistics performed better than
the PCA-based diagnosis statistics in identifying the most
closely related variables to the faults.

V. CONCLUSIONS
In this paper, a novel fault detection and diagnosis tech-
nique based on principal polynomial analysis is developed.
The proposed PPA-based method is a promising nonlinear
monitoring technique, which has the following advantages:
(1) compared to the PCA-based methods, PPA is more
effective in handling process nonlinearity; (2) unlike
other nonlinear approaches such as kernel-based and
neural networks-based methods, PPA has the appealing
features of straightforward out-of-sample extension, volume-
preservation, and invertibility; (3) PPA implements a simple
and efficient sequential learning algorithm to extract the non-
linear features, and thus it does not require to specify the num-
ber of reduced dimensionality prior to modeling as compared
to the nonlinear mainfold learning methods. The effective-
ness and advantages of the proposed PPA-based monitoring
method were verified through its applications to a nonlinear
numerical example and a benchmark of Tennessee Eastman
process. The application results have demonstrated that the
proposed PPA-based monitoring method performed better
than the standard PCA-based and KPCA-based methods. The
future work is to further implement the proposed PPA-based
approach in other nonlinear industrial processes.
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