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ABSTRACT The increasing use of Internet of Things (IoTs) has brought more advantages in supplying
power to electric vehicles (EVs). With the help of IoTs, EVs can be charged more easily by mobile
charging stations (MCSs) compared with the fixed charging stations (FCSs). However, previous works in
the management of power supply in FCSs have not been properly applied in MCSs, e.g., dynamic of EV
users’ arrival and variable power supply from MCSs in IoTs. In this paper, we study how to manage MCSs’
supply power in IoTs under the condition that MCSs supply multiple kinds of power. First, considering
the randomness of power supply and dynamic of EV users’ arrival, we develop the dynamic framework of
power supply and the economic model. Then, aiming to maximize the long-term average profits of MCSs,
a stochastic optimization problem is formulated to decide the optimal strategy of power management. Based
on the Lyapunov optimization theory, a Lyapunov-based online distributed algorithm is proposed to obtain
the optimal solutions. Meanwhile, the performance of our proposed algorithm is analyzed and simulation
results validate the effectiveness of our proposal.

INDEX TERMS Internet of Things, electric vehicles, mobile charging stations, Lyapunov optimization,
online distributed algorithm.

I. INTRODUCTION
Internet of Things (IoTs) as a new paradigm can connect
physical devices, vehicles and other items to Internet without
human intervention [1], [2]. The IoTs consist of many inter-
connected sensors to make the Internet even more ubiquitous
and pervasive. These sensors and services are used to collect
the real-time data continuously to be published in IoTs. As an
important role in IoTs, electric vehicles (EVs) have been
widely paid attentions to [3]–[5]. With the spread application
of renewable generation, more and more EVs have currently
been applied in urban areas, e.g., photovoltaic (PV) power
plants and wind generations.

Due to the limited capacity of batteries, EVs usually need
to be charged with low state of charge (SOC). Recently,
fixed charging stations (FCSs) have attracted much attentions
and been recognized as a convenient approach to supply
charge service [6], [7]. However, considering the growing
number of EV users, both waiting time and power bill
account for a major part of their expenditure. Although
some incentive mechanism and power management have
been developed, there are still some problems to be solved.

For example, the optimal strategy of power management is
usually designed based on the static information of EV users,
which neglects the randomness of EV users’ arrival. Besides,
wireless communication should be optimized for FCSs with
the wireless sensor network (WSN) and the heterogeneous
network (HetNet) [8]–[10].

Based on the rapid development of mobile technologies,
mobile charging stations (MCSs) have attracted a lot of
attentions [11]–[17]. MCSs are designed to supply better
charging service to EV users compared with FCSs [18], [19].
Through the application of IoTs, there are lots of advantages
for both MCSs and EV users as follows [20], [21]: i) It is
very convenient for MCS to exchange information with EV
users and make the optimal decision on the power supply
in time. ii) EV users with low SOC will pay little attention
to the amount of power in batteries, due to MCS’s flexible
mobility. iii) It can reduce the waiting time of EV users to be
charged, when EV users can obtain the real-time information
from MCSs to avoid the peak time.

Meanwhile, there exist significant challenges in the power
distribution approaches for EV users charged by MCS in
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IoTs [22]–[24]: i) Limited power supply: As the number
of EVs keeps increasing rapidly, the amount of power in
MCSs becomes limited to provide each EV user. ii) Differ-
ent power requirements: EV users may have different inter-
ests in the kinds of power supply, considering traditional
power and renewable power supplied in each MCS. How-
ever, the existing power distribution approaches cannot be
efficiently applied by MCSs in IoTs [25]–[28]. On one hand,
the dynamic feature of renewable power needs to be taken
into account. On the other hand, the arrival or departure of EV
users follows a random distribution which will affect MCS’s
decisions on the power management [29], [30]. Therefore,
an efficient and fair policy of power management is desired,
considering the factors mentioned above.

Motivated by the above discussion, we tackle the stochastic
optimization problem of MCSs’ power supply in IoTs, con-
sidering the time-varying renewable power supply and EV
users’ arrival. Based on the Lyapunov theory, this problem
can be solved to minimize the cost of MCSs, while the queue
backlog can be stabilized. We propose a Lyapunov-based
online distributed algorithm to achieve the optimal solutions.
The main contributions of this work are summarized as fol-
lows:

• We analyze and design the economic model based on
the energy trading between EV users and MCS in IoTs.
Two kinds of power supply in each MCS are taken into
account, including the traditional power and renewable
power. Due to the variable feature of renewable power
supply and EV users’ arrival, we develop the dynamic
framework state in each MCS.

• In order to reduce MCSs’ cost, we formulate this eco-
nomic problem as a stochastic optimization problem.
Inspired by the Lyapunov theory, this problem is trans-
ferred into two subproblems, which can be solved to
decide EV users’ power supply and the control power
of MCS’s outlets.

• Through the theoretical analysis, the performance of
our proposed algorithm is analyzed. Then, based on
the proposed Lyapunov-based online distributed algo-
rithm, the optimal solutions can be achieved to minimize
MCSs’ cost and stabilize the queue backlog in each
MCS.

The rest of this paper is organized as follows. Section II
presents a brief overview of the related work. The sys-
tem model is developed in section III. We propose a
Lyapunov-based online distributed algorithm to minimize
MCSs’ cost function in Section IV. The simulation results of
our proposal are shown in Section V. Finally, the conclusions
are provided in Section VI.

II. RELATED WORK
A. WIRELESS COMMUNICATION TECHNOLOGY IN
CHARGING ELECTRIC VEHICLES
With the development of wireless communication tech-
nology, more and more research focuses on the power

management to improve the quality of service (QoS).
Manshadi et al. in [31] presented the short-term operation
of charging station by exploiting the relationship between
the electricity network and the transportation network. The
authors proved that the coordination between the electricity
network and the transportation network could mitigate the
congestion in the electricity network. Sun et al. in [32] pro-
posed a software defined framework for EV charging net-
works by jointly considering the wired charging and wireless
charging. The results showed that the proposed framework
could ensure efficient and stable charging services for EV
users. Yang et al. in [33] proposed a wireless navigation
system based on EV users’ power consumption, in order to
minimize the driving cost. Rao et al. in [34] studied the
wireless charging problem based on the proposed schedul-
ing NP-Hard in the wireless sensor network. Eldjalil and
Lyes in [35] made a research on the scheduling strategy of
EV users’ charging based on the proposed cloud comput-
ing algorithm in the cloud communication. By considering
a software-defined V2G network, Hu et al. in [36] pre-
sented an energy management scheme for charging stations
to utilize energy efficiently. The simulation results showed
that the proposed scheme achieved delightful performance
on global optimization in the V2G network. In order to
minimize the cost of charging service and payment in the
charging system, Liu et al. in [37] presented a real-time
scheduling scheme in the communication. However, the pro-
posed approaches in above works are mostly developed
to study the wireless communication and cannot be prop-
erly used to study the power scheduling strategy in MCSs,
in which the real-time information of EV users are not
enough.

B. POWER SCHEDULING APPROACH
FOR ELECTRIC VEHICLES
Several power management policies have been designed
to study the problem of power supply or consumption in
the existing works. As a promising approach, the game-
theoretical mechanism has been used to make the optimal
strategy for EV users or power retailers. Yoon et al. in [25]
adopted the Stackelberg game theory to describe the relation-
ship between power retailers and consumers. Based on both
wireless aggregators and road side units (RSUs), Kaur et al.
in [38] studied the scheduling problem on how to manage
EVs’ discharging and charging, in order to smooth the load in
the power grid based on the game approach and the 0/1 knap-
sack, and stabilized the power grid with the minimal gap
between energy demand and supply. Lee et al. in [39] studied
the relationship among EV charging stations and designed the
supermodular game scheme. Based on the non-cooperative
game approach, Tan andWang in [40] addressed the charging
problem to obtain the optimal strategy of power supply.More-
over, the contract-based theory has been designed to study the
charging problem. In order to improve the profits of power
retailers, Gao et al. in [41] proposed the contract-based incen-
tive mechanism. Besides the approaches mentioned above,
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artificial intelligence approaches have been developed to
decide the power distribution for EV users [24], [42].

In the existing work, the research on the power schedul-
ing approaches with the wireless technology can be divided
into two kinds. The first one is to minimize the expenditure
of EV users or power retailers, including the waiting time
and the delay of power supply [31], [33], [35], [38], [42].
The second is to maximize the profits of EV users or power
retailers [25], [39]–[41]. In order to design the objective func-
tion, various variables have been analyzed based on different
optimization theories, e.g., the constraints associated with
power supply.

The strength of the above approaches is that they can
minimize the cost or maximize the profits, where practical
variables are taken into account based on the power demand
and power supply. At the same time, there are also deficien-
cies as follows: i) The optimal strategy cannot be directly
used in the dynamic conditions, in which neither the random-
ness of EV users’ arrival nor the dynamic feature of power
supply is considered. ii) The optimal strategies in these two
approaches are designed to minimize the cost or maximize
the profits, respectively, where the finiteness of power supply
is neglected. In our work, different from the previous works,
we focus on the dynamic information of EV users and the
limited renewable power supply, through which a dynamic
charging scheme is proposed with MCSs in IoTs.

III. SYSTEM MODEL
In this section, we firstly develop the network model in
IoTs. Secondly, the model of charging EVs is designed with
constraints. Thirdly, we define the time-varying queue model
of power supply in each MCS. At last, the structure of the
economic model is elaborated in detail.

A. NETWORK MODEL
As shown in Fig. 1, we consider that there are many MCSs
and several EVs with power demand in IoTs. Sensors in
each EV and MCS can continuously sense and collect data,
including the amount of power in batteries and locations.
When EV users have to be charged with low SOC in batteries,
sensors equipped in EVs will transmit these data to base
station (BS). Meanwhile, MCSs will also transmit the data
related to the power supply service to BS, when there are
enough amount of power to be supplied. Then, base station
operators (BSOs) will schedule charging service for both
EV users and MCSs. Here, the total number of EV users
in each MCS is assumed to be known at each time slot,
∀t ∈ T = {1, . . . ,T }. We suppose that EV user j can
be charged by MCS i, satisfying ∀j ∈ Ki = {1, . . . ,Ki},
∀i ∈ I = {1, . . . , I }, Ki , |Ki|, I , |I|.

B. MODEL OF CHARGING ELECTRIC VEHICLES
Assuming that each MCS supplies traditional power and
renewable power shown in Fig. 1, the effect of power’s per-
formance on MCSs’ satisfaction is different from each other.

FIGURE 1. System model in IoTs.

Thus, the satisfaction function is formulated as

Uj,i(t) = Aj,i ln(αj,i + ω1xj,i(t)+ ω2xj,i,0(t)). (1)

Here, Aj,i denotes the preset parameter for EV user j. αj,i is
a parameter to ensure the satisfaction function nonnegative.
xj,i(t) and xj,i,0(t) denote EV user j’s power demand of renew-
able power and traditional power in MCS i, respectively. ω1
and ω2 denote the effect of the kind of power supply on
MCS’s satisfaction. ω1 > ω2 implies that MCS i prefers
supplying renewable power for EV user j.

With consideration of the limited capacity in EV users’
batteries, the relationship between these two kinds of power
supply can be formulated as

xj,i,0(t) = ϕj,i(t)− xj,i(t), (2)

where ϕj,i(t) denotes the maximum power demand of EV
user j charged by MCS i at time slot t .

Therefore, by substituting (2) into (1), we have

Uj,i(t) = Aj,i ln(αj,i + ω2ϕj,i(t)+ (ω1 − ω2)xj,i(t)). (3)

Here, based on the limited total power supply, EV users’
power demand will be bounded by the upper limited power
supply in MCS i at each time slot. Thus, we have
Ki∑
j=1

(
xj,i(t)+ x̆j,i(t)

)
≤

Ki∑
j=1

(
xj,i(t)+ δj,i(t)

)
≤ Di(t), (4)

where Di(t) is the total maximum power supply. x̆j,i(t)
denotes EV user j’s power loss with the upper constraint δj,i(t)
in the process of charging.

Moreover, at each time slot, the limited capacity of bat-
teries in each EV has to be considered when it is charged
by each MCS. Namely, the power supply for each EV user
cannot enlarge its capacity. Thus, we have

x ′j,i(t)+ xj,i(t) ≤ Gj,i,max, (5)
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where x ′j,i(t) denotes the rest amount of power stored in EV
j’s batteries. Gj,i,max is the capacity of EV j’s batteries.
Considering the fairness of power supply for each EV user

and the limited renewable power supply, the power supply of
renewable power for EV user j should be satisfied by

0 ≤ xj,i(t) ≤ smax
j,i (t). (6)

Here, smax
j,i (t) is the maximum power supply for EV user j.

C. CHARGING QUEUE MODEL IN MOBILE
CHARGING STATION
In this power supply system, it is responsible for each MCS
to charge EV users based on their power demand so that
MCSs can obtain profits. Combing the choice of each EV
user, he arrives at each MCS with power demand, which can
be seen as a power supply task. Due to the limited number
of outlets in each MCS, this workload will be buffered and
served in a queue through an approach of First-In-First-Out
(FIFO). Let Qj,i(t) denote the queue backlog of EV user j
supplied by MCS i at time slot t . The queue model on the
power supply of each MCS can be formulated as a dynamic
state, which can be denoted by

Qj,i(t + 1) = max(Qj,i(t)− rj,i(t)τ, 0)+ xj,i(t), ∀t ≥ 0,

(7)

where τ is the time duration. rj,i(t) is the charging rate of
outlets. It is powered and controlled by MCS i, denoted by

rj,i(t) = Bj,i ln(ξj,i +$j,idj,i(t)). (8)

Here, both Bj,i and ξj,i are the preset parameters decided by
MCS i. $j,i is the weight parameter based on the power
consumption dj,i(t) applied to control the charging rate of
outlets for EV user j in MCS i at time slot t . Here, all the
queues are initially zero, i.e., Qj,i(0) = 0, ∀j ∈ Ki, ∀i ∈ I.

D. ECONOMIC MODEL OF MOBILE CHARGING STATION
In order to improve MCSs’ profits, each MCS tends to
minimize its cost besides the investment expense, which is
assumed to be composed of two parts. The first part is that
each MCS has to pay for power consumption in controlling
outlets. The second part considers the satisfaction of EV
users’ power demand, which increases with the increase of
xj,i(t). Therefore, the total cost function of MCSs can be
formulated as

C(t) =
I∑
i=1

Ki∑
j=1

[
pidj,i(t)+ γj,i − Uj,i(t)

]
. (9)

Here, γj,i is the fixed investment. pi is the fixed price of
control power applied in MCS i’s outlets.

In this paper, MCSs aim to minimize the average cost func-
tion so thatMCSs decide the optimal strategy to improve their
long-term profits. Therefore, this problem can be formulated
as an optimization problem shown by

min C = lim
T→∞

sup
1
T

T−1∑
t=0

E{C(t)}, (10)

s.t. (2)− (9),

Q = lim
T→∞

sup
1
T

T−1∑
t=0

I∑
i=1

Ki∑
j=1

E{Qj,i(t)} <∞, (11)

Ki∑
j=1

dj,i(t) ≤ di,max(t), ∀i ∈ I, (12)

where (11) is used to ensure the queue backlog strongly stable
in (7). (12) means that the total power consumption in all
outlets is bounded by di,max(t), which denotes the maximum
control power supply.

IV. DISTRIBUTED ALGORITHM DESIGN FOR
CHARGING SERVICE SYSTEM
In this section, a dynamic scheme is proposed to transfer
the charging problem into two subproblems, through which
we can determine power distribution and manage the control
power in eachMCS. Through our proposed algorithm, we can
solve the optimization problem and achieve the optimal solu-
tions.

A. LYAPUNOV OPTIMIZATION SCHEME FOR
CHARGING SERVICE
As a promising method, Lyapunov optimization theory is
efficient in solving the dynamic problems [43]–[45]. In this
paper, considering the dynamic arrival of EV users with
power demand, the Lyapunov drift-plus-penalty method will
be further studied to make optimal decisions on the problem
of real-time power management.

With few number of outlets in each MCS, EV users have
to wait for being charged in a queue. Here, we define that
the aggregate queue backlog vector is denoted by Q(t) =
{Qj,i(t) |∀j ∈ Ki,∀i ∈ I} based on (7). Thus, the Lyapunov
function is formulated as

L(Q(t)) =
I∑
i=1

Ki∑
j=1

1
2
Q(t)TQ(t), (13)

where Q(t)T denotes the conjugation-transpose of Q(t).
Here, L(Q(0)) = 0 when all of the queues are initially

empty, ∀j ∈ Ki,∀i ∈ I. Based on (13), we develop the
one-slot conditional Lyapunov drift 1(Q(t)) as

1(Q(t)) , E{L(Q(t + 1))− L(Q(t))|Q(t)}, (14)

where the expectation is taken with respect to the randomness
of EV users’ arrival in the queue.

In order to maximizeMCSs’ profits and stabilize the queue
backlog, we add MCSs’ cost into Lyapunov drift in a slot
and design a scheduling scheme to minimize the drift and
penalty (cost) problem. We have

min
dj,i(t),xj,i(t)

{1(Q(t))+ VE[C(t)|Q(t)]}. (15)

Here, the first part is the growth of queue backlog, and
the second part is the expected MCSs’ cost. V is a control
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parameter used to adjust the tradeoff among the queue back-
log constraints.

Therefore, based on the analysis above, this problem can
be further rewritten as

min
dj,i(t),xj,i(t)

{1(Q(t))+ VE[C(t)|Q(t)]},

s.t. (4)− (15). (16)

B. PERFORMANCE ANALYSIS
Our objective is to minimize the drift-plus-penalty problem
shown in (16), and then we ensure the upper bounds through
the following lemma.
Lemma 1: For each time slot, we have

1(Q(t))+ VE[C(t)|Q(t)]

≤ R+ VE[C(t)|Q(t)]+ E{[X(t)− r(t)τ ]TQ(t)|Q(t)},

(17)

where X(t) is the vector of EV users’ power supply, denoted
by X(t) = {xj,i(t) |j ∈ Ki, i ∈ I}. r(t) is the vector of the
charging rate of outlets, denoted by r(t) = {rj,i(t) |j ∈ Ki, i ∈
I}. R is a finite and positive constant, bounded by

R ≥
τ 2

2
r(t)Tr(t)+

1
2
X(t)TX(t). (18)

Proof: See Appendix A. �
Further, based on Lemma 1, we can obviously know that

the left side of (17) is bounded by its right side. We will
use the Lyapunov drift-plus-penalty function to minimize the
right side of (17) through the following theorem, where R is
a constant.
Theorem 1: Assuming that E{L(Q(0))} < ∞ and Copt is

the desired target cost, there exist finite and positive constant
R, V , and ε such that ∀t ∈ {0, 1, . . . ,T −1} for all time slots.
For all queue backlogs Q(t), the Lyapunov drift function
satisfies

1(Q(t))+ VE[C(t)|Q(t)] ≤ R− ε
I∑
i=1

Ki∑
j=1

Qj,i(t)+ VCopt .

(19)

Then, the average queue backlog growth rate is bounded by

Q ≤
R+ V (Copt − C)

ε
, (20)

and the average cost of MCSs is bounded by

C = lim
T→∞

sup
1
T

T−1∑
t=0

E{C(t)} ≤ Copt +
R
V
. (21)

Proof: See Appendix B. �
From Theorem 1, we can know that the average cost of

MCSs obtained by our proposed algorithm can be adjusted
close to the desired target cost Copt through increasing V
shown in (21). However, it will increase the delay of all queue
backlogs based on the fact that the upper bound is linear
with respect to V in (20). The tradeoff between the average

cost of all MCSs and queue backlog delay performance can
be presented, so that we can control value V to balance the
cost-delay performance.

C. OPTIMAL SCHEME DESIGN FOR MOBILE
CHARGING STATION
Aiming to minimize the right side of (17), an optimal strategy
is designed to decide Qj,i(t) with EV users’ power demand
as workload and MCSs’ power consumption in controlling
outlets at each time slot. Since R is a known constant, the rest
terms in (17) can be rewritten as

VC(t)+ [X(t)− r(t)τ ]TQ(t)

=

I∑
i=1

Ki∑
j=1

[
Qj,i(t)xj,i(t)− VAj,i ln

(
αj,i + ω2ϕj,i(t)

+ (ω1 − ω2)xj,i(t)
)]
+

I∑
i=1

Ki∑
j=1

[
Vpidj,i(t)− τQj,i(t)Bj,i

× ln
(
ξj,i +$j,idj,i(t)

)]
+

I∑
i=1

Ki∑
j=1

Vγj,i. (22)

Through the analysis above, the problem on minimizing the
right side of (17) is transferred into two subproblems with
respect to xj,i(t) and dj,i(t), respectively. Therefore, we will
study and analyze how to efficiently solve each of them in
the following subsection.
Remark: Based on the statement in this paper, instead of

minimizing the right hand of drift-plus-penalty problem (17)
directly, we need to minimize the optimization problem
in (22), which is a non-convex problem and has a high com-
putational complexity. However, according to the theory of
Lyapunov optimization, the objective function is separable
from EV users’ power demand variable xj,i(t) and control
power variable dj,i(t) of outlets in MCSs (∀j ∈ Ki,∀i ∈
I) [43]–[45]. Then, the optimization problem in (22) can be
divided into two independent subproblems, through which
this non-convex optimization problem is transferred into two
convex optimization problems. As shown in (22), the first
term of (22) is only affected by the EV users’ power demand
variables xj,i(t), while the second term of (22) is only affected
by the control power variable dj,i(t) of outlets in MCSs (∀j ∈
Ki,∀i ∈ I). Namely, the two subproblems are indepen-
dent with each other. Since there is no interaction with each
other, these two subproblems cannot be jointly addressed.
The optimal solutions can be achieved through our proposed
algorithm, respectively.

D. ONLINE DISTRIBUTED OPTIMIZATION ALGORITHM
1) SCHEDULING OF POWER SUPPLY
Since each MCS is independent of each other, the first term
of (22) has no interaction with the others. In order to maxi-
mize the profits of MCSs, the problem can be formulated as
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an optimization problem, shown by

max
I∑
i=1

Ki∑
j=1

[
VAj,i ln

(
αj,i + ω2ϕj,i(t)+ (ω1 − ω2)

× xj,i(t)
)
− Qj,i(t)xj,i(t)− Vγj,i

]
,

s.t. (4)− (6), xj,i(t) ≥ 0. (23)

It implies that (23) is a concave function with respect to xj,i(t),
and it is bounded by the linear constraints.

Therefore, based on the multiple constraints in (23),
the Lagrange dual decomposition method is used to handle
this problem and achieve optimal solutions. The Lagrange
function is defined as

L (X(t), ς (t),µ(t), η(t))

=

I∑
i=1

Ki∑
j=1

[
VAj,i ln

(
αj,i + ω2ϕj,i(t)+ (ω1 − ω2)xj,i(t)

)

−Qj,i(t)xj,i(t)
]
−

I∑
i=1

Ki∑
j=1

ςj,i(t)
(
xj,i(t)− smax

j,i (t)
)

−

I∑
i=1

Ki∑
j=1

[
µj,i(t)

(
x ′j,i(t)+ xj,i(t)− Gj,i,max

)
+ Vγj,i

]

−

I∑
i=1

ηi(t)
[ Ki∑
j=1

(
xj,i(t)+ δj,i(t)

)
− Di(t)

]
, (24)

where ς (t), µ(t), and η(t) denote the set of Lagrange mul-
tipliers related to the constraints in (4)-(6), respectively,
i.e., ς (t) = {ςj,i(t),∀j ∈ Ki,∀i ∈ I}, µ(t) = {µj,i(t),∀j ∈
Ki,∀i ∈ I}, and η(t) = {ηi(t),∀i ∈ I}.

Then, the Lagrange dual function is given by

D(ς (t),µ(t), η(t))

= maxL

(
X(t), ς (t),µ(t), η(t)

)
=

I∑
i=1

Ki∑
j=1

Lj,i(t)−
I∑
i=1

ηi(t)
( Ki∑

j=1

δj,i(t)− Di(t)
)

−

I∑
i=1

Ki∑
j=1

[
µj,i(t)

(
x ′j,i(t)− Gj,i,max

)
+ Vγj,i

− ςj,i(t)smax
j,i (t)

]
, (25)

where

Lj,i(t) = VAj,i ln
(
αj,i + ω2ϕj,i(t)+ (ω1 − ω2)xj,i(t)

)
−

(
Qj,i(t)+ ςj,i(t)+ µj,i(t)+ ηi(t)

)
xj,i(t). (26)

Based on (26), the dual problem can be formulated as the
following optimization problem, expressed by

minD(ς (t),µ(t), η(t)), (27)

s.t. ς (t) ≥ 0, µ(t) ≥ 0, η(t) ≥ 0. (28)

In order to solve the problem, we firstly take the first
derivative ofLj,i(t) with respect to xj,i(t), given ςj,i(t),µj,i(t),
and ηi(t). Then, we have

∂Lj,i(t)
∂xj,i(t)

=
VAj,i(ω1 − ω2)

αj,i + ω2ϕj,i(t)+ (ω1 − ω2)xj,i(t)
−Qj,i(t)− ςj,i(t)− µj,i(t)− ηi(t). (29)

Through adopting the Karush-Kuhn-Tucker (KKT) con-
ditions, we can obtain the optimal solution by solving
∂Lj,i(t)
∂xj,i(t)

= 0, and it follows

∂Lj,i(t)
∂xj,i(t)

= 0

H⇒ xj,i(t) =
1

ω1 − ω2

[(
VAj,i(ω1 − ω2)

Qj,i(t)+ ςj,i(t)+ µj,i(t)+ ηi(t)

−αj,i − ω2ϕj,i(t)
)]+

, (30)

where [∗]+ = max[∗, 0].
For the dual Lagrange multiples in (24), we use the sub-

gradient method to update them, respectively, which can be
denoted by

ςj,i(t)h+1 =
[
ςj,i(t)h + ϑ1

(
xj,i(t)− smax

j,i (t)
)]+

, (31)

µj,i(t)h+1 =
[
µj,i(t)h + ϑ2

(
x ′j,i(t)+ xj,i(t)− Gj,i,max

)]+
,

(32)

ηi(t)h+1 =
[
ηi(t)h+ϑ3

( Ki∑
j=1

(
xj,i(t)+δj,i(t)

)
−Di(t)

)]+
.

(33)

Here, ϑ1, ϑ2, and ϑ3 denote the small positive step
sizes, respectively. When the step sizes are chosen prop-
erly, they can ensure that dual variables ςj,i(t)h, µj,i(t)h and
ηi(t)h will converge to the dual optimal value ς∗j,i(t), µ

∗
j,i(t)

and η∗i (t). We induce the convergence criteria ||xhj,i(t) −
xh−1j,i (t)||/||xh−1j,i (t)|| ≤ σj,i,1(t), in which σj,i,1(t) is the
convergence factor at time slot t . When σj,i,1(t) is satisfied,
the initial power supply x0j,i(t) will converge to the optimal
solution x∗j,i(t).

2) CONTROL POWER CONSUMPTION OPTIMIZATION
In order to realize the fairness of limited renewable power
distribution, each MCS should decide the optimal strategy
to manage the control power of outlets at each time slot.
Thus, based on (22), the problem can be formulated as an
optimization problem, shown by

max
I∑
i=1

Ki∑
j=1

[
τQj,i(t)Bj,i ln(ξj,i +$j,idj,i(t))− Vpidj,i(t)

]
,

(34)
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s.t.
Ki∑
j=1

dj,i(t) ≤ di,max(t), dj,i(t) ≥ 0. (35)

Since the objective function of (34) is a convex function
and the constraints are all linear, the optimization prob-
lem can be solved by the Lagrange dual decomposition.
Moreover, based on (34) with its corresponding constraints,
the Lagrange function can be described as

L (d(t), θ (t))

=

I∑
i=1

Ki∑
j=1

(
τQj,i(t)Bj,i ln(ξj,i +$j,idj,i(t))

−Vpidj,i(t)
)
−

I∑
i=1

θi(t)
( Ki∑

j=1

dj,i(t)− di,max(t)
)
, (36)

where d(t) and θ (t) denote the set of control power in each
MCS and Lagrange dual multipliers related to the constraints
in (35), respectively, i.e., d(t) = {dj,i(t), j ∈ Ki, i ∈ I},
θ (t) = {θi(t),∀i ∈ I}.

Following (36), the Lagrange dual function can be obtained
by

D(θ (t)) = maxL (d(t), θ (t))

=

I∑
i=1

Ki∑
j=1

Lj,i(dj,i(t))+
I∑
i=1

θi(t)di,max(t). (37)

where

Lj,i(dj,i(t)) = τQj,i(t)Bj,i ln(ξj,i +$j,idj,i(t))

−Vpidj,i(t)− θi(t)dj,i(t). (38)

Based on (37), the dual optimization problem can be
expressed by

min D(θ (t)), (39)

s.t. θ (t) > 0, d(t) ≥ 0. (40)

Similarly, combing the KKT conditions, the optimal deci-
sion on the power control can be obtained by taking the first
derivation of (38) with respect to dj,i(t), which can be given
by

∂Lj,i(dj,i(t))
∂dj,i(t)

= 0

H⇒ dj,i(t) =
[

1
$j,i

(
τ$j,iQj,i(t)Bj,i
Vpi + θi(t)

−ξj,i

)]+
. (41)

The optimal value of θi(t) can be decided by solving the
problem shown in (34) and (35). Here, a subgradient method
is applied to search for the optimal value θ∗i (t), which is given
by

θi(t)n+1 =
[
θi(t)n + ϑ4

Ki∑
j=1

(
dj,i(t)− di,max(t)

)]+
, (42)

where ϑ4 is the small positive step size.

In addition, an online distributed iteration algorithm is
proposed to determine the optimal solutions on d∗j,i(t) for each
EV user inMCSs, through which it can minimizeMCSs’ cost
shown in (10). In this presented iterative algorithm, we induce
the convergence criteria ||dnj,i(t) − dn−1j,i (t)||/||dn−1j,i (t)|| ≤
σj,i,2(t) to achieve the optimal solution. Here, σj,i,2(t) denotes
the small convergence factor to obtain precise results. This
algorithm is shown inAlgorithm 1, which describes thewhole
procedure of solving the problem in (22).

Algorithm 1 An Online Distributed Scheduling Algorithm
1: Initialization: SetQ(0) and X (0), d(0). Given the initial-

ization ς (t), µ(t), η(t) and θ (t).
2: Repeat.
3: for each time slot t = 0 : 1 : T − 1 do
4: for i = 1 : 1 : I do
5: for j = 1 : 1 : Ki do
6: for h = 1 : 1 : hmax do
7: EV user j in MCS i calculates xhj,i(t) based

on (30).
8: For each EV user in MCS i, the Lagrange

multipliers can be updated according to (31)-
(33).

9: end for
10: Until ||xhj,i(t)− x

h−1
j,i (t)||/||xh−1j,i (t)|| ≤ σj,i,1(t).

11: Output: The optimal solution x∗j,i(t).
12: for n = 1 : 1 : nmax do
13: The optimal decisions on dnj,i(t) can be

obtained based on (41).
14: MCS will update the Lagrange multipliers

θi(t)n based on (42).
15: end for
16: Until ||dnj,i(t)− d

n−1
j,i (t)||/||dn−1j,i (t)|| ≤ σj,i,2(t).

17: Output: The optimal solution d∗j,i(t).
18: end for
19: end for
20: if t ≥ 0 then
21: The queue backlogsQ(t) will also be updated based

on (7).

Q(t + 1) = [Q(t)− r(t)τ ]+ + X(t). (43)

22: end if
23: end for
24: Output: All of the optimal solutions at each time slot.

V. PERFORMANCE EVALUATION
A. SIMULATION SETTING
This section evaluates the performance of our proposed
Lyapunov-based strategy in this paper. Assuming that the
time duration is one hour, we investigate our proposed strat-
egy from 9:00 a.m to 16:00 p.m, i.e., t ∈ {1, . . . , 8}. Accord-
ing to [46], we suppose that the total power supply for EV
users is distributed in Fig. 2, while the total control power
applied in outlets is shown in Fig. 3. Other parameters are set
in Table 1 (i = 1, j ∈ {1, 2}).
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FIGURE 2. Total power supply for all EV users in MCS with variable time.

FIGURE 3. Total power supply for outlets with variable time.

TABLE 1. Parameters of Economic Model.

B. SIMULATION RESULTS
Based on the parameters set above, we firstly investigate
the relationship between the state of queue backlog and the
time slots in our proposed scheme. Fig. 4 illustrates the
variable procedure of all EV users’ queue backlogs in each
time slot. From the results in Fig. 4, we can know that the
dynamic optimal decisions are decided to minimize MCSs’
cost based on the different slots, and then the length of all
queue backlogs is variable. In addition, from Fig. 4, we can
know that all of the queue backlogs are strictly bounded with
1.2, which implies that the queue backlog can be stabilized
within a limited value.

FIGURE 4. Total queue backlogs of all EV users with variable time.

At the same time, following the results in Fig. 4, we inves-
tigate the dynamic state of cost in MCS from 9:00 a.m to
16:00 p.m. Combing with Fig. 4, we can observe the mini-
mum cost of MCS shown in Fig. 5 based on (11), which is
bounded between 2.6 and 4.2. Since the renewable power is
dynamically supplied, different optimal strategies are decided
to minimize the cost of MCS in different time slots and
stabilize the queue backlog in MCS. Namely, through our
proposed strategy, EV users have less delay and the cost of
MCS also can be simultaneously minimized based on Fig. 4
and Fig. 5.

FIGURE 5. Total cost of MCS with variable time.

Further, we study the effect of control parameter V on the
average queue backlog of all EV users in MCSs. Combining
Fig. 2 and Fig. 3, we obtain the relationship between the aver-
age queue backlog Q and the variable control parameter V
in Fig. 6. From Fig. 6, we can know that Q increases with the
increase of V , which illustrates the conclusion in (20) based
on Theorem 1. It also implies that there exists a proper upper
value used to restrain Q in Fig. 6. This validates the results
that the average queue backlog can be strongly stabilized in
Theorem 1.
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FIGURE 6. Average queue backlog of all EV users with control
parameter V.

FIGURE 7. Average cost of MCS with control parameter V.

Since our proposed algorithm depends on the control
parameter V , we investigate the relationship between the
average cost of MCS and the control parameter V . Fig. 7
depicts that the average cost of MCS decreases with the
increase of V based on (21). At the same time, we can know
that the optimum with our proposed strategy is close to the
desired target cost Copt , when both R and control parameter
V are chosen properly.

Based on the mobility of MCS, MCS can supply charging
service to EV users by moving to the location of EV users.
Especially, it is convenient for EV users in low SOC to be
charged by MCS, when the rest power in EVs is not enough
to ensure their arrival at charging stations to be charged.
In addition, the peak load shifting of EV users in overload
charging stations can be achieved, when EV users can obtain
charging service at any place or any time from MCS. It will
improve the number of EV users with more profits than
that without consideration of the mobility of MCS. Thus,
the mobility of MCS can benefit both EV users and MCS.
In order to maximize the coverage of MCS’s charging service
to reach more EVs, MCS needs to plan its trajectory in a

region. At the same time, both EV users and MCS should
update the real-time location information to be collected by
sensors in EVs for making the optimal decision of MCS’s
trajectory.

According to [47] and [48], there is a positive correlation
between the driving distance and utility function of EVs.
Then, we study the relationship between the average cost of
MCS and the mobility based on (10)-(12). Here, the max-
imum power demand of EV user 1 and EV user 2 are
ϕ1,1 = 2MW .h and ϕ2,1 = 1.5MW .h, respectively. The
control parameter V=0.1 is used to balance the cost-delay
performance.

FIGURE 8. Average cost of MCS with different driving distances.

From Fig. 8, we can know that the average cost of MCS
C increases with the increase of the driving distance. Here,
we also study the effect of power supply on C . In Fig. 8,
we can know that C decreases with the increase of ω1, when
ω2 is fixed. And C decreases with the increase of ω2, when
ω1 is fixed. As the distance increases, the difference among
them becomes low. It implies that MCS can make the balance
between the mobility and the cost.

In order to investigate our proposed online distributed
scheme, we design a balance ratio to keep balance between
the average time-delay performance and the average cost of
all MCSs, shown by

F(X(t),d(t)) = (1− g) lim
T→∞

sup
1
T

T−1∑
t=0

I∑
i=1

Ki∑
j=1

E{Qj,i(t)}

+ g lim
T→∞

sup
1
T

T−1∑
t=0

E{C(t)}, (44)

where g is the weight parameter, i.e., g ∈ (0, 1).
In Fig. 9, we compare the proposed scheme with other

approaches, including the approach without online scheme
and greedy approach, respectively. Based on the approach
without online scheme, MCS makes the optimal decisions on
power supply without considering the dynamic of EV users’
arrival at each time slot. In the greedy approach, MCS firstly
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FIGURE 9. Comparison of different schemes with variable control
parameter V.

supplies power to EV users with maximum power demand
as much as possible at each time slot. Fig. 9 illustrates the
relationship between the balance ratio of MCS in (44) and
the control parameter V . It can be obviously known that the
balance ratio of MCS in our proposed strategy is smaller
than those in other two approaches. Therefore, we obtain the
conclusion that the proposal in this paper is more efficient
than other schemes.

VI. CONCLUSION
In this paper, we have proposed a Lyapunov-based online
distributed scheme to make the optimal decisions for MCSs
with minimum cost in IoTs, when multiple power supply
in MCSs are supplied to each EV user. We formulate this
problem as a stochastic optimization problem. Then, we solve
this problem and achieve the optimal solutions based on our
proposed algorithm. Through the theoretical analysis, the per-
formance of our proposed algorithm is analyzed. Simulation
results confirm the effectiveness of our proposal, and the
cost of MCSs can be minimized while the queue backlog
can be stabilized with less time-delay in MCSs. For future
work, it is to analyze the performance when EV users form
social community to make interactions for charging. Further,
the virtual queue associated with the real-time energy demand
of EV users will be analyzed based on the theory of Lyapunov
optimization.

APPENDIX A
PROOF OF LEMMA 1
Proof: In order to prove the results shown in Lemma 1,

we use the following inequality as [max(ψ − λ, 0) + %]2 ≤
ψ2
+ λ2 + %2 + 2ψ(% − λ), which holds for any positive

parameters ψ , λ and %. Thus, based on (7), we have

Q2
j,i(t + 1) =

{
[Qj,i(t)− rj,i(t)τ ]+ + xj,i(t)

}2
H⇒ Q2

j,i(t + 1) ≤ Q2
j,i(t)+ r

2
j,i(t)τ

2
+ x2j,i(t)

+ 2Qj,i(t)[xj,i(t)− rj,i(t)τ ]

H⇒
Q2
j,i(t + 1)− Q2

j,i(t)

2
≤
r2j,i(t)τ

2
+ x2j,i(t)

2
+Qj,i(t)[xj,i(t)− rj,i(t)τ ]. (45)

For all EV users in each MCS at any time slot, (14) can be
further rewritten as

Q(t + 1)TQ(t + 1)
2

−
Q(t)TQ(t)

2

≤
τ 2

2
r(t)Tr(t)+

1
2
X(t)TX(t)+ [X(t)− r(t)τ ]TQ(t).

(46)

Therefore, substituting (46) into (14), we have

E{L(Q(t + 1))− L(Q(t))|Q(t)}

≤ R+ E{[X(t)− r(t)τ ]TQ(t)|Q(t)}. (47)

By adding VE[C(t)|Q(t)] to the both sides of (47), we can
prove the results in Lemma 1. �

APPENDIX B
PROOF OF THEOREM 1
Proof: First of all, we can know that the condition shown

in (19) holds for any time slot. Summarizing all the inequa-
tions in (14) over ∀t ∈ {0, 1, . . . ,T − 1}, we have

E{L(Q(T ))} − E{L(Q(0))} ≤ (R+ VCopt )T

−V
T−1∑
t=0

E{C(t)} − ε
T−1∑
t=0

I∑
i=1

Ki∑
j=1

E{Qj,i(t)}. (48)

And dividing both sides by εT in (48), we get

1
T

T−1∑
t=0

I∑
i=1

Ki∑
j=1

E{Qj,i(t)} ≤
R+ V (Copt − C)

ε
. (49)

Then, we take the superior limits in both sides of (49) with
T →∞. We have

lim
T→∞

sup
1
T

T−1∑
t=0

I∑
i=1

Ki∑
j=1

E{Qj,i(t)} ≤
R+ V (Copt − C)

ε
.

(50)

Therefore, based on (50), we prove the results shown in (20).
In addition, we rearrange the terms in (48), and then we

have

1
T

T−1∑
t=0

E{C(t)} ≤ Copt +
R
V
−

E{L(Q(T ))}
VT

−
ε

VT

T−1∑
t=0

I∑
i=1

Ki∑
j=1

E{Qj,i(t)}. (51)

Since both the expectations of L(Q(T )) and all queue back-
logs are nonnegative, (51) can be rewritten as

1
T

T−1∑
t=0

E{C(t)} ≤ Copt +
R
V
. (52)
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Therefore, we take the superior limits in both sides of (52)
with T →∞. We have

lim
T→∞

sup
1
T

T−1∑
t=0

E{C(t)} ≤ Copt +
R
V
. (53)

As a result, we prove the result in (21) based on (53). Through
the analysis above, we complete the proof of Theorem 1. �
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