
Received July 15, 2018, accepted August 31, 2018, date of publication September 17, 2018, date of current version October 8, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2869780

A Feasibility of Respiration Prediction Based on
Deep Bi-LSTM for Real-Time Tumor Tracking
RAN WANG 1,2, XIAOKUN LIANG 1,2, XUANYU ZHU1, AND YAOQIN XIE1
1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2University of Chinese Academy of Sciences or Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055,
China

Corresponding author: Yaoqin Xie (yq.xie@siat.ac.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFC0105102, in part
by the Leading Talent of Special Support Project in Guangdong under Grant Y77504, in part by the Shenzhen Key Technical Research
Project under Grant JSGG20160229203812944, in part by the National Science Foundation of Guangdong under Grant 2014A030312006,
in part by the Beijing Center for Mathematics and Information Interdisciplinary Sciences, and in part by the National Natural Science
Foundation of China under Grant 81871433.

ABSTRACT In radiotherapy, the position of thoracic-abdominal tumor is changing due to respiratorymotion.
Real-time tracking of thoracic-abdominal tumors is of great significance in improving the treatment effect
of radiotherapy. The accurate prediction of thoracic-abdominal tumor motion is required to compensate
for system latency in image-guided adaptive radiotherapy systems. The purpose of this paper is to identify
an optimal prediction model to improve the treatment effect of radiotherapy. A seven-layer bidirectional
long short term memory (Deep Bi-LSTM) and one output layer deep neural network is proposed to predict
respiration motion for a latency about 400 ms. 103 malignant lung tumor patients’ respiratory motion data is
used to train model. Mean absolute error (MAE), root mean square error (RMSE), and normalized mean
square error are introduced to evaluate the performance of predictive results. Deep Bi-LSTM has great
performance in the cases with relative long latency, average MAE of 0.074 mm, RMSE of 0.097 mm, and
normalized root mean square error (nRMSE) of 0.081 with latency about 400ms are obtained from predictive
results of Deep Bi-LSTM. It demonstrates that the prediction accuracy of our proposed Deep Bi-LSTM is
about five times better than traditional autoregressive integrated moving average model and about three
times better than adaptive boosting and multi-layer perceptron neural network when the latency of 400 ms.
The method can be applied to improve tracking accuracy and increase efficiency in thoracic-abdominal
radiotherapy, which is practical and attractive for clinical application in the near future.

INDEX TERMS Radiotherapy, respiratory prediction, tumor tracking, bidirectional long short termmemory.

I. INTRODUCTION
Compensation of respiratory motion can significantly
improve the tumor treatment effect during radiation therapy.
Radiotherapy aims to accurately irradiate the tumor target,
while avoid damaging organ at risk (OAR) around the tumor.
However, in the course of radiotherapy, the location of
thoracic-abdominal organs and tissues are changing due to
respiratory motion, which is likely to cause the actual tumor
to exceed the target area, while OAR may also enter the
target area of the plan, and suffer a certain dose of radiation,
which will greatly influence the effect of radiotherapy. More
seriously, it may cause complications for patients. Therefore,
accurate determination of tumor position is of great impor-
tance to reduce the adverse factors of respiratory motion.

At present, many methods have been put forward to
solve the problem of respiratory motion in radiotherapy,

mainly including breath holding technology or abdominal
compression technology [1], [2], respiratory gating technol-
ogy [3] and real-time tracking technology [4]. The breath
holding technique is active or passive control of the patient’s
breathing to reduce the tumor movement, which is simple
and easy, but the tolerance is poor for some patients with
limited radiotherapy precision. The respiratory gating tech-
nology is to synchronize the dose exposure in a specific phase
of the respiratory cycle, which prolong the treatment time.
Different from the two methods above, in real-time tracking
technology, patients can breathe normally and the system
can keep up with the tumor motion and adjust the radiation
beam [5]–[7] or the position of treatment couch [8] to ensure
relative position between radiation beam and tumor. Real-
time tracking technology must overcome the system latency.
Currently, there is about 75 to 100ms latency in radiotherapy
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system, which including the latency of information acqui-
sition and robotic system response [9]. Generally, the
prediction algorithm will have to deal with a latency of at
least 100 to 150 ms. So far, the most feasible and invasive
way of real-time tracking is an indirect tumor tracking. The
synchronous dynamic breathing tracking system has been
used in clinic by CyberKnife system.

The Cyberknife is a robotic image guided system that
delivers stereotactic body radiotherapy(SBRT), tracks tumors
during respiration, and automatically adjusts treatment for
any patient movement [10]. The CyberKnife is a frame-
less robotic radiosurgery system used for treating benign
tumors, malignant tumors and other medical conditions [11].
In Cyberknife, the radiation source is mounted on a general
purpose industrial robot and the system include an image
guidance system [12]. The Cyberknife has been used to
treat a broad range of tumors throughout the body, includ-
ing prostate, lung, spine, liver, pancreas, kidney, and other
tumors. Currently, there have been increasing numbers of
successful reports of using SBRT against hepatocellular car-
cinoma(HCC) and other liver tumors [13].

Various prediction methods have been investigated for res-
piration prediction. Seregni et al. [14], Collobert et al. [15]
and Sharp et al. [16] apply linear prediction model. The
limitation of linear model is the poor robustness when the
state change of linear system. Mnih and G. Hinton [17] made
respiration prediction usingKalman filter, which can estimate
the dynamic behavior in real-time. Khashei and Bijari [18],
Babu and Reddy textitet al. [19] and Shirato et al. [20]
use autoregressive integrated moving average(ARIMA)
model for respiration prediction. ARIMA is one of the most
commonly used models in time series analysis. It predicts
the future time series through a linear combination of its
past value, past error, other time series’s current value and
past value. Compared with other traditional time series anal-
ysis methods, the accuracy of ARIMA is relatively high.
Azimi et al. [21] and others [22], [23] apply Artificial Neural
network(ANN) to respiration prediction, ANN is expert in
describing the nonlinear characteristics of various factors and
is the most commonly used method in current respiratory
prediction. Sunet et al. [24] proposed an adaptive boosting
and multi-layer perceptron neural network(ADMLP-NN) to
make respiration prediction. ADMLP-NN prediction perfor-
mance is the results of multiple multi-layer perceptron(MLP)
interactions. ADMLP-NN is also a kind of ANN method
and achieve a relatively great performance in respiration
prediction.

Although the methods mentioned above have been applied
in prediction of respiration motion, the precision of predic-
tion is not enough especially in the case with long latency.
To improve the prediction accuracy of respiratory predic-
tion, a deep bidirectional long short term memory(Deep
Bi-LSTM) method is proposed in this paper. A 7-layer
bidirectional LSTM and one output layer deep neural net-
work is proposed to predict respiration motion for a latency
about 400ms. 103 malignant lung tumor patients’ respira-

tory motion data is used to train model. Mean absolute
error(MAE), root mean square error(RMSE) and normalized
mean square error(RMSE) are introduced to evaluate the
performance of predictive results. Deep Bi-LSTM has great
performance in the cases with relative long latency, aver-
age MAE of 0.074mm, RMSE of 0.097mm and nRMSE
of 0.081 with latency about 400ms are obtained from predic-
tive results of Deep Bi-LSTM. Besides, we compared Deep
Bi-LSTM with other methods(ARIMA, ADMLP-NN) that
achieve relatively great performance. Our method is about
5 times better than ARIMA model and about 3 times better
than ADMPL-NN when the latency of 400ms.

II. MATERIALS AND METHODS
A. RESPIRATORY DATABASE
The database of respiratory motion used in this paper come
from an open-access database during CyberKnife treatment
at Georgetown University Hospital by courtesy of Dr. Kevin
Cleary and Dr. Sonja Dieterich [9]. The database contains
breathing recordings of 103 patients with the total of 306 res-
piratory motion traces. No private information is recorded.
All patients had malignant tumor manifestations in the lung.
Each patient’s respiratory data are recorded with three fidu-
cial markers, each of which is placed on the chest consec-
utively. The position of three fiducial marker are recorded
using an optical tracking device with 26Hz sampling. The
recording time for each trace is distributed from 25 minutes
to 132 minutes.

B. WORKFLOW OF PREDICTION
Figure 1 shows the overall workflow of prediction algorithm
of respiration motion. The raw respiratory motion signal si
need to be preprocessed before training. Data preprocessing
includes 4 steps as follows shown in Fig. 1: (a) data inter-
cepting, (b) removal of abnormal values, (c) data smoothing,
(d) data normalization. For the respiratory motion database,
the amount of position points on respiration signals are
relatively large for training our model, there are 306 traces in
the database, and about 100 thousand position points on each
trace. The data intercepting is to pick 154 traces(a patients at
least one trace is picked) with better respiration pattern from
the database. Take the data normalization into consideration,
in order to allow the target data to be evenly distributed
between 0 and 1, we need to remove abnormal data(individual
maximum and minimum). For the data smoothing,
Savitzky-Golay filter [25] is used for respiratory signals.
Savitzky-Golay filter is widely used in data stream smoothing
and denoising. It is a filtering method based on local polyno-
mial least square fitting in time domain. The characteristics
of the filter is to filter the noise and ensure the shape and
width of the signal unchanged. The data normalization step
is to normalize signals to [0,1], which can improve the speed
of convergence and the accuracy of algorithms.

The black solid line box in Fig. 1 shows the Deep Bi-LSTM
with 7-layer bidirectional LSTM and one output layer.
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FIGURE 1. Workflow of respiration motion prediction. si is the original
respiratory motion signal data and s∗i is the predictive respiration motion
signal. four steps of data preprocessing show in the green dashed box.
The black solid line box indicating the structure of Deep Bi-LSTM.

The preprocessed data is used to train our model. Trained
model would calculate predictive respiration curve s∗i .
In this paper, s∗i is position of the 400ms after the current
moment. Generally, the prediction algorithmwill have to deal
with a latency of at least 100 to 150 ms [9], latency of 400ms
is fully able to deal with radiotherapy system latency.

FIGURE 2. Respiration trace intercepted from the database. Every
patient’s respiration trace is split to training part(from s1 to sM ) and
testing part(from sM+1 to sM+N ). ti and pi is a section on the trace, and
consist of a training sample for model’s inputs and outputs, g represents
the interval between two adjacent training samples, m and n is the
number of training samples and testing samples on one respiration signal.

C. TRAINING DATA PROCESSING
The preprocessed data is divided into training part(from
s1 to sM ) and testing part(from sM+1 to sM+N ). In training
part as shown in Fig. 2, hypothetically, si is the most recent
observation at time i, a section on signals ti is the input of
model, ti is the number of signal position points. The aim
is to predict a section on the trace pi which is also model’s

output based on ti, pi also corresponding to predictive latency,
Owing to the frequency of respiration signal is about 26Hz,
the latency of pi = 1, 5, 10 is about 40ms, 200ms, 400ms,
respectively. pi and ti consist of a training sample. The train-
ing deep Bi-LSTM model is based on training set Xtrain as
Eq. 1 and label set Ytrain as Eq. 2. g represents the interval
between two adjacent training samples,M andN is the length
of training part and test part on a respiration signal, m and n
is the number of training samples and testing samples on a
respiration signal. The training set and label set are:

Xtrain = [t1, t2, ..., tm]T (1)

Ytrain = [p1, p2, ..., pm]T (2)

The testing set and label set are:

Xtest = [tm+1, tm+2, ..., tm+n]T (3)

Ytest = [pm+1, pm+2, ..., pm+n]T (4)

FIGURE 3. (a) Unfolding form of RNN; (b) unfolding form of Bi-RNN.

D. RESPIRATION PREDICTION ALGORITHM
Recurrent neural network(RNN) is specifically suitable for
processing time series data and has been widely applied in
many fields [17], [26], [27]. In traditional neural network
models, two adjacent layers are fully connected and the nodes
between each layer are connectionless, which would get a
bad result when handle sequence data, but RNN is expert
in dealing with such situations, the nodes between the same
hidden layer are connected, and the input of hidden layer
includes not only the output of input layer, but also the output
of hidden layer at the last time showing as Fig. 3(a). When
the network receives input at time t , the value of hidden layer
is ht , and the output value is yt . The key point is that the value
of ht depends not only on the xt , but also on the ht−1. RNN is
calculated as:

yt = f1(Woht ) (5)

ht = f2(Wixt +Whht−1) (6)

Equation 5 calculates the output of each layer, and Eq. 6
calculates the result of hidden layer.Wi andWo is the weight
matrix of input and output layer, respectively. Wh is the
weight matrix between adjacent RNN cells. Wh is the major
difference between recurrent layer and fully connected layer.
Back-propagation through time(BPTT) [28] is applied to
train RNN.

In practice, RNN does not deal with long sequences
well. A main reason is that RNN is prone to generate
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FIGURE 4. LSTM memory block with one cell.

gradient disappearance in training, which leads to gradient
can’t be transmitted in long sequences. To tackle this issue,
LSTM [29], [30] is proposed. In LSTM network, the summa-
tion units in the hidden layer of standard RNN are replaced
by memory blocks. The LSTM architecture consists of a
set of recurrently connected subnets, known as memory
blocks [31] shown in Fig. 4. Each block contains one or more
self-connected memory cells and three multiplicative units
(the input, output and forget gates) that provide continuous
analogues of write, read and reset operations for the cells.
The three gates are nonlinear summation units that collect
activations from inside and outside the block, and control the
activation of the cell via multiplications (small black circles).
The multiplicative gates allow LSTM memory cells to store
and access information over long periods of time, thereby
mitigating the vanishing gradient problem.

Bidirectional RNN(Bi-RNN) is an upgraded version of
RNN [32], Bi-RNN is made up of two RNN superimpo-
sition as shown in Fig. 3(b). Bi-RNN need to train two
RNN network that input are forward and backward of input
sequences,respectively, and two RNN connect to a same out-
put layer, which means that the output at every moment time
knows the complete information of the entire input sequence
in Bi-RNN, not just the information before the current time.
As in Fig. 3(b), the calculation of a hidden layer’s output yt
depends not only on {x1, ..., xt−1}, but also on {xt+1, ...}.
The hidden layer of Bi-RNN should save two values,

ht participates in forward calculation and the h′t is involved
in reverse calculation. The final output value yt depends on
the ht and h′t , calculated as:

yt = f1(Woht +Woh′t ) (7)

ht calculated as Eq. 6, h′t calculated as:

h′t = f2(W ′i xt +W
′
hht+1) (8)

The forward and backward RNN are separate in calculation,
the weights are not shared, i.e., Wi and W ′i , Wo and W ′o, Wh
andW ′h are different weight matrices, respectively. In forward
calculation, the value of hidden layer ht is related to ht−1,
while the value of hidden layer h′t is related to h

′

t+1. The final

output depends on the sum of forward and backward compu-
tation as follows:

yt = f1(Woht +W ′oh
′
t ) (9)

E. EVALUATION
In order to evaluate the performance of proposed algorithm
and compare with other methods, several evaluation metrics
are introduced. The respiration prediction algorithm can use
the following metrics to evaluate.

We define the error as ei:

ei = yi − y∗i (10)

where yi is the actual respiratory motion trace, y∗i is predic-
tive respiratory motion trace. Mean absolute error(MAE) is
a measure of difference between two continuous variables.
MAE is defined as [33]:

MAE =
1
N

N∑
i=1

|ei| (11)

Where N is the number of investigated points. As the name
suggests, the mean absolute error is an average of the absolute
errors |ei|. The mean absolute error uses the same scale as
the data being measured. This is known as a scale-dependent
accuracy measure and therefore cannot be used to make
comparisons between series using different scales [34]. The
mean absolute error is a common measure of forecast error in
time series analysis [35]–[37].

Root mean square error (RMSE) is a frequently used mea-
sure of the differences between values (sample or popula-
tion values) predicted by a model or an estimator and the
values observed. The RMSE represents the sample standard
deviation of the differences between predicted values and
observed values. RMSE is a measure of accuracy, to compare
forecasting errors of different models for a particular dataset
and not between datasets, as it is scale-dependent [35]. RMSE
is the square root of the average of squared errors. The effect
of each error on RMSE is proportional to the size of the
squared error; thus larger errors have a disproportionately
large effect on RMSE. Consequently, RMSE is sensitive to
outliers [38], [39]. RMSE is the most commonly used accu-
racy measure [40]–[42] and is defined as:

RMSE =

√√√√ 1
N

N∑
i=1

(ei)2 (12)

Normalizing the RMSE facilitates the comparison between
datasets or models with different scales. Though there is no
consistent means of normalization in the literature, common
choices are the mean or the range (defined as the maximum
value minus the minimum value) of the measured data [43].
This value is commonly referred to as the normalized root-
mean-square error(nRMSE), and often expressed as a per-
centage, where lower values indicate less residual variance.
In many cases, especially for smaller samples, the sample
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range is likely to be affected by the size of sample which
would hamper comparisons. nRMSE is defined as:

nRMSE =
RMSE
σ
=

RMSE√
1
N

∑N
i=1(yi − ȳ)2

=

√√√√ ∑N
i=1(ei)2∑N

i=1(yi − ȳ)2
(13)

Where the ȳ is the mean of the actual data points.
All the calculation of evaluation metrics are based on

the following network parameter settings: 7 bidirectional
LSTM, 100 epochs, 512 batch sizes, T = 50, G = 50,
op =Adam, lr = 0.001 and predicting about 400 ms for-
ward. The hardware experimental platform is a workstation
(CPU E5-2637 v2 @ 3.50GHz×8, NVIDIA GeForce GTX
1080 8G, 32G RAM).

FIGURE 5. Actual respiration trace and Deep Bi-LSTM, ADMLP-NN and
ARIMA model’s predictive trace. Subgraph (a)− (c) latency is 40ms,
200ms, 400ms (pi = 1, 5, 10), respectively.

III. RESULTS
Figure 5 illustrates the three methods(Deep Bi-LSTM,
ADMLP-NN and ARIMA) actual performance when latency
is 40ms, 200ms and 400ms (pi = 1, pi = 5 and pi = 10),
respectively. From the figure, we can learn that Deep
Bi-LSTM remain accurate prediction performance even the
latency of 400ms. ADMLP-NN and ARIMA maintain a
sub-optimal performance when the latency of less 200ms.

TABLE 1. Performance of predictive algrithm based on Deep Bi-LSTM.

The performance of ARIMA is poor when the latency
of 400ms. Table 1 shows the final performance of Deep
Bi-LSTM with parameters optimized. The results is cal-
culated based on parameters: epochs(model training times)
= 100, batch size= 1024, ti = 50, op =Adam and lr = 0.01.

FIGURE 6. Performance of Deep Bi-LSTM, ADMLP-NN and ARIMA
using different metrics, evaluation metrics are MAE, RMSE
and nRMSE, respectively.

Figure 6 shows the comparison of the performance among
three prediction methods. The performance is evaluated by
MAE, RMSE and nRMSE, respectively. Obviously, the pro-
posed Deep Bi-LSTM outperforms better than other two
methods and the longer the latency, the better the perfor-
mance of the proposed method as compared to ADMLP-NN
and ARIMA.

When latency is 400ms (pi = 10) in Fig. 6, The
MAE, RMSE and nRMSE of Bi-LSTM are reduced by
62.9%, 64.6% and 64.6%(from 0.201mm to 0.0745mm, from
0.274mm to 0.0969mm and from 0.228 to 0.0806) as com-
pared with ADMLP-NN, and 81.8%, 84.8% and 84.5%(from
0.409mm to 0.0745mm, from 0.639mm to 0.0969mm
and from 0.521 to 0.0806) as compared with ARIMA.
ADMLP-NN get a bad performance when the latency
is less than 160ms compared with Deep Bi-LSTM and
ARIMA. ARIMA can achieve the same performance as Deep
Bi-LSTM when latency is less than 80 ms. The performance
of ARIMA is very poor when latency is more than 300ms,
which also shows in Fig. 5(c).

From the Fig. 5 and Fig. 6 we can demonstrate that Deep
Bi-LSTM always has great performance in the cases with rel-
ative long latency. On the contrary, ARIMA is not suitable for
long latency situation. It shows that the accuracy of proposed
Deep Bi-LSTM method is about 5 times better than ARIMA
and about 3 times better than ADMLP-NN when the latency
is 400ms.
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FIGURE 7. Performance of Deep Bi-LSTM correlation to number of
network layers.

IV. DISCUSSION
The optimization of layer number is investigated. Fig. 7
shows the correlation between the performance of Deep
Bi-LSTMand the number of network layers. Obviously, Deep
Bi-LSTM with 7 layers would achieve better performance.
It is demonstrated that the network is not as deep as better,
deeper network may achieve poorer performance.

Parameter optimization is an important issue for the predic-
tion accuracy. Table 2 shows threemajor parameters(ti, op, lr)
for our Deep Bi-LSTM.

TABLE 2. Influence of different parameters(ti , op and lr ) on Deep
Bi-LSTM. The latency of folloeing results is 400ms.

A section on respiration signal ti is model’s input. The
length of ti represents the amount of information to make
prediction, different length of ti may cause different pre-
diction results. op is the optimizer used in Deep Bi-LSTM.
A good optimizer can speed up the training model process
and achieve better performance. SGD is the most common
optimizer, it can be said that there is no acceleration effect;
RMSprop is an upgraded version of SGD and Adam is also
an upgraded version of RMSprop. But it does not mean that
the more advanced optimizer, the better the result. In order
to choose a better optimizer for Deep Bi-LSTM, We com-
pare these optimizers in Table 2. lr is learning rate of op.
The optimizer will be affected by learning rate. If the learning
rate a is too small, the training time will be very long; on the
contrary, it may cross the local minimum and result in no con-
vergence. These learning rates can usually be considered: 0.1,
0.01, 0.001, 0.0001, the different performance of different lr
shown in Table 2.

All the parameters are based on 7 bidirectional LSTM
layers, 30 epochs, 1024 batch sizes and latency is about
400ms(pi = 10). When one of the parameters is adjusted,
other parameters remain the default values(ti = 50, op =
Adam and lr = 0.01). In addition, the results of each parame-
ter would be calculated 10 times, the average results are filled
in the Table 2. From Table 2, it is clear that ti = 50 would be
better with smallest MAE, RMSE and nRMSE. Optimizer op
gets Adam is better, Adam optimizer has great performance
for respiration prediction. Learning rate choose lr = 0.01.

From Table 2, Our final results is based on optimal param-
eters in Table 2 and 100 epochs, 1024 batch sizes. we finally
use the parameters(ti = 50, op =Adam, lr = 0.01) to train
our Deep Bi-LSTM.

V. CONCLUSION
Based on the current published literature, this paper proposed
a Deep Bi-LSTM model intended for respiration motion pre-
diction during respiratory. Deep Bi-LSTM has great perfor-
mance in the cases with relative long latency, average MAE
of 0.074mm, RMSE of 0.097mm and nRMSE of 0.081 with
latency about 400ms are obtained from predictive results of
Deep Bi-LSTM. It demonstrates that the prediction accuracy
of our proposed Deep Bi-LSTM is about 5 times better
than traditional ARIMA model and about 3 times better
than ADMPL-NN when the latency of 400ms. Deep
Bi-LSTM could potentially be used for prediction of respi-
ration trajectory during treatment delivery, which is practical
and attractive for clinical application in the near future.
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