
Received July 19, 2018, accepted August 27, 2018, date of publication September 17, 2018, date of current version October 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2870118

Directory-Based Dependency Processing for
Software Architecture Recovery
XIANGLONG KONG 1, BIXIN LI 1, LULU WANG1, AND WENSHENG WU2
1School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2Huawei Technologies Co., Ltd., Shenzhen 518129, China

Corresponding author: Bixin Li (bx.li@seu.edu.cn)

This work was supported in part by the National Key R&D Program of China under Grant 2018YFB1003901, in part by the National
Natural Science Foundation of China under Grant 61572126, Grant 61872078, and Grant 61402103, and in part by the
Cooperation Project with Huawei Technologies Co., Ltd., under Grant YBN2016020009.

ABSTRACT Directory structure contains a wealth of software design information; it is used to transfer
thoughts of architects to developers. Information extracted from directory paths should play an important role
in architecture recovery techniques, but it has been proved that modules or components directly represented
by directories are not accurate due to the inconsistency between stages of development and design. To make
better use of information extracted from directories, we propose a directory-based dependency processing
technique to utilize the information of directories in the process of structure-based architecture recovery.
The technique groups the selected inter-coupling files and intra-coupling files in the same directory into
a submodule and generates submodule-level dependency graph based on file-level dependency graph.
We apply both manual and automatic architecture recovery techniques on submodule-level dependency
graph, and the results show that our technique can greatly improve the efficiency and effectiveness of manual
and automatic architecture recovery techniques; the technique can also make other structure-based recovery
techniques easily scalable to large-sized projects.

INDEX TERMS Software architecture recovery, dependency graph, directory path.

I. INTRODUCTION
Software architecture plays an extremely important role in
modern software development. A well-documented software
architecture can greatly improve the effectiveness and effi-
ciency of program comprehension and software mainte-
nance [33]. However, it is pretty hard for the developers
to keep architecture documented out-to-date during soft-
ware life cycle, and architecture recovery is also a tedious
and costly task in both academia and industry. For exam-
ple, recovery of the ground-truth architecture of Google
Chromium takes the researchers two years of efforts with the
cooperation of related developers [10].

For this reason, a huge body of research efforts have been
dedicated to software architecture recovery, which aim to
recover architecture based on some related information (e.g.,
code dependencies and functionality of modules). Accord-
ing to the source of input information, these techniques can
be divided into two categories, structure-based techniques
and knowledge-based techniques [40]. Structure-based tech-
niques reply on software codes to extract data-flow-based
or control-flow-based dependencies between them, and then

identify components by utilizing some clustering techniques.
Knowledge-based techniques recover architecture by clus-
tering software entities which implement similar or related
functionalities. The identification of functionalities replies on
some textual information (e.g., knowledge of domain experts,
design documents and comments). Although knowledge-
based techniques have been shown to perform good on
some subjects [6], [11], the majority of the existing recovery
approaches are still structure-based techniques due to the
difficulty in extraction of textual information for knowledge-
based techniques [1], [23]–[25], [40], [41].

There are also some empirical studies on current structure-
based recovery techniques [2], [9], [16], [20], [26], [44],
but the results from these studies are commonly differ-
ent from each other, none of the current recovery tech-
niques always perform better than others. The major reason
of this inconsistency is that these studies used different
subjects, metrics and implementations of techniques in the
comparisons [22]. The deep-seated contradiction behind
this reason is that most of the studied techniques obtained
information only from dependencies of different-level code

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

52321

https://orcid.org/0000-0002-2448-2214
https://orcid.org/0000-0001-9916-4790


X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

entities, which belongs to implementation view of pro-
grams [18]. However, software architecture belongs to log-
ical view, there may be losing important logical knowledge
while translating information from implementation view to
logical view. So, can we put some available logical knowl-
edge into the process of structure-based techniques? The
most widely-recognized logical information in software is the
design of directories, directories are used to keep the initial
design by giving a framework to developers and maintainers,
they are already considered as feathers of clustering tech-
niques in several studies [3], [5], [14], [44], [45]. However,
Lutellier et al. [21], [22] proved that directory-based clus-
tering techniques performed worse than file-based clustering
techniques in terms of accuracy, and directories generally
could not represent the components in software systems [10].
It is a pity that directories contain a wealth of design informa-
tion of architecture, but architecture recovered directly from
directories is not accurate since developer may not always
code in compliance with the design of directories.

In pursuit of a more accurate and efficient architecture
recovery approach, we utilize some collected information
of directories in the process of the current structure-based
recovery techniques. The directory-based dependency pro-
cessing technique is designed to generate a submodule-level
dependency graph based on code dependencies and direc-
tories, the graph can be used as input of structure-based
recovery techniques. We define submodule as a set of coher-
ent files within a module. A module is usually composed
of one or more submodules. Although directories could not
represent components or modules correctly, we still expect
that parts of files inside the directories could represent sub-
modules in a software system. We try to split one directory
into several submodules based on dependency relationships
between files inside and outside the directory. If a source code
file has strong dependency relationships with files from other
directories, we think that this file has a high probability to
indicate some specific feature of the software and mark this
kind of files as inter-coupling files. For each inter-coupling
file, we search for the files that have dependency relationships
with it in the same directory, andmark this kind of related files
as intra-coupling files. Submodules are generated by group-
ing each inter-coupling file with its related intra-coupling
files. After the selection, the remaining files in each directory
are also grouped as a submodule. The technique is built on an
assumption that a set of files with high cohesion in a direc-
tory should usually be used to implement similar or related
functionalities. The submodule-level dependency graph is
generated by clustering each inter-coupling file and related
intra-coupling files in the file-level dependency graph. And
the submodule-level dependency graph is designed to be used
as the input of structure-based recovery techniques, it can
take the place of file-level dependency graph. The inter-
coupling files are determined according to threshold values
of dependencies (i.e., inter-indegree and inter-outdegree of
the nodes in file-level dependency graph). When selecting
the inter-coupling files, we only consider the dependencies

between different directories. And the intra-coupling files are
determined only according to the dependencies within the
same directory. Considering extreme cases, when threshold
values are over-top, there will be no inter-coupling files in
file-level dependency graph, so each directory represents a
submodule. And if threshold values are 0, all the source
code files are marked as inter-coupling files, each submodule
contain only one file in this situation. Our approach obtains
file-level dependencies based on the extracted symbol depen-
dencies, and further groups the files into submodules based on
information of directories. The objective of our approach is to
find a proper way to make architecture recovery techniques
more accurate and efficient by utilizing the information from
both directories and source code files.

To evaluate the directory-based dependency process-
ing technique, We conduct both automatic and manual
structure-based recovery attempts by utilizing submodule-
level dependency graph. The evaluation results show that
our technique can greatly improve the efficiency of manual
recovery; submodule-based automatic recovery techniques
perform better than file-based automatic recovery techniques
in terms of accuracy; our approach can greatly improve the
efficiency of recovery attempts when applying on large-sized
subjects, make other structure-based recovery techniques
easy to scale to large-sized projects.

In summary, our paper makes the following novel contri-
butions:
• We propose the directory-based dependency processing
technique, which brings the gap of the performance
of files and directories used in architecture recovery
techniques.

• We evaluate the directory-based dependency process-
ing technique by conducting the architecture recovery
attempts on submodule-level and file-level dependency
graphs. The results show that our approach can generally
improve accuracy and efficiency of the used recovery
techniques.

• We propose a method to make existing structure-based
techniques scalable to large-sized projects by utilizing
submodule-level dependency graph instead of file-level
dependency graph.

• We conduct a study on the impacts of threshold values
on the submodule partitions to find out a suitable setup
of threshold values used in the experiments.

The rest of this paper is organized as follows: Section II
provide a case study to further demonstrate our motivations
and insights. Section III describes the detailed steps of our
technique. Section IV describes the experimental setup and
the results analysis to present several meaningful observa-
tions. Section V presents an overview of related research in
the area of software architecture recovery and Section VI
concludes this paper.

II. CASE STUDY
In this section, we discuss a case study involving gen-
eration of submodule-level dependency graph by using

52322 VOLUME 6, 2018



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

FIGURE 1. File-level dependency graph of project JUG.

directory-based dependency processing technique. We select
a small-sized project, i.e., Java UUID Generator (JUG)1 in
our case study. JUG is a set of Java classes for working with
UUIDs: generating UUIDs using any of standard methods,
outputting efficiently, sorting and so on. The JUGproject con-
tains 22 Java source code files, and its file-level dependency
graph is presented in Figure 1. The file-level dependency
graph is generated based on Eclipse JDT,2 we will show the
details of extraction in section III. In Figure 1, each oval
node represents a Java source code file, the number of the
node refer to the number of the source code files, which
is listed in Table 1. For example, F1 refers to file 1 and
D1means directory 1. The edge between nodes represents the
set of symbol (functions, global variables, etc.) dependencies
between two files. The number of symbol dependencies is
used to check inter-coupling files. To make the figure clear,
we have not shown the number beside the edges. The five red
boxes in the figure represent the five directories in the project,
each directory contains one or several files. The three gray
nodes are the selected inter-coupling files. From the figure,
we have the following observations.

First, although there are only 22 files in the project, the file-
level dependency graph is still too complex to understand
easily. Second, if we only consider the file-level dependen-
cies, regardless of the directory structure, the recovery results
may not be correct. For example, F3 and F5 in D3 have the
largest number of dependencies in the graph. The four files in
D5 all depend on F5, and they also have strong dependency
relationships with F3. However, some files in D3 do not
have direct dependency relationships with F3 and F5, such
as F7 and F3. These conditions will make structure-based
recovery techniques split the files in D3, and group parts of
them with the files in D5. In fact, most of the files in D3 are

1JUG Project, https://github.com/cowtowncoder/java-uuid-generator
2Java Development Tools, http://www.eclipse.org/jdt

FIGURE 2. Submodule-level dependency graph of JUG.

JUG API classes, and the files in D5 are various UUID
generator implementations. So they should not be grouped
together in the architecture. Third, if we use directories to rep-
resent components, the recovery results are also incorrect. For
example, there are some files which do not have dependency
relationships with other files in the same directory, such as
F16 and F17 in D4, F22 in D5. And F13 in D3 has strong
dependency relationshipswith the files inD4. Actually, F22 is
a meaningless file, it contains no variables or functions.
F16 and F17 implement similar functionality with F13, they
should be grouped together. In summary, we find that we
could not obtain good enough information for architecture
recovery regardless of directory structure or directly using
directory to represent components.

To make better use of information extracted from direc-
tories, we apply directory-based dependency processing
technique on the file-level dependency graph in Figure 1,
the obtained submodule-level dependency graph is presented
in Figure 2. We also present the detailed classification
and affiliation relationships of the studied files in Table 1.

VOLUME 6, 2018 52323



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

TABLE 1. List of source code files in project JUG.

In the table, column ‘‘Number’’ refers to the number of files
in Figure 1, column ‘‘File Name’’ presents the name of
studied files. Column ‘‘Classification’’ presents the role of the
files in the process of our approach. Columns ‘‘Belonging to
Directory’’ and ‘‘Belonging to Submodule’’ present the direc-
tories and submodules that contain the files. The first step of
our technique is selection of inter-coupling files, i.e., source
code files that have strong dependency relationships with
files from other directories. While selecting inter-coupling
files, we only consider the number of symbol dependencies
between different directories. In this study, the threshold
values of inter-indegree and inter-outdegree of inter-coupling
files are set as (3, 1). The selected inter-coupling files are
shown as gray node in Figure 1. For example, F14 in D4 has
three symbol dependencies with F2 in D2 (the edge between
nodes in Figure 1 just represents the whole set of symbol
dependencies), and it also has four symbol dependencies with
F13 and F12. So its inter-outdegree is 3 and inter-outdegree
is 4, F14 is marked as inter-coupling file. After selecting
inter-coupling files, we group them with their related intra-
coupling as a submodule and group the other remaining files
in the directory also as a submodule. Then the submodule-
level dependency graph in Figure 2 is generated.

Between Figure 2 and Figure 1, we can find that S1 and
S2 are actually equivalent to D1 and D2 because they only
contain one file. S3 is grouped by inter-coupling file F3 and
its related intra-coupling files, S4 only contains F13. Sub-
modules S3 and S4, S5 and S6, S7 and S8 are composed of
files in directory D3, D4, D5, respectively. For directory D3,

most of the APIs are grouped as S3 and the logging API is
separated as S4 because it has much stronger dependency
relationships with files outside the directory. For directory
D4, file-based UUID generator API is grouped as S5 and
optional logging APIs are grouped as S6. Submodule S6 has
none dependency relationships in the graph, but it should be
grouped with S4 since they implement similar functionalities.
For directory D5, the various UUID generator implemen-
tations are grouped as S7 and the meaningless file F22 is
separated as S8.

Overall, the submodule-level partition of the project
in Figure 2 is better for architecture recovery than the file-
level partition and directory-level partition in Figure 1. First,
the submodule-level partition is much easier to understand
than file-level partition since the dependency relationships in
submodule-level partition aremuch simpler andwe can easily
find out the functionality of each submodule. Files contained
in submodules are usually tight-coupled, and the irrelevant
files are separated. Second, the submodule-level partition can
help to recover more accurate architecture than the file-level
partition and directory-level partition. The directory-level
partition is too rough to represent modules or components of
architecture. For example, the directory-level partition cannot
identify the meaningless file F22 in directory D5. Submodule
S5 and S6 in directory D4 should not be grouped together,
because they are designed to implement irrelevant function-
alities and they do not have dependency relationships. For
the file-level partition, the files in submodule S5 (APIs) and
S7 (Implementations) are tight-coupled, the structure-based

52324 VOLUME 6, 2018



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

architecture recovery techniques are hard to distinguish the
Implementation Class (S7) and API Class (S5). The most
likely result is that the recovery technique groups parts of files
in D3 with files in D5 as a component and group remaining
files in D3 into several components.

In this case study, we want to prove that submodule-
level dependency graph can perform better than file-level
dependency graph and directory-level dependency graph in
software architecture recovery. And we will further present
how the directory-based dependency processing technique
impacts the recovered architecture in Section IV.

III. APPROACH
In this section, we explain details of the directory-based
dependency processing technique. The technique comprises
two main steps, obtaining dependencies from source code
files and dependency processing by applying information of
directory .

A. OBTAINING DEPENDENCIES
Include dependencies and symbol dependencies are fre-
quently used in software architecture recovery techniques.
They can both represent relationships between code files.
Although extraction of include dependencies is much more
efficient, we extract symbol dependencies instead of include
dependencies from source code files in our study because
include dependencies are not always accurate, e.g., a.c may
declare it includes b.h, but may not use any variables or func-
tions of b.h. Lutellier et al. [22] also approved that using
symbol dependencies can recover more accurate software
architectures than include dependencies.

The step of obtaining dependencies in our study is imple-
mented based on Eclipse CDT3 and Eclipse JDT.4 We extract
symbol dependencies by analyzing the AST (i.e., Abstract
Syntax Tree), which is generated by program parser in Eclipse
CDT/JDT. The types of dependency relationships which we
consider in our technique are listed in Table 2. In the table,
column ‘‘Dependency Type’’ presents the type of dependency
relationship considered in the technique, and ‘‘

√
’’ means

we extract that type of dependency for the project coding
in C/C++ or Java language. The selection of dependency
types is according to the specifications of Eclipse CDT/JDT
ASTParser. We extract all the dependency relationships from
the AST based on the parser of Eclipse CDT/JDT. For
example, the ‘‘Inheritance’’ dependency can be extracted by
analyzing the attribute TypeDeclaration.getSuperclass of the
nodes in AST, and the ‘‘Call’’ dependency can be extracted
by analyzing the attribute MethodInvocation.

We only consider direct dependencies between symbols,
because direct dependencies are proved to perform better
than transitive dependencies on the ability of architecture
recovery [22]. We present symbol dependencies on file level,
once variables or functions in different files have dependency

3C/C++ Development Tools, https://www.eclipse.org/cdt
4Java Development Tools, http://www.eclipse.org/jdt

TABLE 2. Extracted dependency relationships.

relationship, an directed edge would be added between these
two files. For each pair of linked files, we merge the edges
with same direction into one edge, and the number of symbol
dependencies in this edge would be the weight of the edge.
Finally, we get a file-level dependency graph, each node in
the graph represents a source code file and each edge could
represent one or several symbol dependencies.

B. DIRECTORY-BASED DEPENDENCY PROCESSING
Directories contain a wealth of design information of archi-
tecture, but current clustering techniques do not have an
appropriate way to utilize the information of directory.
In order to recover accurate architecture, we apply directory
information on file-level dependency graph. To achieve this,
we perform the following steps:
• We extract all the directory paths of a software system,
mark each source code file with the tag of directory
contains it. We treat all the directories fairly in the
dependency graph, even though there may be parents-
directories and sub-directories. The tags of directories
could divide the whole software system into the initial
partitions. In this way, each node in the dependency
graph represents a code file, the node has a tag of the
directory contains it, and each edge has a weight as the
number of symbol directories between the nodes.

• For each directory, we check whether there exist inter-
coupling files, i.e., the file with a big number of symbol
dependencies with the files outside its directory. The
inter-coupling files are selected according to the thresh-
old values of dependencies. After the selection of inter-
coupling files, we start to search for the intra-coupling
files, i.e., the files which have dependency relationships
with inter-coupling file in the same directory.

• For each inter-coupling file, we group it with related
intra-coupling files into a new submodule. When an
intra-coupling file have dependency relationships with
two ormore inter-coupling files, theweights between the
intra-coupling file and the inter-coupling files are used
to determine which one it should belong to.

VOLUME 6, 2018 52325



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

• After grouping inter-coupling files, the other files
remained in the original directory are grouped to be a
submodule. So all the files are grouped into submodules,
and the dependencies between files are still retained
by the submodules. The submodule-level dependency
graph is generated based on file-level dependency graph
and the information of directories.

Actually, there are two different ways to generate submod-
ules based on the inter-coupling files. The first one method is
grouping the inter-coupling file with related intra-coupling
files separately, i.e., a submodule contains only one inter-
coupling file. The other grouping method is grouping all
the connected inter-coupling files and intra-coupling files.
We select the first grouping method in our technique because
it makes our approach partial to file-level entities, and the
other method makes the submodules close to directory-level
entities. Lutellier et al. [22] have proved that directory-based
recovery techniques perform worse than file-based recovery
techniques in terms of accuracy. To improve the understand-
ability of submodule-level dependency graph, we name the
submodule as the name of the largest file it contains. When
there is no inter-coupling file in submodule, i.e., the submod-
ule is grouped by the remaining files after the selection of
inter-coupling file, the submodule is named as the name of
the directory contains it.

An example for directory-based dependency processing
technique is shown in Figure 3. In the above part of the
figure, we lay out a file-level dependency graph which con-
tains 16 source code files. These files are arranged in two
directories, each directory has 8 files. We simply setup the
threshold values of dependencies in this example, i.e., both
inter-indegree and inter-outdegree are set as 1. When select-
ing the inter-coupling files, we only consider the dependency
relationships between different directories. So we can easily
find out that a.c, c.c and z.c are inter-coupling files which are
marked with * in the figure.

For each inter-coupling file in Figure 3, we start
to select related intra-coupling files according to our
approach. Among the files, b.h is the intra-coupling file
of both a.c and c.c. To determine the affiliation, we check
the weights, the weight of edge between a.c and b.h is 3
and the weight of edge between c.c and b.h is 1. So b.h
should be grouped with a.c. And we can split Directory
A into two submodules as shown in part (b) of Figure 3.
For Directory B, z.c is the only inter-coupling file and z.h
is the related intra-coupling file, we group them as a new
submodule. The remaining 6 files are grouped as a submod-
ule. Finally, we get the submodule-level dependency graph
which contains 4 submodules. This kind of dependency graph
can be used as input of structure-based architecture recovery
techniques.

C. THRESHOLD VALUES
Our approach used two threshold values to determine inter-
coupling files, i.e., inter-indegree and inter-outdegree. The
inter-indegree refers to the number of symbols that are outside

FIGURE 3. An example for Directory-based dependency processing.
(a) File-leval dependency graph. (b) Submodel-leval dependency graph.

the directory and depend this file, inter-outdegree means
the number of symbols that are outside this directory and
depended by this file. The threshold values are presented as
(inter-indegree, inter-outdegree) in the paper. The assump-
tion behind the threshold values is that the selected inter-
coupling files have a high probability to indicate some spe-
cific feature, they may be interfaces or used to implement
some specific functionality. These inter-coupling files could
offer the indications of a submodule, so we tried to identify
them. The setup of the threshold values directly determine
the level of abstraction of the submodule-level dependency
graph. Considering extreme cases, when threshold values
are over-top, each directory represents a submodule, and if
threshold values are 0, each code file represents a submodule.
We have conducted a study on the impacts of threshold values
in the Section IV, and the results have shown that (3, 1) is the
suitable values for the studied subjects.

IV. EXPERIMENTS AND RESULTS
The directory-based dependency processing technique can
generate submodule-level dependency graph, which can be
directly used in automatic structure-based architecture recov-
ery techniques and manual recovery attempts. In this work,
we aim to answer the following research questions:

• RQ1: How does the directory-based dependency pro-
cessing technique perform in tool-assisted manual archi-
tecture recovery?

• RQ2: How does the directory-based dependency pro-
cessing technique perform in automatic architecture
recovery?

52326 VOLUME 6, 2018



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

TABLE 3. Subject systems statistics.

• RQ3: How does the directory-based dependency pro-
cessing technique performwith different setup of thresh-
old values?

A. EXPERIMENTAL SETUP
1) SUBJECT PROJECTS
To investigate the three research questions, we select all
the four subject systems from the existing study [10] (i.e.,
Bash-1.14.4, OODT-0.2, Hadoop-0.19.0 and Archstudio-4),
and another two projects from Github repository [12], [13]
(i.e., Httpd-2.4.33 and Joda-time-2.9.9). Garcia et al. [10]
recovered ground-truth architectures of the four projects in
their work, which could help to measure quality of the recov-
ered architectures in our experiments. The other two subjects
are selected randomly, we are not familiar with the related
source code and documents before the selection. We plan to
recover ground-truth architectures of the two subjects manu-
ally based on submodule-level dependency graphs.

Table 3 presents the detailed subject systems statis-
tics. In the table, column ‘‘Subjects’’ lists all the subject
systems that we used. Column ‘‘Language’’ presents the
major programming language coding in the subjects, column
‘‘Version’’ lists the selected release version of the subjects.
For Bash, OODT, Hadoop and Archstudio, we select the
same version as used in the work [10]. For Httpd and
Joda-time, we select the latest version in their github reposi-
tories [12], [13]. Column ‘‘NLOC’’ presents the net lines of
code, i.e., lines of code that are non-blank and non-comment,
which are calculated by tool CLOC [35] in the experiments.
Finally, column ‘‘Description’’ presents the basic functional-
ity of each project.

2) SELECTED RECOVERY TECHNIQUES
The submodule-level dependency graph can be used in both
tool-assisted manual architecture recovery and structure-
based automatic architecture recovery. For tool-assisted man-
ual architecture recovery, we implement a similar approach
to the existing work [10]. Our approach contains four steps.
First, we obtain the submodule-level dependency graph of
the selected subjects based on the directory-based depen-
dency processing technique. Second, we check the partition
of submodules and identify the functionality of each submod-
ule. While checking the partition of submodules, we mainly
focus on the submodule that contains more than 10 files
and check whether the files are used to implement similar

functionalities. Third, we iteratively group the submodules
according to their functionalities and dependency relation-
ships. Fourth, we invite architect from Huawei Technologies
Co., Ltd (i.e., the fourth author of the paper) to refine the
architecture and confirm the correctness of recovered archi-
tecture with us.

For structure-based automatic architecture recovery,
We select Bunch [24] in our experiments because Bunch is
the most widely used technique in comparison of architecture
recovery studies [3], [9], [16], [29], [30]. Bunch groups
code entities according to an optimization function called
Modularization Quality (MQ). Bunch use two kinds of hill-
climbing algorithms to resolve the optimization problem, i.e.,
nearest and steepest ascent hill climbing (NAHC and SAHC).
We obtain executable Bunch-3.5 tool from the website of
the authors [34] and applied both NAHC and SAHC on
our selected subjects. For the setup of Bunch, we use the
Bunch.TurboMQ clustering algorithm and collect the median
level of graph as our results.

3) MEASUREMENTS
There exit two kinds of measurements for recovery tech-
niques. One is designed to measure the similarity between
recovered architecture and ground-truth architecture, and the
other one is designed to measure self-quality independent
of the recovered architecture. We use the most widely used
measurement for each kind [22], i.e., MoJoFM [42] and
Turbo MQ [27] in our experiments.

MoJoFM can be used to compare the different recovered
architecture according to their similarity with the ground-
truth architecture. It is defined by the following formula,

MoJoFM =
(
1−

mno (A,B)
max (mno (∀A,B))

)
× 100% (1)

where A indicates recovery architecture, B indicates the
ground-truth architecture,mno(A,B) is the minimum number
of Move and Join operations needed to transform A into B.

Turbo MQ [27], [28], extension of Basic Modularization
Quality (Basic MQ) [24], supports dependency graph with
edge weights. The assumption behind Turbo MQ is that
architecture with high cohesion and low coupling is more
acceptable. To calculate Turbo MQ, we need to calculate a
Cluster Factor first. Cluster Factor of module i is defined by
the following formula,

CF i =
µi

µi + 0.5×
∑

j
(
εij + εji

) (2)

where i and j indicate the cluster in dependency graph, µi
indicates the number of intra-relationships, and εij + εji
indicates the number of inter-relationships between cluster i
and cluster j. Turbo MQ is defined as following,

Turbo MQ =
N∑
i=1

CF i (3)

where N is the number of clusters in dependency graph,
CF i is the Cluster Factor of module i. In this way, Turbo

VOLUME 6, 2018 52327



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

TABLE 4. Statistics of software entities in manual recovery.

MQcanmeasure the quality of recovered architecture without
similarity to the ground-truth architecture.

In the experiments, we first recover architecture of Httpd-
2.4.33 and Joda-time-2.9.9 manually, with the assistance of
submodule-level dependency graph. Then we apply Bunch
(NAHC and SAHC) on file-level dependency graph and
submodule-level dependency graph, and calculate MoJoFM
and Turbo MQ scores of the 6 studied subjects. The file-level
dependency graph is obtained through Eclipse CDT/JDT, and
the submodule-level dependency graph is generated by our
approach. The recovered architecture is generate by Bunch,
the ground-truth architectures of Bash, OODT, Hadoop
and Archstudio are obtained from existing study [10], and
the other two ground-truth architectures are obtained by
ourselves. We run Bunch on a Ryzen 1700 server with
16GB memory.

B. RESULTS ANALYSIS
1) RQ1: IMPROVEMENTS ON TOOL-ASSISTED MANUAL
ARCHITECTURE RECOVERY
Tool-assisted manual architecture recovery techniques are
commonly used to obtain ground-truth architecture [5], [10].
Since they usually involve extensivemanual work, the biggest
limitation of manual recovery is the huge time cost. So our
approach focuses on improvement on efficiency of manual
recovery. There are already many existing tools which can
assist manual recovery by extracting file-level, directory/
package-level dependencies automatically, e.g., Dependency
Finder [36], Doxygen [37] and SonarQube [38]. But accord-
ing to the results in our case study and recent work [22],
the file-level dependencies are usually too complex to under-
stand, and the directories cannot represent the modules cor-
rectly. The directory-based dependency processing technique
in our experiments can generate submodule-level dependency
graph which aims to represent the architecture on an appro-
priate level of abstraction between files and directories. There
are two major factors which can impact effectiveness and
efficiency of manual recovery, i.e., structure of software
entities and functionality of each entity. We will explain
the improvements on manual recovery in two perspectives,
i.e., reduction of the number and size of entities, and the
initial functional partition. These two features contribute a lot
during the process of manual recovery.

First, the directory-based dependency processing tech-
nique can greatly reduce the number and size of software
entities. In the experiments, there are three different level
of software entities, i.e., file, directory and submodule.
The statistics of these entities is shown in in Table 4. In the

table, column ‘‘Subjects’’ lists the programs we selected to
recover, column ‘‘#Files’’ presents the number of source code
files, and column ‘‘Dependencies’’ presents the number of
dependencies between specific level entities. Column ‘‘#Net-
Dir’’ presents the number of directories that contain at least
one file, column ‘‘Avg size’’ presents the average number of
files contained by each directory or submodule. FromTable 4,
we find that (1) the number of submodule-level entities and
dependencies is much smaller than that of file-level entities
and dependencies; (2) the average size of submodules is much
smaller than that of directories. The first finding means that
the number of submodule-level entities is greatly reduced in
contrast to file-based recovery attempts. To our experience,
an entity that contains less files are usually easier to under-
stand than the one contains more files. The second finding
illustrates that our technique can help us to comprehend the
partition easily. The directory-based dependency processing
technique can generate less entities than file-level extractions,
and smaller entities than directory-level extractions. The tech-
nique can generate an initial partition of architecture on an
appropriate level of abstraction between files and directories.

Second, the submodule-level dependency graph is an ini-
tial fine-grained partition of software functionalities. Sub-
modules are grouped according to the inter-connectivity and
intra-connectivity relationships of each directory. The most
important file in submodules is the inter-coupling file, which
has a high possibility to be used to implement some spe-
cific functionality. The submodule-level dependency graph
is expected to make the entities easy to understand in terms
of functionality, and improve efficiency of program com-
prehension. We explain this improvement in a small case.
Figure 4 presents the files in directory modules\generators
of project Httpd-2.4.33. To make the figure clear, we have
not shown inter-connectivity relationships of the files in the
figure. According to our technique, mod_status.h is the only
one inter-coupling file. So the 10 files are grouped into two
submodules, one contains mod_status.h and mod_status.c,
the other submodule contains the remaining 8 files. The
submodules are named as mod_status and mod_generator
according to our approach. We further investigate the func-
tionalities and find that submodule mod_status is designed
to present the current server statistics. To archive this, sub-
module mod_status needs to communicate with other mod-
ules. Submodule mod_generator is used to generate several
kinds of textual output, e.g., http header files, cgi running
environments and so on. This submodule do not need to
communicate with other modules. In this way, the directory-
based dependency processing technique presents the initial

52328 VOLUME 6, 2018



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

TABLE 5. Time cost of tool-assisted manual architecture recovery.

FIGURE 4. A case of submodule partition.

partition according to the functionalities of related files. If we
recover the architecture based on file-level or directory-level
dependencies, we may split this directory into three or four
submodules, or just group these files into a whole submodule.
However, we think the current partition is better, because
all the files in submodule mod_generator are used to gen-
erate textual output, they should not be grouped into too
many submodules. And considering the fact that submodule
mod_status has strong dependency relationships with other
submodules, we finally group submodule mod_status into
component mod_cache in Figure 5. The initial fine-grained
partition of software functionalities can help us to recover
architecture correctly and improve the efficiency greatly.

The architectures we recovered manually are shown
in Figure 5. The architectures of Httpd and Joda-time con-
tain 13 and 6 components, respectively. The actual time
cost of our manual recovery is listed in Table 5. In the
table, column ‘‘Subjects’’ lists the programs we selected to
recover, column ‘‘DBDP’’ presents the execution time of the
directory-based dependency processing. Column ‘‘Function-
ality Identification’’ presents the time cost of our identifica-
tion on the functionality of each submodule and the checking
on the correctness of each submodule. Column ‘‘Submodule
Grouping’’ presents the time cost that we take on grouping
submodules with similar functionalities. Column ‘‘Confirma-
tion’’ presents the time cost of our discussion on the confirma-
tion of the recovered architecture. Column ‘‘Total’’ lists the
total time cost we take for the manual architecture recovery.
From the table, we can find that although the technique can
greatly reduce the size and number of software entities com-
pared with directory-based and file-based techniques, the step

of functionality identification still take the majority of time.
This finding illustrates that the identification of functionality
is the hardest work in manual recovery. So our technique
focuses on the improvements of effectiveness and efficiency
of functionality identification by offering an initial partition
of architecture on an appropriate level of abstraction between
files and directories.

According to the data in Table 5, we spend 13 hours/18 hours
on recovering ground-truth architecture of Httpd and Joda-
time. The time cost of our attempts is much smaller than
the existing study [10], the average cost of recovering the
ground-truth architecture of seven systems by Garcia et al.
is 107 hours. We think there can be several reasons. First,
Garcia et al. used file-level dependencies as the major
source of architectural information, which contain much
more entities than submodule-level dependencies. Second,
their recovered architectures is more detailed than ours. They
aim to separate the functionalities independently by grouping
the source code files which implement specific functionality
into a component. In our manual recovery, we group the
files which implement similar functionalities together. Third,
the largest program in their study has 280K of NLOC, and the
NLOC of our two subjects are 85K and 195K. The smaller
size of subjects can make the process of recovery faster.
Fourth, their recovered architecture is authenticated by certi-
fiers, i.e., the developer or architect of the project. The email
communications also take a lot of time. In our experiments,
we confirm the recovered architecture through several face-
to-face discussions. In summary, the results prove that our
technique can greatly improve efficiency of manual recovery
by reducing the number of entities and splitting the directories
into several submodules with higher cohesion.

However, it cannot be denied that the huge improvement
on efficiency may incur the instability of accuracy. Since the
larger sized submodules have a higher possibility to contain
wrong partition, we examined the submodules which have
ten or more files carefully during the recovery. Project Httpd
contains 12 out of 90 submodules which have ten or more
files, and project Joda-time has 5 out of 179 such submodules.
After the examination, 4 submodules in Httpd and 1 submod-
ule in Joda-time are split once again. These submodules con-
tain too many files, and the functionalities vary widely. They
are grouped together due to the intra-connectivity dependen-
cies in the same directory.

2) RQ2: IMPROVEMENTS ON AUTOMATIC ARCHITECTURE
RECOVERY
We applied Bunch technique (NAHC and SAHC) on both
file-level and submodule-level dependency graphs of the

VOLUME 6, 2018 52329



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

FIGURE 5. Ground-truth architectures of Httpd and Joda-time. (a) Ground-truth architectures of Httpd. (b) Ground-truth architectures of Joda-time.

TABLE 6. Results of turbo MQ scores.

6 studied projects. Table 6 and Table 7 present the results
of Turbo MQ and MoJoFM of our recovery attempts. In the
tables, NAHC and SAHC refer to nearest and steepest
ascent hill climbing algorithm used in Bunch. Column ‘‘Sub-
jects’’ presents the studied projects, the other four columns
present the results of recovery attempts applying NAHC and
SAHC on submodule-level and file-level dependency graph,
respectively.

Turbo MQ measurement in Table 6 represents quality of
recovered architecture itself in terms of coupling and cohe-
sion. The value of Turbo MQ measurement is calculated as
summation of cluster factors for each component in the archi-
tecture. A higher value means organization of the architecture
is better, i.e., satisfying the ‘‘High Cohesion and Low Cou-
pling’’ design principle. From Table 6, we have the following
observations. First, both NAHC and SAHC on submodule-
level dependencies obtain higher TurboMQ scores than those
on file-level dependencies in most cases. This finding means
our technique generally can help Bunch generate component
graph with good organization. The only exception is Bash,
the scores of Turbo MQ on submodule-level dependencies
are lower than file-level dependencies. The reason is that
Bash has quite small number of source code files and file-
level dependencies, i.e., 150 C files and 345 dependencies.
After applying our approach, there are only 27 submodules.
The small number of submodules leads to a small number
of component, and further results in low score of Turbo MQ
measurement because the score is calculated as summation of

TABLE 7. Results of MoJoFM scores.

individual scores for each component. Second, the effective-
ness of SAHC is a little higher than that of NAHC. For the
12 recovery attempts of each technique, NAHC outperforms
SAHC on 5 attempts, SAHC performs better on 6 attempts,
and their scores are equal on 1 attempt. Third, the average
scores of Turbo MQ in our experiments are lower than those
in the recent empirical study [22]. In that work, the average
scores of TurboMQ on five subjects are 29.2 (Bunch-NAHC,
symbol) and 32.2 (Bunch-SAHC, symbol), which are much
higher than the average scores in Table 6. The reason is that
when applying the directory-based dependency processing
technique, the number of components in our recovered archi-
tecture is much smaller than the number in their work. And
according to the formula (3), an architecture contains smaller
number of components will probably obtain a smaller score
of Turbo MQ.

MoJoFM measurement in Table 7 represents similarity of
recovered architecture and ground-truth architecture. A score
of 100% indicates the recovered architecture is the same as
the ground-truth architecture. From Table 7, the observa-
tions are similar to those from Table 6. Submodule-based
recovery attempts generally perform better than file-based
recovery attempts in terms of MoJoFM scores, which can
be considered as indicator of accuracy. For MoJoFM mea-
surement, Bash is still an exception due to the small num-
ber of submodules. In the table, MoJoFM scores of Bash
on submodule-level dependencies are the lowest. When
using submodule-level dependencies, NAHC identified

52330 VOLUME 6, 2018



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

TABLE 8. Time cost of each recovery attempt.

6 components and SAHC identified 8 components. The
ground-truth architecture of Bash consists of 25 compo-
nents. So there need a lot of move operations to transform
the recovered architecture to the ground truth architecture.
In the recent empirical study [22], the average scores of
MoJoFM on five subjects are 34.2 (Bunch-NAHC, sym-
bol) and 46.8 (Bunch-SAHC, symbol). So we can find that
the architecture recovered by Bunch can obtain the high-
est MoJoFM score when using submodule-level dependency
graph, and the score on symbol-level dependency is higher
than that on file-level dependency. According to the above
analysis, we can conclude that the directory-based depen-
dency processing can generally improve the accuracy of
automatic software architecture recovery techniques that we
studied. Although our technique performs best on improve-
ments of accuracy, the average rate of accuracy is just
around 50%. The studied architecture recovery techniques
still have significant room for improvements in terms of
accuracy.

We further show the detailed time cost of the recov-
ery attempts in Table 8. Column ‘‘Dependencies Obtain-
ing’’ presents the time cost of extracting dependencies based
on Eclipse CDT and JDT, column‘‘Submodules Grouping’’
presents the execution time of our approach to generate
submodule-level dependency graph. Column ‘‘#Submod-
ules’’ presents the number of submodules our approach gen-
erated. The last four columns present the execution time of
each recovery attempt, respectively. From Table 8, we have
the following observations. First, the directory-based depen-
dency processing technique cannot improve the efficiency of
recovery attempts on the subject with small number of source
code files in the experiments, i.e., Bash. The reason is that
both NAHC and SAHC in Bunch already perform efficient
on project Bash. Second, our approach can greatly reduce
the time of recovery executions on larger-sized subjects,
e.g., OODT, Hadoop and Archstudio. The execution time of
Bunch tool grows rapidly with the increase of the number
of entities. The iterative process in automatic architecture
recovery makes the techniques cannot scale to large-sized
subjects [22]. Third, the step of submodules grouping usually
take more time than the step of dependencies obtaining on
smaller sized subjects, and becomes more efficient on larger
sized subjects. So we can conclude that the directory-based
dependency processing technique can make structure-based

automatic architecture recovery techniques perform efficient
on large-sized subjects.

3) RQ3: IMPACTS OF THRESHOLD VALUES
As discussed in Section III, the inter-coupling file is deter-
mined by threshold values of inter-indegree and inter-
outdegree, and the submodules are grouped based on the
inter-coupling files. So the setup of threshold values can
directly determine the number of submodules. According to
the design of our approach, when threshold values are 0,
each source code file will be treated as a submodule, and
each directory will be a submodule if threshold values are
extremely large. To investigate the detailed impacts of thresh-
old values on the partitions of submodules, we applied the
directory-based dependency processing technique with dif-
ferent setup of threshold values. Because directory-based
clustering techniques are proved to perform worse than file-
based clustering techniques in terms of accuracy [21], [22],
our attempts of generating submodules start from file level
to directory level, i.e., the threshold values generated set
from smaller number to larger number. The threshold val-
ues consist of inter-indegree and inter-outdegree, ‘‘inter-’’
indicates that we only consider the symbol dependencies
between directories in the selection of inter-coupling file.
To avoid the situation that too many library files are selected
as inter-coupling file, the value of inter-outdegree should
be greater than zero. The threshold values are presented as
‘‘inter-indegree’’-‘‘inter-outdegree’’ and we have evaluated
the impacts of 20 different sets of threshold values in the
experiments, ranged in {0-1, 0-2...4-4}.

The impacts of threshold values are three-fold: (1) the
threshold values can impact the distribution of submodules,
improper values may result in oversize submodules. Accord-
ing to the analysis in RQ1, the oversize submodules are
likely to contain files that are used to implement irrelevant
functionalities. We use CV (i.e., Coefficient of Variation)
to measure the quality of distribution. CV is used to mea-
sure degree of dispersion for a set of data, it is defined as
the ratio of the standard deviation σ to the mean value µ,
i.e., σ

µ
. When the score of CV is low, the sizes of submodules

are distributed close to each other. (2) The threshold values
can impact the quality of architecture organization which can
be measured by Turbo MQ scores. (3) The threshold values
can also impact the accuracy of recovered architecture and the

VOLUME 6, 2018 52331



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

FIGURE 6. The impacts of different threshold values on Bunch-SAHC.

FIGURE 7. The impacts of different threshold values on Bunch-NAHC.

accuracy can be measured by MoJoFM scores. We evaluate
the impacts of different sets of threshold values on Bunch-
SAHC and Bunch-NAHC in the experiments, and the results
of the three kinds of measurements are shown in Figure 6
and Figure 7. In the figures, the x axis represents the different
sets of threshold values and the y axis represents the scores
of different measurements. The black line of data presents the
scores of CV, and the blue line of data presents the scores of
MoJoFM . To make the figure clear, we decrease the value to
Turbo MQ scores into 10% and present the results in red line
of data. From Figure 6 and Figure 7, we have the following
observations.

First, for both Bunch-SAHC and Bunch-NAHC, the trend
of CV score is stable with the increase of threshold values.
This is because the majority of submodules in our experi-
ments only contain 1 or 2 source code files. The number of
small-sized submodules is much larger than that of large-
sized submodules. When the threshold values increase, the
number of large-sized submodules will usually increase, but it
is still much less than the number of small-sized submodules.
So the scores of CV will not change obviously in this case.
Among the 20 sets of threshold values, the set of 3-1 obtains
the lowest CV score (i.e., 1.1 and 1.04) for both Bunch-SAHC
and Bunch-NAHC, it can generate the best distribution of
submodules in our experiments.

Second, for both Bunch-SAHC and Bunch-NAHC,
the trend of MoJoFM scores varies slightly with the increase
of threshold values. This finding indicates that although our
technique can greatly improve the accuracy of recovered
architecture, the different sets of threshold values cannot
impact the improvements too much. The threshold values
0-1 perform much better than 0-0 for architecture recovery,
but the improvements vary slightly with the increase of
threshold values. For Bunch-SAHC, threshold values 2-1 and
3-1 can obtain higher MoJoFM scores than other sets, their
scores are both 51%. For Bunch-NAHC, threshold values
2-1 performs best in terms of MoJoFM, and threshold values
3-1 obtain a little lower MoJoFM score (i.e., 49%). We have
investigated the reason why almost all the sets of threshold
values can help to improve the accuracy and perform similar
with each other, and find that it is because the improvements
on accuracy mainly come from the grouping of remaining
files in directories. There are two kinds of remaining files,
one kind of files is orphan file which is un-connected with
any files on file-level dependency graph, and the other kind
of files has dependencies with other files but it is neither inter-
coupling file nor intra-coupling file. These two kind of files
are usually used to implement different functionalities with
inter-coupling files, and the current recovery techniques are
hard to cluster them to proper components based on file-level
and directory-level dependencies. The orphan files would be
separated with any threshold values that are greater than 0,
and they are not affected with the increase of threshold values.
For the other kind of remaining files, the files that have
dependencies with files in same directory may be grouped
with other potential inter-coupling files with a high number
of threshold values, but the files that only have dependencies
with files outside the directory are not affected by the thresh-
old values. So the trend of average MoJoFM scores varies
slightly with the increase of threshold values.

Third, in most cases, the score of Turbo MQ increases
rapidly when inter-indegree increase from 1 to 2, and
decreases rapidly when inter-indegree increase from 3 to 4.
The different sets of threshold values can result in different
number of submodules, which will further impact the whole
organization of the recovered architecture. To our surprise,
the threshold values 3-1 still perform best in terms of Turbo
MQ score for both Bunch-SAHC and Bunch-NAHC. So we
can conclude that the threshold values of symbol dependency
(i.e., inter-indegree is 3, inter-outdegree is 1) perform best for
the studied projects in our experiments.

C. THREATS TO VALIDITY
1) THREATS TO CONSTRUCT VALIDITY
The main threat to construct validity is the metrics that we
used to evaluate the effectiveness of recovered architecture.
To reduce this threat, we selected the widely used measure-
ments, i.e., Turbo MQ and MoJoFM. And we will conduct
the study with more measurements in the future work. The
other threat to construct validity is the threshold values we

52332 VOLUME 6, 2018



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

used in the experiments. Although we have compared results
of the threshold values ranged from 0-1 to 4-4 on all the
studied subjects, the data is still not enough to prove that
3-1 is the best suitable threshold values. We will conduct
the comparison of more different threshold values on more
subjects with more recovery techniques.

2) THREATS TO INTERNAL VALIDITY
Themain threat to internal validity is the potential faults in the
process of manual recovery. For subject Httpd and Joda-time,
we carefully identified the functionality of each submodule
and determined the affiliation to component according to the
similarity of functionalities and dependencies. To examine
the accuracy of architectures we recoveredmanually, we stud-
ied as many as possible related documents, and discussed
the conformation of recovered architecture with the profes-
sional architect Mr. Wu frequently. For the other four studied
subjects, we obtained component-level dependency graphs of
these subjects from the existing study [10], and identified
the ownership of files to components based on the precise
names of components and the conceptual architectures. To
reduce this threat, we will try to communicate with the related
authors to obtain the detailed document of the architecture.
The other threat to internal validity is the potential faults in
the configurations of existing tools, or in our data analysis.
To reduce this threat, the first author carefully reviewed all
the tool configurations, code, and data analysis scripts during
the study.

3) THREATS TO EXTERNAL VALIDITY
The subject systems, dependency extracting tools and auto-
matic architecture recovery tools used in our study may
all pose threats to external validity. For the subjects, Bash,
OODT, Hadoop and Archstudio are already used in several
studies [4], [9], [25], [41], and Httpd and Joda-time are
also hot projects on github. We obtained the source code
of these subjects from several on-line repositories. We used
Eclipse CDT and JDT to extract symbol dependencies, and
the dependencies may be incomplete due to the limitation of
extracting tools. We used only one architecture recovery tool,
i.e., Bunch to investigate the impacts of our approach on auto-
matic recovery. Bunch is implemented based on two heuristic
methods, genetic algorithm and hill climbing algorithm. The
iterative random process makes the recovered architecture
is not unique for a specific project. To reduce these threats,
we will conduct the study with more dependencies extracting
tools, more automatic architecture recovery tools and more
subject projects.

V. RELATED WORK
There are already various software architecture recovery tech-
niques in the literature. From a standpoint of input informa-
tion, current recovery techniques can be roughly divided into
two categories, structure-based techniques and knowledge-
based techniques [40].

A. STRUCTURE-BASED ARCHITECTURE RECOVERY
TECHNIQUES
Bunch [24] is a clustering approach that optimizes the objec-
tive features according to an optimization function called
Modularization Quality (MQ). Bunch uses two kinds of hill-
climbing algorithms to resolve the optimization problem,
i.e., nearest and steepest ascent hill climbing (NAHC and
SAHC). ACDC [40] is a pattern-based approach that groups
code entities according to the way how developers describe
the components of a software system. LIMBO [1] is a
scalable hierarchical clustering approach that quantifies the
relevant information preserved based on the information bot-
tleneck framework. The weighted combined algorithm [25]
is a hierarchical clustering approach that groups code enti-
ties according to the inter-cluster distance. Structure-based
software architecture recovery techniques are usually consist
of two parts (i.e., extraction of structural information and
grouping method), and are easy to be fully automated. But
there are still some structure-based techniques that involves
varying degrees of manual work, we categorize them into
semi-automatic structure-based software architecture recov-
ery techniques, and the above techniques are typical auto-
matic techniques. Bowman et al. obtain conceptual architec-
ture manually and use it to improve concrete architecture [5].
Focus [7] applies manual work to generate idealized archi-
tecture evolution and uses it to address affected components.
Tool-assisted recovery techniques are frequently-used semi-
automatic architecture recovery techniques, they are usually
used to obtain ground-truth architectures. The tools can help
users to extract and visualize software dependencies, e.g.,
Rigi [32] and AOVis [17]. Since all these techniques start
from a specific level dependency graph, and our approach can
produce a submodule-level dependency graph, our approach
is potential to improve both automatic and semi-automatic
structure-based software architecture recovery techniques.

B. KNOWLEDGE-BASED ARCHITECTURE RECOVERY
TECHNIQUES
Kuhn et al. [19] proposed a Latent Semantic Indexing based
clustering approach that groups code files containing sim-
ilar terms in the comments. Garcia et al. [11] proposed a
machine learning based technique that can identify compo-
nents and connectors according to the concerns. It consid-
ers a program as a set of textual information and extracts
concerns based on Latent Dirichlet Allocation (LDA) model.
Corazza et al. [6] proposed a nature language processing-
based clustering approach that divides code files into dif-
ferent zones. The zones are weighted based on Expectation-
Maximization algorithm, and then grouped by Hierarchical
Agglomerative Clustering technique.

C. MEASUREMENT OF SOFTWARE ARCHITECTURE
RECOVERY TECHNIQUES
To evaluate the similarity between recovered architecture
and ground-truth architecture, several measures are proposed.

VOLUME 6, 2018 52333



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

MoJo [39] measures the distance between two decompo-
sitions of the same set of software entities by counting
the minimum number of Move and Join operations needed
to transform the recovered architecture into ground-truth
architecture. MoJo also has some extended variants, e.g.,
MoJoSim [39], MoJoPlus [8], MoJoFM [42] and Edge-
MoJo [43]. Among them, MoJoFM is the most widely used
measure [3], [4], [15], [22], and it is proved to be more
accurate than other measures [9], [16]. Due to the difficulty
to obtain ground-truth architecture, there also need a mea-
sure which is independent of any ground-truth architecture.
Basic Modularization Quality (Basic MQ) [24] measures
inter-connectivity (coupling) and intra-connectivity (cohe-
sion) of dependency graph. Turbo MQ [27], [28], extension
of Basic MQ, supports dependency graph with edge weights.
The assumption behind Turbo MQ is that architecture with
high cohesion and low coupling is more acceptable. To con-
duct an effective comparison of recovered architecture and
ground-truth architecture, we use both MoJoFM and Turbo
MQ in our experiments.

D. COMPARISON OF SOFTWARE ARCHITECTURE
RECOVERY TECHNIQUES
There are several evaluation studies of architecture recovery
techniques [2], [4], [6], [9], [31], [44]. But the conclusions of
these studies are not always consistent. For example, Archi-
tecture Recovery using Concerns and ACDC perform better
than other techniques in one study [9]. And LIMBO and
ACDC outperform other techniques in another study [2]. The
main reason is that the performance of architecture recovery
techniques is impressionable with the impacts of different
subjects, assessment measures and implementations of tech-
niques in the comparisons [22].

VI. CONCLUSION
We have proposed a novel technique of directory-based
dependency processing to generate submodule-level depen-
dency graph based on file-level dependency graph. Our tech-
nique utilizes the design concepts hidden in the directory
structure to improve effectiveness and efficiency of bothman-
ual and automatic architecture recovery techniques.

To evaluate the impacts of our technique on architecture
recovery, we conduct a comparison study by applying the
directory-based dependency processing technique in both
manual and automatic architecture recovery on 6 subject
systems. The results show that our technique can greatly
improve the efficiency of tool-assisted manual recovery; the
submodule-level dependency graph can generally help auto-
matic architecture recovery tools to generate more accurate
architecture; our technique can alsomake the automatic archi-
tecture recovery tools easy to scale to large-sized projects.
Finally, we prove that the current setup of threshold values
is suitable for the studied subjects in our experiments by
comparing the impacts of 20 different sets of threshold values.

The results also show that our technique cannot improve
the performance of recovery techniques on small-sized

projects because current recovery techniques already per-
form good with small number of software entities. And in
rare cases, our technique may generate oversize submodules
which contain too many files due to the complex coupling
relationships in the directory. This kind of oversize submod-
ules should be examined manually. In the future, we will
conduct a more extensive study of the impacts of submodule-
based dependency graph with more subjects and more recov-
ery techniques to further improve the directory-based depen-
dency processing technique. We will also try to implement a
flexible method for setting of threshold values (e.g., learning
the threshold values setting method from historical recovery
attempts) to fix the problems of oversize submodules.

REFERENCES
[1] P. Andritsos, P. Tsaparas, R. J.Miller, andK. C. Sevcik, ‘‘LIMBO: Scalable

clustering of categorical data,’’ in Proc. Int. Conf. Extending Database
Technol., 2004, pp. 123–146.

[2] P. Andritsos and V. Tzerpos, ‘‘Information-theoretic software clustering,’’
IEEE Trans. Softw. Eng., vol. 31, no. 2, pp. 150–165, Feb. 2005.

[3] F. Beck and S. Diehl, ‘‘Evaluating the impact of software evolution
on software clustering,’’ in Proc. Work. Conf. Reverse Eng., Oct. 2010,
pp. 99–108.

[4] P. Behnamghader, D. M. Le, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic, ‘‘A large-scale study of architectural evolution in
open-source software systems,’’ Empirical Softw. Eng., vol. 22, no. 3,
pp. 1146–1193, 2017.

[5] I. T. Bowman, R. C. Holt, and N. V. Brewster, ‘‘Linux as a case study:
Its extracted software architecture,’’ in Proc. ACM Int. Conf. Softw. Eng.,
May 1999, pp. 555–563.

[6] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello, ‘‘Investigating
the use of lexical information for software system clustering,’’ inProc. 15th
Eur. Conf. Softw. Maintenance Reengineering, Mar. 2011, pp. 35–44.

[7] L. Ding and N.Medvidovic, ‘‘Focus: A light-weight, incremental approach
to software architecture recovery and evolution,’’ inProc.Work. IEEE/IFIP
Conf. Softw. Archit., Aug. 2001, pp. 191–200.

[8] M. El-Ramly, P. Iglinski, E. Stroulia, P. Sorenson, and B. Matichuk,
‘‘Modeling the system-user dialog using interaction traces,’’ in Proc. 8th
Work. Conf. Reverse Eng., Oct. 2001, pp. 208–217.

[9] J. Garcia, I. Ivkovic, and N. Medvidovic, ‘‘A comparative analysis of
software architecture recovery techniques,’’ in Proc. 28th IEEE/ACM Int.
Conf. Automated Softw. Eng., Nov. 2013, pp. 486–496.

[10] J. Garcia, I. Krka, C. Mattmann, and N. Medvidovic, ‘‘Obtaining ground-
truth software architectures,’’ in Proc. 35th Int. Conf. Softw. Eng.,
May 2013, pp. 901–910.

[11] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai, ‘‘Enhanc-
ing architectural recovery using concerns,’’ in Proc. 26th IEEE/ACM Int.
Conf. Automated Softw. Eng., Nov. 2011, pp. 552–555.

[12] Github-Repository. Apache. [Online]. Available: https://github.com/
apache/httpd

[13] Github-Repository. Joda-Time. [Online]. Available: https://github.com/
JodaOrg/joda-time

[14] M. W. Godfrey and Q. Tu, ‘‘Evolution in open source software: A case
study,’’ in Proc. Int. Conf. Softw. Maintenance, Oct. 2000, pp. 131–142.

[15] Q. Gunqun, Z. Lin, and Z. Li, ‘‘Applying complex network method to soft-
ware clustering,’’ in Proc. Int. Conf. Comput. Sci. Softw. Eng., Dec. 2008,
pp. 310–316.

[16] K. Kobayashi, M. Kamimura, K. Kato, K. Yano, and A. Matsuo, ‘‘Feature-
gathering dependency-based software clustering using dedication and
modularity,’’ in Proc. 28th IEEE Int. Conf. Softw. Maintenance, Sep. 2012,
pp. 462–471.

[17] J. Koch and K. Cooper, ‘‘AOVis: A model-driven multiple-graph approach
to program fact extraction for AspectJ/Java source code,’’ Software Eng.,
Int. J., vol. 1, no. 1, pp. 60–71, 2011.

[18] P. Kruchten, ‘‘Architectural blueprints—The ‘4+1’ viewmodel of software
architecture,’’ IEEE Softw., vol. 12, no. 6, pp. 42–50, Nov. 1995.

[19] A. Kuhn, S. Ducasse, and T. Gîrba, ‘‘Semantic clustering: Identifying
topics in source code,’’ Inf. Softw. Technol., vol. 49, no. 3, pp. 230–243,
2007.

52334 VOLUME 6, 2018



X. Kong et al.: Directory-Based Dependency Processing for Software Architecture Recovery

[20] T. C. Lethbridge and N. Anquetil, ‘‘Comparative study of clustering algo-
rithms and abstract representations for software remodularisation,’’ IEE
Proc.-Softw., vol. 150, no. 3, pp. 185–201, 2003.

[21] T. Lutellier et al., ‘‘Comparing software architecture recovery techniques
using accurate dependencies,’’ in Proc. IEEE/ACM 37th Int. Conf. Softw.
Eng., May 2015, pp. 69–78.

[22] T. Lutellier et al., ‘‘Measuring the impact of code dependencies on software
architecture recovery techniques,’’ IEEE Trans. Softw. Eng., vol. 44, no. 2,
pp. 159–181, Feb. 2018.

[23] A. S. Mamaghani and M. R. Meybodi, ‘‘Clustering of software systems
using new hybrid algorithms,’’ in Proc. 9th IEEE Int. Conf. Comput. Inf.
Technol., Oct. 2009, pp. 20–25.

[24] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, ‘‘Bunch:
A clustering tool for the recovery and maintenance of software system
structures,’’ in Proc. IEEE Int. Conf. Softw. Maintenance, Aug./Sep. 1999,
pp. 50–59.

[25] O. Maqbool and H. A. Babri, ‘‘The weighted combined algorithm:
A linkage algorithm for software clustering,’’ in Proc. 8th Eur. Conf. Softw.
Maintenance Reengineering, Mar. 2004, pp. 15–24.

[26] O. Maqbool and H. Babri, ‘‘Hierarchical clustering for software architec-
ture recovery,’’ IEEE Trans. Softw. Eng., vol. 33, no. 11, pp. 759–780,
Nov. 2007.

[27] B.Mitchell,M. Traverso, and S.Mancoridis, ‘‘An architecture for distribut-
ing the computation of software clustering algorithms,’’ in Proc. Work.
IEEE/IFIP Conf. Softw. Archit., Aug. 2001, pp. 181–190.

[28] B. S. Mitchell, ‘‘A heuristic approach to solving the software clustering
problem,’’ in Proc. Int. Conf. Softw. Maintenance, Sep. 2003, pp. 285–288.

[29] D. Rayside, S. Reuss, E. Hedges, and K. Kontogiannis, ‘‘The effect of call
graph construction algorithms for object-oriented programs on automatic
clustering,’’ in Proc. 8th IEEE Int. Workshop Program Comprehension,
Jun. 2000, pp. 191–200.

[30] M. Shtern and V. Tzerpos, ‘‘Refining clustering evaluation using structure
indicators,’’ in Proc. IEEE Int. Conf. Softw. Maintenance, Sep. 2009,
pp. 297–305.

[31] M. Shtern and V. Tzerpos, ‘‘On the comparability of software clus-
tering algorithms,’’ in Proc. IEEE Int. Conf. Program Comprehension,
Jun./Jul. 2010, pp. 64–67.

[32] M.-A. D. Storey, K. Wong, and H. A. Müller, ‘‘Rigi: A visualization
environment for reverse engineering,’’ in Proc. 19th Int. Conf. Softw. Eng.,
May 1997, pp. 606–607.

[33] P. Tonella and A. Potrich, Reverse Engineering of Object Oriented Code.
Springer, 2005.

[34] Tool. Bunch. [Online]. Available: https://www.cs.drexel.edu/~spiros/bunch
[35] Tool. Count Lines of Code. [Online]. Available: https://github.com/

AlDanial/cloc
[36] Tool. Dependency Finder. [Online]. Available: http://depfind.

sourceforge.net
[37] Tool. Doxygen. [Online]. Available: http://www.doxygen.nl
[38] Tool. Sonarqube. [Online]. Available: https://www.sonarqube.org
[39] V. Tzerpos and R. C. Holt, ‘‘MoJo: A distance metric for software cluster-

ings,’’ in Proc. 6th Work. Conf. Reverse Eng., Oct. 1999, pp. 187–193.
[40] V. Tzerpos and R. C. Holt, ‘‘ACCD: An algorithm for comprehension-

driven clustering,’’ in Proc. 7th Work. Conf. Reverse Eng., Nov. 2000,
pp. 258–267.

[41] Y. Wang, P. Liu, H. Guo, H. Li, and X. Chen, ‘‘Improved hierarchical
clustering algorithm for software architecture recovery,’’ in Proc. Int. Conf.
Intell. Comput. Cogn. Inform., Jun. 2010, pp. 247–250.

[42] Z. Wen and V. Tzerpos, ‘‘An effectiveness measure for software cluster-
ing algorithms,’’ in Proc. 12th Int. Workshop Program Comprehension,
Jun. 2004, pp. 194–203.

[43] Z. Wen and V. Tzerpos, ‘‘Evaluating similarity measures for software
decompositions,’’ in Proc. 20th IEEE Int. Conf. Softw. Maintenance,
Sep. 2004, pp. 368–377.

[44] J. Wu, A. E. Hassan, and R. C. Holt, ‘‘Comparison of clustering algorithms
in the context of software evolution,’’ in Proc. 21st IEEE Int. Conf. Softw.
Maintenance, Sep. 2005, pp. 525–535.

[45] C. Xiao and V. Tzerpos, ‘‘Software clustering based on dynamic depen-
dencies,’’ in Proc. 9th Eur. Conf. Softw. Maintenance Reengineering,
Mar. 2005, pp. 124–133.

XIANGLONG KONG received the bachelor’s
degree in computer science from Southeast
University, Nanjing, China, in 2009, where he
is currently pursuing the Ph.D. degree with the
Computer Science and Engineering School, under
the supervision of Prof. B. Li at the Software
Engineering Institute. He has studied under the
supervision of Prof. W. E. Wong and L. Zhang at
the Department of Computer Science, The Uni-
versity of Texas at Dallas, from 2014 to 2016. His

research interests include architecture recovery, program repair, andmutation
testing.

BIXIN LI is currently a Professor with the Com-
puter Science and Engineering School, Southeast
University, Nanjing, China. He also leads the Soft-
ware Engineering Institute, Southeast University,
and over 20 young men and women are hard
working on national and international projects. He
has published over 90 articles in refereed confer-
ences and journals. His research interests include
program slicing and its application, software evo-
lution and maintenance, and software modeling,
analysis, testing, and verification.

LULU WANG received the bachelor’s degree in
computer science and the Ph.D. degree in software
engineering from Southeast University, Nanjing,
China, in 2006 and 2012, respectively. He is cur-
rently an Associate Professor with the Computer
Science and Engineering School, Southeast Uni-
versity. His research interests include path profil-
ing, program analysis, and program slicing.

WENSHENG WU received the master’s degree
from the University of Science and Technology of
China in 1996. He is currently the Chief Archi-
tect with Huawei Technologies Co., Ltd., Shen-
zhen, China. He is also a famous solution expert
in China. He has over 20-year rich experiences
in software design and development and project
management. His main research interests include
the design, measurement, guarding, and evolution
of software architecture and products.

VOLUME 6, 2018 52335


	INTRODUCTION
	CASE STUDY
	APPROACH
	OBTAINING DEPENDENCIES
	DIRECTORY-BASED DEPENDENCY PROCESSING
	THRESHOLD VALUES

	EXPERIMENTS AND RESULTS
	EXPERIMENTAL SETUP
	SUBJECT PROJECTS
	SELECTED RECOVERY TECHNIQUES
	MEASUREMENTS

	RESULTS ANALYSIS
	RQ1: IMPROVEMENTS ON TOOL-ASSISTED MANUAL ARCHITECTURE RECOVERY
	RQ2: IMPROVEMENTS ON AUTOMATIC ARCHITECTURE RECOVERY
	RQ3: IMPACTS OF THRESHOLD VALUES

	THREATS TO VALIDITY
	THREATS TO CONSTRUCT VALIDITY
	THREATS TO INTERNAL VALIDITY
	THREATS TO EXTERNAL VALIDITY


	RELATED WORK
	STRUCTURE-BASED ARCHITECTURE RECOVERY TECHNIQUES
	KNOWLEDGE-BASED ARCHITECTURE RECOVERY TECHNIQUES
	MEASUREMENT OF SOFTWARE ARCHITECTURE RECOVERY TECHNIQUES
	COMPARISON OF SOFTWARE ARCHITECTURE RECOVERY TECHNIQUES

	CONCLUSION
	REFERENCES
	Biographies
	XIANGLONG KONG
	BIXIN LI
	LULU WANG
	WENSHENG WU


