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ABSTRACT The research on topology-aware deployment for service function chain (SFC) is very important
to a network slice technique. Nevertheless, most of the existing schemes on topology-aware deployment
assume that the network topology information (NTI) is completely observed, which is unrealistic, con-
sidering the topology observation errors in practical network environment. In this paper, we consider
the SFC deployment based on realistic topology sensing in fifth-generation cloud-radio access network
(C-RAN). Due to the unavoidable errors, the realistic topology observation results merely represent partial
NTI. Therefore, the partial observation Markov decision process (POMDP) is used in this paper to estimate
the whole real topology condition. Then, a POMDP-based SFC deployment scheme is proposed. In this
scheme, considering the particularity of SFC deployment in C-RAN, the SFC deployment problem is defined
as a series of deployment decisions, including repair decisions, selection decisions, and resource allocation
decisions. Our objective is to maximize the utility associated with the total delay and server-repair cost.
And the POMDP scheme, according to the queue state information and partially observable NTI, makes
deployment policies to maximize the utility by Bellman iteration. To reduce the iteration complexity, a point-
basedmingled heuristic value iteration algorithm is formulated in this paper. The simulation results show that
the performance of C-RAN in terms of the system total delay and throughput can be significantly improved
by using the proposed POMDP scheme.

INDEX TERMS Network slice, deployment of service function chain, network topology observation, partial
observation Markov decision process.

I. INTRODUCTION
Network slice (NS) is a critical technology for 5G
mobile communication network [1]–[3]. This technology
is expected to reduce capital expenditure and operating
expenditure [4], and satisfy the requirement of diverse ser-
vices [5]–[8]. AnNS usually contains several service function
chains (SFCs) [9], [10]. Since all these SFCs in an NS pass
through evolution packet core (EPC) network and cloud-
radio access network (C-RAN), the NS is also made up of
a EPC slice and a RAN slice. When a specific NS is created
by the operator, these SFCs in the NS need to be deployed
optimally [11]. There aremassive schemes on the deployment
for SFCs. Especially, topology-aware deployment scheme is
considered as a promising method in the dynamic network

environment [12]. However, most of schemes on topology-
aware deployment for SFCs assume that network topology
information (NTI) is completely observed. This assumption is
unrealistic when we consider the topology observation errors
in practical network environment.

In practical network with network function virtualiza-
tion (NFV) structure, the system obtains NTI by observing
each server’s work state. Usually, an observation mechanism
is used to observe whether a server work normally or not.
In fact, due to the accidental errors in the observation mech-
anism, the observation results may not accord with the some
servers’ actual work states. If a topology-aware scheme
ignores the observation errors and directly considers the
observable NTI as the whole real topology condition, it’s
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performance may decrease when they are applied in practi-
cal network. Therefore, considering the partial observation,
the scheme based on realistic topology sensing is a more
significant method for SFC deployment in practical dynamic
network.

Most of recent topology-aware schemes on SFC deploy-
ment consider that the network topology is completely
observed. In [13], a dynamic resource allocation scheme is
proposed with completely observable network topology. The
author considers the joint allocation of computing resource
and bandwidth for SFCs so as to minimize the utility of
system scheduling delay and cost. In [14], with considering
completely observable topology, Lei et al. proposes a mixed
integer linear program (MILP) model for SFC deployment
to optimize the delay, and an online algorithm is proposed
for solving the MILP model. In [15], the SFC deployment
is formulated as finite Markov states in dynamic hybrid net-
work. Due to the dynamic network topology, the state space
may change, and a dynamic Markov approximation (MA)
scheme is proposed to maximize the utility associated with
the network throughput and resource utilization. Considering
dynamic network topology, a SFC deployment scheme based
on Markov decision processes (MDP) is proposed in [16].
The scheme dynamicallymakes the decisions on SFC deploy-
ment according to the completely observable NTI. In [17],
Qu et al. considers the joint problem of traffic steering and
virtual network function (VNF) scheduling as a dynamic
programming mathematical model under dynamic network.
And a genetic algorithm is proposed to obtain optimal deploy-
ment policy. The migration model on the SFC deployment is
proposed in [18] to reduce the energy consumption. In this
scheme, when the topology changes are completely observed,
the migration policy is proposed to determine when and
where to migrate the VNFs of SFCs. So the migration policy
can dynamically be in response to changes of SFC request
and network topology. However, it should be noted that these
schemes in [13]–[18] consider that the whole real topology
condition could be observed completely. In practical network,
there may be topology observation errors in observation
results. So it is unrealistic to directly consider the observa-
tion results as the real topology condition. In addition, all
above SFC deployment schemes focus on solving the SFC
deployment problem in EPC network. Compared with EPC,
C-RAN has different structure, so there are some differences
between the SFC deployment method in EPC and C-RAN.
And these differences make these schemes unavailable for
SFC deployment in C-RAN.

In this paper, we consider the SFC deployment based on
realistic topology-aware in dynamic C-RAN, and propose a
novel partial observation Markov decision process (POMDP)
scheme for SFC deployment of RAN slices. The POMDP
is a kind of stochastic learning, which is a powerful tool to
process the decision-making problem under uncertain envi-
ronment. The distinct features of this paper are as follows.

1) Heartbeat packet detectionmechanism (HPDM) is used
to observe servers’ work state. Considering realistic

topology-aware, the POMDP is applied in this paper
to estimate the real topology condition by partially
observing each server’s state.

2) In order to achieve maximal utility associated with the
total delay and server-repair cost, a POMDP scheme for
SFC deployment in C-RAN is proposed in this paper.
Joint decisions of repair decisions, selection decisions
and resource allocation decisions are designed for SFC
deployment in RAN slices. And two major influential
factors which affect the decisions are considered in the
POMDP scheme, including NTI and QSI.

3) When we consider the Bellman iteration for the
POMDP scheme, the complexity of iteration is very
high. Therefore, a point-based mingled heuristic value
iteration (MHVI) algorithm is used in this paper to
reduce the complexity.

The rest of this paper is organized as follows. Section II
describes the system model. In section III, the problem of
SFC deployment in RAN slice is formulated as a series of
decisions. Section IV describes The POMDP scheme for SFC
deployment. SectionV describesMHVI algorithm. The simu-
lation results are discussed in Section VI. Several conclusions
are present in section VII.

II. SYSTEM MODEL
In this section, we describe the model of SFC deployment in
C-RAN, based on realistic topology-aware.

With the NFV structure in C-RAN, the system model
is shown in Fig.1. In the structure of NFV, each protocol
function in C-RAN is virtualized to be a VNF by the software
executing on the common servers. And these VNFs could
share the common network infrastructure. Different from the
EPC, C-RAN consists of virtual distribution units (DUs) and
centralization units (CUs) for each SFC in RAN slices, so we
consider that there are two physical networks in C-RAN. One
physical network is in charge of providing virtual DUs with
resources. The system could instantiate various virtual DUs
for diverse services in application layer, so there is a DU
pool on this physical network. Analogously, another physical
network forms the CU poll. In general, a virtual DU or CU
for a SFC contains several VNFs on the corresponding pool.
For example, as shown in Fig.1, in NS 1 the virtual DU of
SFC2 contains VNF-1 and its virtual CU contains VNF-2,
VNF-3, VNF-4 and VNF-5. Besides, a virtual DU com-
municates with the corresponding virtual CU by fronthaul
network.

In our system model, we consider U as the set of RAN
slices which are in the condition of uplink, and let ζu be the
set of SFCs in slice u. The physical networks of DU pool and
CU pool are regarded as two undirected graphs, and they are
defined as G1 = (N1,L1) and G2 = (N2,L2) respectively,
where N1 and N2 are the sets of server nodes in DU pool and
CU pool respectively, L1 and L2 are the sets of links in two
physical network respectively. vnk is computational capacity
of server nk , while vl is the bandwidth capacity of link l.
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FIGURE 1. System model.

FIGURE 2. Eight methods of VNF placement in C-RAN.

In addition, we consider that data flows could be cached in
DU pool, that is, each SFC has a queue. Let qu,m(t) be the
queue length of SFC m (m ∈ ζu) at time slot t and nq be the
allowable maximum queue length.

With the limit of fronthaul bandwidth resource, the RAN
slices could place the VNFs of SFCs in DU pool and CU pool
flexibly to satisfy quality of service (QoS). As shown in Fig.1,
in the condition of uplink, NS 1 instantiates the VNF-1 in
DU pool, while NS 2 instantiates the VNF-1 and VNF-2 in
the DU pool, others are placed in CU pool. The two methods
of VNF placement are used to satisfy their own different
delay requirements or adapt to the changes of topology. In
this paper, under the condition of up-link, we summarize
8 methods of VNF placement in RAN slices, as shown
in Fig.2, and all the methods are in the discussion according
to the 3GPP technical report. When a RAN slice selects the
method of VNF placement from the option1 to option8 in
turn, its consumption of fronthaul network resource gradually
increases. Besides, some options’ maximum allowed trans-
mission latency in fronthaul network is different according
to 3GPP technical report. The maximum allowed transmis-
sion latency of option1, option2 and option3 ranges form
1.5ms to 10ms. The maximum allowed transmission latency
of option 4 and option 5 is about 500 us with the limitation of
real-time performance of radio link control (RLC) protocol.

Since the hybrid automatic repeat request (HARQ) function
in the option 6, option 7 and option 8 is placed in CU, their
maximum allowed transmission latency is equal to 250us. Of
course, each option has its own shortcoming. The option 1,
option 2 and option 3 easily cause high loads of DU pool,
which may affect the reliability of SFCs. The option 4 and
option 5 can increase the complexity of the relevant inter-
faces. Due to the strict requirement of latency in fronthaul
network, the option 6, option 7 and option 8 may waste a lot
of fronthaul resources and lead to poor flexibility of network.

On the one hand, the selection of method of VNF place-
ment for each RAN slice decides the number of VNFs instan-
tiated in DU pool and CU pool, which may affect the virtual
computing and bandwidth resource allocation in two pools.
On the other hand, different methods of VNF placement
need to adjust allocation of fronthaul resource to satisfy the
QoS such as throughput or transmission delay. Therefore,
the selection of method of VNF placement is a significant
factor for SFC deployment in RAN slices. The proposed
scheme considers the selection when it makes deployment
decisions for SFCs in RAN slices.

In fact, the physical networks of C-RAN tend to be in
the outside with more complex environment. It is easy for
these common servers in the physical networks to fail to
work normally with a lot of stochastic environment factors.
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In the system model, we consider that there is a server-
observation function in virtualization layer. By partially
observing each server’s state, the system could obtain the
present changes of network topology which is caused by
broken server or servers. In this paper, we adopt the HPDM
to observe whether the servers work well or not. Each server
node in the physical networks sends a simple packet to the
central monitor at regular intervals , and the central monitor
checks if another new simple packet arrives within certain
time interval for each node in real time. If Tnow−Tlast,i > To,i,
the system considers that the server i fails to work at the
present time, where Tnow is the present time, Tlast,i is arrival
time of last packet for server i, and To,i is the maximum
allowable arrival time interval.

Besides, for server i (i ∈ N1 ∪ N2), the central monitor
records the packet arrival times and time intervals between the
arrival times of last packet and the latest packet when another
new packet arrives. Apparently, every time the value of packet
arrival time interval may change due to the dynamic network
environment. These recorded arrival time intervals of server i
make up a sample ηi with fixed size, and the sample is updated
by adding newly recorded value of time interval and removing
the oldest value. Let xi be the time interval of packet arrival
for server i.
Assumption 1: The value of xi is subject to normal distri-

bution based on the sample ηi. And the probability density
function of xi is defined as

f (xi) =
1

√
2πσi

e
−

(xi−µi)
2

2σ2i

where µi and σi are the expectation and standard deviation of
the sample ηi.

In HPDM, the maximum allowable time interval of packet
arrival is set manually for each server. If another new packet
of server i does not reach the central monitor within To,i,
server i is considered to fail to work. In fact, in the sample
ηi, some values may be larger than To,i but the server actually
is well-working at that time. Therefore, there may be some
observation errors with HPDM when the system observes
these actually well-working servers. Let Pe,i be the probabil-
ity of occurring observation error for server i. Especially, the
Pe,i also is the probability of xi > To,i. With the f (xi), the Pe,i
is expressed as,

Pe,i = Pr[xi > To,i] =
∫
+∞

To,i

1
√
2πσi

e
−

(xi−µi)
2

2σ2i dx (1)

On the one hand, to improve the accuracy of observation,
To,i should be as large as possible and Pe,i should be as small
as possible. On the other hand, every time the central monitor
needs to allocate the CPU resource to watch if another new
packet arrives from server i in real time, especially, the allo-
cated CPU resource for server i is occupied until another
new packet arrives within the time of To,i or occupied during
the time of To,i. Let 8i be the maximum resource overhead
of observing the server i and it is defined as 8i = To,i ·

vic, where v
i
c represents the central monitor’s CPU resource

allocated to observe server i. To improve the resource uti-
lization of central monitor, 8i should be as small as pos-
sible. Therefore, the tradeoff between the performance and
the maximum overhead of observation should be considered.
We define the tradeoff2i for server i as2i = max

0<To,i≤1

1−Pe,i
8i

,

where 1 is the interval between two adjacent time slot. The
optimal maximum allowable time interval for server i is
defined as

T o,i = argmax
0<To,i≤1

1− Pe,i
8i

(2)

And the Pe,i is equal to Pr[xi > T o,i].
In virtualization layer, there also is a resource orchestration

function. In the proposed scheme, we only consider the joint
allocation of virtual computing resource, virtual link resource
and fronthaul resource for SFCs in RAN slices, and other
resources’ allocation will continue in future research. In addi-
tion, the amount of each kind of resource is discrete in this
paper.

Let χcu,m(t) be the set of computing resource allocation
policy for VNFs which belong to the SFC m(m ∈ ζu) at time
slot t ,

χcu,m(t) = {v
c
f ju,m,nk

(t) · xp
f ju,m,nk

|j ∈ Fu,m, nk ∈ Gf ju,m}

where Fu,m is the set of VNFs which belong to the SFC m,
Gf ju,m is the set of server nodes which can instantiate VNF
j, vc

f ju,m,nk
(t) represents the amount of computing resource

allocated for VNF j in server nk , and the binary variable
xp
f ju,m,nk

= 1 if and only if VNF j is instantiated on server nk .

Let χbu,m(t) be the set of bandwidth resource allocation
policy for VNFs of SFC m(m ∈ ζu). Under the condition of
up-link, the data flows go through a virtual DU and a virtual
CU along the SFC m. It is noticed that after the data flows
go through f DUu,m which donates the last VNF of the virtual
DU, fronthaul network provides the bandwidth resource for
the data flows, so the system only allocates fronthaul resource
for f DUu,m . And we consider that the system does not allocate
bandwidth resource for the VNF f CUu,m which sends the data
flows to EPC under the condition of up-link. Therefore,
the bandwidth allocation at time slot t consists of two parts,
namely,

χbu,m(t) = {v
b
f ju,m,l

(t) · yp
f ju,m,l
|j ∈ Fu,m − {f DUu,m , f

CU
u,m },

l ∈ L1 ∪ L2} ∪ {vbf DUu,m
(t)}

where vb
f ju,m,l

(t) denotes the amount of bandwidth resource

allocated for VNF j on link l, the binary variable yp
f ju,m,l
= 1 if

only if VNF j transmits the data flows through the link l, and
vbf DUu,m

(t) is defined as the fronthaul resource allocated for the

VNF f DUu,m .
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III. PROBLEM FORMULATION FOR THE
SFC DEPLOYMENT
Considering the particularity of SFC deployment in dynamic
C-RAN, the problem of SFC deployment in RAN slices is
defined as three decisions in order. The first decision is repair
decision. In the decision, the system decides whether the
broken servers which are observed by HPDM need to be
repaired or not. Let aα(t) be the repair decision at time slot
t . If aα(t) = 1, all the broken servers would be repaired,
which leads to the server-repair cost. If aα(t) = 0, the
broken servers keep stopping working. The second decision
is selection decision. In this decision, each RAN slice chooses
a method of VNF placement to adapt to changes of topology.
aβ (t) denotes the set of selection decision at time slot t , that is,
aβ (t) = {βu(t)|u ∈ U}, where the βu(t) represents the option
of VNF placement for RAN slice u, and let Aβ be the set of
all possible selection decisions. The third decision is resource
allocation decision, and Aχ (t) = (χcu,m(t), χ

b
u,m(t)|m ∈

ζu, u ∈ U ) is defined as the decision on resource allocation
at time slot t . Besides, let Aχ be the set of the whole possible
resource allocation decisions.

We consider the relationship between the repair decision
and resource allocation decision. When the system decides
to repair the broken server or servers, the more available
computing and bandwidth resources can be allocated to all
SFCs than not repairing, which may reduce the total delay.
However, the action of repairing broken server or servers also
leads to the server-repair cost. For operators, the total delay
should be as low as possible while the enough low server-
repair cost also must be realized. Therefore, the tradeoff
between the total delay and server-repair cost is the objective
in this paper.

On the one hand, we consider the server-repair cost which
repair decision results in. Let R1(t) be the server-repair cost
at time slot t . And it is defined as R1(t) = c(

∑
i∈N1

%i(t) +∑
j∈N2

%j(t)), where binary variable %i(t) = 1 if and only if
server iwhich fails to work is repaired at time slot t , c denotes
the repair cost of each server, and |N1| represents the number
of elements in set N1.
On the other hand, the system total delay includes all the

SFCs’ queuing delay and scheduling delay from DU to CU.
Assumption 2:The amount of data packets arrival in SFCm

(m ∈ ζu) is subject to non-homogeneous Poisson distribution.
The average arrival rate is the function of time slot t , and
it is defined as λu,m(t) at time slot t . Let wu,m(t) be the
number of data packets which reach SFC m from UEs at time
slot t . Besides, let Pr[wu,m(t) = n] be the probability of
wu,m(t) = n, and it is expressed as

Pr[wu,m(t) = n] = e−λu,m
(λu,m)

n

n!
(3)

where λu,m =
∫ t+1
t λu,m(t ′)dt ′.

Applying the Little law in queuing theory, the queuing
delay of SFC m(m ∈ ζu) at time slot t is defined as
qu,md (t) = qu,m(t)/λu,m(t). The scheduling delay of SFC m at
time slot t includes processing delay pu,md (t) and transmission

delay lu,md (t). The processing delay pu,md (t) is defined as

pu,md (t) =
∑
j∈Fu,m

(
∑

nk∈Gf ju,m

xp
f ju,m,nk

· pnk
f ju,m

(t)) (4)

where pnk
f ju,m

(t) is the processing delay of VNF j on the server

nk at time slot t . And the transmission delay lu,md (t) is formu-
lated as,

lu,md (t) =
D′u,m(t)

vbf DUu,m
(t)
+

∑
j∈F ′u,m

Df ju,m (t)

vb
f ju,m,l

(t)
(5)

where Df ju,m (t) is the amount of data sending out from VNF
j, especially, D′u,m(t) is the amount of data which need to
transmit through fronthaul network for SFC m, and F ′u,m =
Fu,m − {f DUu,m , f

CU
u,m }. Let R

u,m
2 (t) be the delay of SFC m (m ∈

ζu) at time slot t , Ru,m2 (t) = qu,md (t) + pu,md (t) + lu,md (t). And
the system total delay function R2(t) is defined as

R2(t) =
∑
u∈U

γu
∑
m∈ζu

Ru,m2 (t) (6)

where γu is the priority of slice u, and ω is a normalizing
parameter which is larger than any maximum delay.

Considering the tradeoff between the total delay and
server-repair cost, we define utility as the weight sum of the
total delay and server-repair cost. Due to the two metrics
have different units, we consider normalization of the total
delay and server-repair cost respectively. The normalization
methods are as follows:

The normalized server-repair cost R′1(t) is expressed as
R′1(t) =

R1(t)
(|N1|+|N2|)c

, where (|N1| + |N2|)c represents the cost
of repairing all the servers and it is a positive cost constant.
The normalized total delay R′2(t) is defined as R′2(t) =

R2(t)
ω

,
where ω is a positive delay constant which is enough large.

After normalization, the normalized total delay and nor-
malized server-repair cost both have no units. And the weight
sum of R′1(t) and R

′

2(t) could be realized reasonably. Besides,
our objective is to maximize the utility. Therefore, the utility
is expressed as equation (7),

R(t) = −(e1R′1(t)+ e2R
′

2(t)) (7)

where e1 and e2 are the positive weights and satisfy
e1 + e2 = 1. Moreover, in order to ensure SFC deployment
is effective, some constraints are necessary to be satisfied:

xp
f ju,m,nk

=

∑
nk=l.head

yp
f ju,m,l

∀j ∈ Fu,m, u ∈ U ,m ∈ ζu (8)

xp
f ju,m,nk

=

∑
nk=l.tail

yp
f j−1u,m ,l

∀j ∈ Fu,m, u ∈ U ,m ∈ ζu (9)

where l.head and l.tail denote the start and end point of link l.
Constraint (8) and (9) indicate that in a SFC two adjacent
VNFs which are not on the same server must be instanced
on two adjacent server nodes separately.∑

nk∈Gf ju,m

xp
f ju,m,nk

= 1 ∀j ∈ Fu,m, u ∈ U ,m ∈ ζu (10)
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FIGURE 3. POMDP structure of SFC deployment in RAN slices.

∑
l∈L1∪L2

yp
f ju,m,l
≤ 1 ∀j ∈ Fu,m, u ∈ U ,m ∈ ζu (11)

Constraint (10) ensures that any VNF j only chooses one
server to be instantiated, and (11) ensures that at most one
link is selected for any VNF j.∑
u∈U

∑
m∈χu

∑
j∈Fu,m

vc
f ju,m,nk

· xp
f ju,m,nk

≤ vnk ∀nk ∈ N1 ∪ N2 (12)

∑
u∈U

∑
m∈χu

∑
j∈Fu,m

vc
f ju,m,l
· yp

f ju,m,l
≤ vl ∀l ∈ L (13)

Constraint (12) ensures that the amount of computing
resource occupied by VNFs must be less than the capacity
of computing resource on any server, and (13) ensures that
the amount of bandwidth resource which is allocated to the
VNFs is less than capacity of link l.

IV. POMDP-BASED SFC DEPLOYMENT SCHEME
In this section, the POMDP framework is adopted to for-
mulate the problem of SFC deployment in RAN slices. The
system obtains the observable NTI by observing each server
in physical network. With HPDM, the system knows the
work state of server i by observing whether another simple
packet from server i reaches the central monitor within the
threshold of arrival time interval. If the simple packet does
not arrive within the threshold, the server i is considered to
be broken at the present time. Therefore, the server i may be
considered to be broken with the probability Pe,i while the
server actually works well. Since not all servers’ real states in
physical network are obtained due to the observation errors,
the system only obtains partial NTI. Therefore, the POMDP
is used to estimate the whole real network topology condition.
Then a POMDP scheme for SFC deployment in RAN slices

is proposed to determine the deployment policy to maximize
the utility according to the QSI and partial NTI. The diagram
of POMDP framework for SFC deployment in RAN slices is
shown in Fig.3. Specifically, the POMDP formulation of the
SFC deployment includes the following components:

A. STATE SPACE
The state space is defined as S = {(q, ϕ)|q ∈

Q, ϕ ∈ ϕ′}, q is the queue state of system and Q =

{q1,1, q1,2, · · · , q|U |,|ζu||qu,m ∈ {0, 1, 2, · · · , nq}} denotes
the queue state space, where qu,m is the queue length
of SFC m(m ∈ ζu); The topology state ϕ includes all
servers’ working states, so the topology state space is defined
as ϕ′ = {(ϕ1, ϕ2, · · ·ϕ|N1|, ϕ|N1|+1, · · · , ϕ|N1|+|N2|)|ϕi ∈
{0, 1}}, where ϕi = 1 represents the server i works well and
ϕi = 0 indicates the server i fails to work.

B. ACTION SPACE
Let A = {(aα, aβ , aχ )|aα ∈ {0, 1}, aβ ∈ Aβ , aχ ∈ Aχ }
be the action space, where aα represents the repair decision,
aβ is selection decision, and aχ is the resource allocation
decision.

C. TRANSITION PROBABILITY
With the action a(t), the system transition probability from
s(t) to s(t + 1) is defined as τ (s(t), a(t), s(t + 1)). Because
the system states include queue states and topology states,
the system transition probability includes queue state tran-
sition probability τ (q(t), a(t), q(t + 1)) and topology state
transition probability τ (ϕ(t), a(t), ϕ(t + 1)). Besides, the
queue state and topology state are independent of each other.
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Therefore, the system transition probability is expressed as

τ (s(t), a(t), s(t + 1)) = τ (q(t), a(t), q(t + 1))

· τ (ϕ(t), a(t), ϕ(t + 1)) (14)

In this paper, the queue state consists of all SFCs’ queue
states which are independent of each other. The relationship
between qu,m(t+1) and qu,m(t) is expressed as qu,m(t+1) =
wu,m(t) + qu,m(t) − vu,m(t)1, where wu,m(t) is the number
of data packets arrival in SFC m at time slot t , and vu,m(t)
is the data service rate of SFC m. Especially, the vu,m(t)
is defined as vu,m(t) = min(d

f ju,m
, lf lu,m

), where d
f ju,m

is the

capacity of the data processing on VNF f ju,m which has the
least computing resource among all the VNFs in SFC m, and
lf lu,m

denotes the capacity of the data transmission on link f lu,m
which has the least bandwidth resource among all the links
in SFC m. With the action a(t), the data service rate could
be known, but the amount of data arrival is uncertain and it
is subject to non-homogeneous Poisson distribution. There-
fore, the transition probability from qu,m(t) to qu,m(t + 1) is
related to the probability of the number of data arrival. And
τ (qu,m(t), a(t), qu,m(t + 1)) is defines as

τ (qu,m(t), a(t), qu,m(t + 1)) = Pr[wu,m(t)] (15)

where wu,m(t) = qu,m(t + 1) − qu,m(t) + vu,m(t)1.
If wu,m(t) < 0, Pr[wu,m(t)] = 0. When wu,m(t) ≥ 0
the Pr[wu,m(t)] is calculate by equation (3). In this way,
Pr[wu,m(t)] is expressed as

Pr[wu,m(t)] =


0 others

e−λu,m
(λu,m)

wu,m(t)

wu,m(t)!
if wu,m(t) ≥ 0

(16)

where λu,m =
∫ t+1
t λu,m(t ′)dt ′. Therefore, the queue state

transition probability is expressed as

τ (q(t), a(t), q(t + 1)) =
∏
u∈U

∏
m∈χu

Pr[wu,m(t)] (17)

Analogously, the transition probability of topology state
includes the transition probability of each server’s working
state. Let τ (ϕi(t), a(t), ϕi(t + 1)) be the transition probability
from ϕi(t) to ϕi(t + 1) for server i. When the action a(t)
includes the action of repairing the broken server or servers,
server i must work normally at t + 1 time slot, and the
transition probability is expressed as

τ (ϕi(t), a(t), ϕi(t + 1)) =
{
1 if ϕi(t + 1) = 1
0 others

(18)

When the action a(t) includes the action of not repairing
the broken server or servers, the broken server i1 still can not
work at time slot t+1. And the transition probability of server
i1 is expressed as

τ (ϕi1 (t), a(t), ϕi1 (t + 1)) =
{
1 if ϕi1 (t + 1) = 0
0 others

(19)

However, the normal server i2 may break down at the
next time slot with a certain probability. In this paper, pi2

denotes the probability of failing to work for normal server
i2 and it is set according to its environment condition. Thus,
the transition probability of server i2 is expressed as

τ (ϕi2 (t), a(t), ϕi2 (t + 1)) =
{
pi2 if ϕi1 (t + 1) = 0
1− pi2 others

(20)

Therefore, the transition probability of topology state is
defined as

τ (ϕ(t), a(t), ϕ(t + 1)) =
∏

i∈N1∩N2

τ (ϕi(t), a(t), ϕi(t + 1))

(21)

Finally, the system transition probability τ (s(t), a(t),
s(t + 1)) is expressed as

τ (s(t), a(t), s(t + 1)) =
∏
u∈U

∏
m∈χu

Pr[wu,m(t)]

·

∏
i∈N1∩N2

τ (ϕi(t), a(t), ϕi(t + 1))

(22)

D. REWARD
Since we concentrate on maximizing the utility, the immedi-
ate reward with the action a(t) and system state s(t) is defined
as

R(s(t), a(t)) = −(e1R′1(t)+ e2R
′

2(t)) (23)

E. OBSERVATION SPACE
The observation space is expressed as Z = {(zq, zϕ)|zq ∈
ZQ, zϕ ∈ Zϕ}, where zq is the observable queue state, ZQ is
observable queue state space, zϕ is the observable topology
state, and Zϕ is observable topology state space.

F. OBSERVATION FUNCTION
With the observation result z(t) after the action a(t), the
observation function o(z(t), a(t), s(t + 1)) is described as

o(z(t), a(t), s(t + 1)) = o(zq(t), a(t), q(t))

·o(zϕ(t), a(t), ϕ(t + 1)) (24)

Because the whole queue states could be completely
observed, o(zq(t), a(t), q(t)) = 1 if and only if zq(t) = q(t),
otherwise, o(zq(t), a(t), q(t)) = 0.

o(zϕ(t), a(t), ϕ(t + 1)) =
∏
i∈N1

pr[zϕi (t)|a(t), ϕi(t + 1)]

·

∏
j∈N2

pr[zϕj (t)|a(t), ϕj(t + 1)]

(25)

where zϕi (t) denotes the observation result for server i at
time slot t . If all broken servers are repaired at time slot
t , o(zϕ(t), a(t), ϕ(t + 1)) = 1. Conversely, with the condi-
tion that the system decide not repair them, Pr[zϕi (t)|a(t),
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ϕi(t + 1)] = 1 if and only if zϕi (t) = 0 when ϕi(t + 1) = 0;
When ϕi(t + 1) = 1, Pr[zϕi (t)|a(t), ϕi(t + 1)] is expressed as

Pr[zϕi (t)|a(t), ϕi(t + 1)] =
{
1− Pe,i if zϕi (t) = 1
Pe,i if zϕi (t) = 0

(26)

G. BELIEF STATE
POMDP makes the present decisions based on the historical
informations including the whole actions and observations in
the past. And these historical informations are defined as a
belief state. The belief state vector bt contains the statistical
informations before the time slot t . Besides, bt is also equiva-
lent to a statistic distribution over the state space S at time slot
t . Let bt (s) be one element of vector bt , and it corresponds
to the probability of state s at time slot t . All elements in
bt must satisfy

∑
s∈S bt (s) = 1. As explained in Fig 3,

the updated belief state could be obtained as the outcome
of state estimator, which consists of the inputs of action,
observation and previous belief state. Therefore, the bt+1(s)
could be updated by the Bayesian rule as

bt+1(s) =
o(z(t), a(t), s) ·

∑
s∈S τ (s, a(t), s) · bt (s)

Pr[z(t)|bt , a(t)]
(27)

where Pr[z(t)|bt , a(t)] is the normalizing factor

Pr[z(t)|bt , a(t)] =
∑
s2∈S

o(z(t), a(t), s2)

·

∑
s1∈S

τ (s1, a(t), s2)bt (s1) (28)

H. OBJECTIVE
Give a deployment policy π which consists of a series of
actions in order, the average utility ρ(π ) in POMDP is defined
as

ρ(π ) = E[
∞∑
t=1

γ t
∑
s(t)∈S

R(s, π(t)) · bt (s)] (29)

where π (t) represents the action of deployment policy π
at time slot t . Since the induced Markov chain is ergodic,
there must be a unique steady SFC deployment policy to
maximize the average utility. Therefore, the objective of SFC
deployment is formulated as

max
π ′∈�

ρ(π ′) = E[
∞∑
t=1

γ t
∑
s(t)∈S

R(s, π ′(t)) · bt (s)] (30)

where the� represents all possible SFC deployment policies.
The optimal policy is obtained by Bellman value-function

iterations. Let the V ∗k (b) be the optimal value function with
belief point b in k th iteration,

V ∗k (b) = max
a∈A
{γ
∑
z∈Z

Pr[z|b, a] · V ∗k−1(b
z
a)

+

∑
s∈S

R(s, a) · b(s)} (31)

where bza = {b
z
a(s)|s ∈ S},

bza(s) =
o(z, a, s) ·

∑
s′∈S τ (s, a, s) · b(s

′)
Pr[z|b, a]

(32)

And the corresponding optimal action π∗k (b) is described as

π∗k (b) = argmax
a∈A

{γ
∑
z∈Z

pr[z|bt , a] · V ∗k−1(b
z
a)

+

∑
s∈S

R(s, a) · b(s)} (33)

V. MINGLED HEURISTIC VALUE ITERATION ALGORITHM
In Bellman iteration, each value function could be regarded
as a hyper-plane with |S| − 1 dimensions in belief space.
So it could be defined as a value function vector with |S| − 1
dimensions. Since the value functions have the nature of
piecewise linear convexity in belief space, the optimal value
function V ∗(b) of belief point b is given by V ∗(b) =
maxα∈0 α · b, where 0 is the set of value-function vectors.
Therefore, the Bellman iteration actually constantly updates
the 0 until convergence.

To solve the Bellman iteration, complete value itera-
tion (CVI) and point-based value iteration are two important
methods. Since the CVI algorithm updates the 0 based on the
whole belief space, it could obtain the optimal solution. And
the procedures of updating the 0 in (k + 1)th iteration are as
follows:

Step 1, calculate 00 which is the initial 0. Let 3a =

(R(s1, a), · · · ,R(s|S|, a)) be the one step reward vector with
action a, and the 00 is expressed as

00 = {3a|a ∈ A} (34)

Step 2, calculate the parameter 0
a,z
k+1. The αa,z is

defined as αa,z = (αa,z(s1), · · · , αa,z(s|S|)). In the
αa,z, the ith element αa,z(si) is defined as αa,z(si) =
γ
∑

s′∈S τ (si, a, s
′)o(z, a, s′)αj(s′), where αj(s′) is a vec-

tor in 0k which is the updated set of value-function
vectors after k iterations. And the 0

a,z
k+1 is expressed

as

0
a,z
k+1 = {α

a,z
|αj(s′) ∈ 0k} (35)

Step 3, calculate the parameter 0ak+1. It is defined as
0ak+1 = 3a

⊕
0
a,z1
k+1

⊕
· · ·
⊕
0
a,z|Z |
k+1 , where A

⊕
B = {a +

b|a ∈ A, b ∈ B}.
Step 4, calculate the new set of value-function

vectors 0k+1. The 0k+1 is equal to
⋃

a∈A 0
a
k+1.

Step 5, when the set of value-function vectors is not con-
vergence, back to step 1.

When 0k+1 is obtained in (k + 1)th iteration, in step 2
the complexity is equal to O(|0k ||Z ||S|2|A|), and in step 3
the complexity is equal to O(|0k ||Z ||S||A|). Therefore,
the complexity of CVI algorithm is approximated as
O(|0k ||Z ||S|2|A| + |0k ||Z ||S||A|). Due to the exponential
complexity, CVI algorithm has a very high complexity when
the scale of POMDP is large.
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Algorithm 1 Updating the Set of Reachable Belief Points
1: for each b ∈ Bpre do
2: Calculate the suc(b) by equation (37)
3: Calculate the furthest reachable belief point b′ by

equation (38)
4: Bsub← Bsub ∪ {b′}
5: end for
6: Set v′← ∅
7: for each b ∈ Bsub do
8: Calculate the lower bound vector αb by equation (39),

(40)
9: v′← v′ ∪ {αb}
10: end for
11: Set V ← v′

12: for each b ∈ Bsub do
13: Vcos← {b|∃s ∈ S, b(s) = 1}
14: v0b←

∑
b′∈Vcos v(b

′) · b
15: for each < bi, vi >∈ Bsub − Vcos do
16: c(bi)← min

s∈S

b(s)
bi(s)

17: f (bi)← vi −
∑
b′ ∈ Vcosv(b′) · bi(s)

18: end for
19: v← v0b +min

i
c(bi)f (bi)

20: Add new pair < b, v > to the set V
21: end for

In this paper, the point-based mingled heuristic value iter-
ation (MHVI) algorithm is used to deal with the Bellman
iteration approximately due to the low complexity. The algo-
rithm does not depend on the whole belief space, and updates
0 based on Bsub which is the set of partial reachable belief
points. Thus, MHVI algorithm comprises of two processes,
one is the process of updating Bsub, the other is the process
of updating 0 based on updated Bsub. Specifically, two pro-
cesses are executed circularly until convergence criterion is
satisfied.

A. UPDATING THE SET OF REACHABLE BELIEF POINTS
The process of updating the set of reachable belief points is
shown in algorithm 1.

Let Bsub be the set of reachable belief points, and it is
initialized to be {b0}, where b0 is the initial belief point.
The process of updating the set of reachable belief points as
follows:

First, these belief points whose difference between upper
bound and lower bound of value functions is over threshold
compose the set Bpre

Bpre = {b|V (b)− V (b) ≥
ξ

γ hb
, b ∈ Bsub} (36)

where γ hb is the level number of b in the belief tree; V (b) is
the is the lower bound of b. And it is defined asV (b) = max

α∈V
b·

α, where V is composed of several lower bound vectors; V (b)
is the upper bound of b, where V is the set of upper bound
vectors.

Next, the set suc(b) is composed of several reachable points
from b (b ∈ Bpre),

suc(b) = {b′|b′ = bza,V (b
′)− V (b′) ≥

ξ

γ h
′
b
,∀a ∈ A, z ∈ Z }

(37)

The distance between the point b1 in suc(b) and the set Bsub
is defined as

||b1 − Bsub|| = min
b∗∈Bsub

|

∑
s∈S

|b1(s)− b∗(s)|| (38)

And the point which is farthest from Bsub would be added
to Bsub.

Then, new lower bound vectors are added to the set V . The
lower bound vector αb with another new point b(b ∈ Bsub) is
defined as

αb(s) = max
a∈A
{

∑
s∈S

R(s, a)b(s)

+ γ
∑
z∈Z

max
α∈V
{

∑
s∈S

τ (s, a, s)O(z, a, s)bza(s)α}} (39)

αb = (αb(s1), αb(s1), · · · , αb(s|S|)) (40)

Finally, V also needs to be updated. A belief point bi and
corresponding vi make a pair defined as (bi, vi), where vi is
the upper bound of value function of bi. And V is composed
of several such pairs. To update the V , new pairs need to be
calculated. The upper bound vi of another new point bi is
expressed as

vi = max
a∈A
{

∑
s∈S

R(s, a)b(s)+ γ
∑
z∈Z

Pr[z|b, a]V (bza)} (41)

B. UPDATING THE SET OF VALUE-FUNCTION VECTORS
Let 0k be the set of value-function vectors after k iterations.
After updating the Bsub in (k+1)th iteration, the set 0k needs
to update, as shown in algorithm 2.

First, calculate 00 = by equation (34).
Then, calculate 0a,zk+1 by equation (35), and the parameter

0ak+1,b for b (b ∈ Bsub) is given by

0ak+1,b = 3a +
∑
z∈Z

argmax
α∈0

a,z
k+1

b · α (42)

All the actions in action space compose of the set 0k+1,b for
b (b ∈ Bsub), and the set is defined as 0k+1,b = ∪a∈A0

a,b
k+1.

Next, the update(b) for belief point b is defined as
update(b) = argmaxα∈0k+1,b b · α.
Finally, the new set of value-function vectors after k + 1

iterations is defined as 0k+1 = ∪b∈Bsubupdate(b)

C. MINGLED HEURISTIC VALUE ITERATION ALGORITHM
Noticing that the sets of upper bound and lower bound
demand to be initialized, the MHVI algorithm first considers
the two initializations. Let v(s, a) be the lower bound param-
eter with action a and system state s,

v(s, a) = min
a′,s′

R(s′, a′)
1− γ

(43)
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Algorithm 2 Updating the Set of Value-Function Vectors
1: for each b ∈ Bsub do
2: Set 0k+1← ∅
3: for each a ∈ A do
4: Set 0k+1,b← ∅
5: for each z ∈ Z do
6: Calculate the set 0a,zk+1 by equation (35)
7: Calculate 0ak+1,b by equation (42)
8: end for
9: 0k+1,b← 0k+1,b ∪ {0

a
k+1,b}

10: Set update(b) = argmaxα∈0k+1,b b · α
11: end for
12: 0k+1← 0k+1 ∪ {update(b)}
13: end for

And v(s, a) is constantly updated until it converges, and the
update equation is defined as

v(s, a) = R(s, a)+ γ
∑
s′∈S

τ (s, a, s′)v(s′, a) (44)

When the update is completed, these convergent values form
the vector v(a) = (v(s1, a), v(s2, a), · · · , v(s|S|, a)), and the
initial lower bound set is expressed as

V = {v(a)|a ∈ A} (45)

Similarly, the v(s, a) is the upper bound parameter,

v(s, a) = max
a′,s′

R(s′, a′)
1− γ

(46)

and the update equation for v(s, a) is defined as

v(s, a) = R(s, a)+ γ
∑
z∈Z

max
a′∈A
{

∑
s′∈S

τ (s, a, s′)

o(z, a.s′)v(s′, a′)} (47)

With these convergent values, the initial V eventually is
obtained.

When the sets of upper and lower bound are initialized,
MHVI algorithm starts to iterate to meet the convergence
criterion, as the algorithm 3 shown. The convergence criterion
is defined asV (b0)−V (b0) ≤ η, where the η is the established
threshold.

When the algorithm 1 updates the set of reachable belief
points, its complexity is approximated as O(|Bsub||A||Z |).
Then the algorithm 2 updates the set of value-function vec-
tors based on updated Bsub, its complexity is calculated as
O(|S|2|A||Z ||Bsub|2). Therefore, the complexity of MHVI
algorithm in an iteration is estimated as O(|Bsub||A||Z | +
|S|2|A||Z ||Bsub|2). Comparing the complete value iteration,
MHVI algorithm significantly reduces the complexity, espe-
cially, it avoids the exponential complexity.

VI. SIMULATION RESULTS AND DISCUSSION
In this section, the simulation results are presented and some
discussions on these results are described.

Algorithm 3 Mingled Heuristic Value Iteration Algorithm
Input: b0, U
Output: optimal policy π∗

1: Build the physical network topology G = (N ,L)
2: Set Bsub← {b0}
3: Set k = 0
4: Calculate v(s, a) by equation (43)
5: Update v(s, a)∀s ∈ S, a ∈ A by equation (44)
6: Initialize V by equation (45)
7: Calculate v(s, a) by equation (46)
8: Update v(s, a)∀s ∈ S, a ∈ A by equation (47)
9: Initialize V
10: while dissatisfy convergence criterion do
11: Update Bsub by algorithm 1
12: Update 0k+1 by algorithm 2
13: k ++
14: end while
15: Obtain the approximately optimal deployment policy π∗

by equation (33)

A. SIMULATION SETUP
In order to evaluate the performance of proposed POMDP
scheme and compare with present SFC deployment schemes,
several simulations for SFC deployment are necessary. Two
physical networks for DU pool and CU pool respectively are
simulated to be two independent undirected graphs whose
topology both are initialized randomly. In the simulations,
the undirected graph corresponding to DU pool has 16 nodes
and the other has 23 nodes. The number of CPU cores on a
node represents the node’s computing resource. In the simula-
tion there are two kinds of servers. One kind of servers have
4 CPU cores, the other kind of servers have 8 CPU cores.
The bandwidth capacity of each link is set as 10M in the
simulation. Each node’s allowable maximum packet arrival
time interval is set by equation (2). The maximum allowed
queue length is set to be 20 packets. Besides, the capacity of
fronthaul bandwidth resource is 260M.

In the simulation scene, there are three RAN slices, and the
total of SFCs in three RAN slices ranges form 10 to 70. The
proportion of SFCs in slice 1 is 50%, the proportion of SFCs
in slice 2 is 30%, and the proportion of SFCs in slice 3 is
20%. For example, when the total of SFCs in three slices is
70, the slice 1 contains 35 SFCs, the slice 2 has 21 SFCs, and
slice 3 consists of 14 SFCs. The amount of each SFC’s arrival
data is subject to non-homogeneous Poisson distribution with
different time-varying arrival rate. Specifically, each SFC’s
arrival rate in slice 1 is higher than it in slice 2, and each SFC’s
arrival rate in slice 2 is higher than it in slice 3. In addition,
we define that each SFC has 9 VNFs in slice 1. In the slice
2 and slice 3, each SFC is set to have 10 VNFs in order.

In order to improve the accuracy of simulation, the number
of iterations is set to be 200 and the final simulation results
are the expectation of several simulation results after several
repeated simulations.Moreover, all the simulations have been
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FIGURE 4. Performance comparison of different weight values. (a) Utility. (b) Total delay. (c) Server-repair cost.

FIGURE 5. Performance comparison between CVI and MHVI. (a) Utility. (b) Total delay. (c) Server-repair cost.

executed on a machine characterized by 3.40 GHz Intel i7-
6700 processor and by an 8 GB memory.

B. COMPARISON OF DIFFERENT WEIGHT VALUES
We change the weight e2 as e2 = 0.4, e2 = 0.5 and e2 = 0.6
respectively, and make the simulations with different weight
values. The total number of iteration is set as 200, and the
number of SFCs is equal to 70. The simulation results are
shown in Fig.4.

In Fig.4, the convergence value of utility gradually
becomes larger when the weight e2 increases from 0.4 to 0.6.
Besides, the growth of e2 could accelerate the convergence
speed of utility. When e2 is equal to 0.6, the convergence
speed is the fastest among the three cases, which indicates
that the total delay has more effect on the utility than server-
repair cost.

With the weight e2 rising from 0.4 to 0.6, convergence
speed of the total delay becomes faster, and the convergence
value becomes smaller. However, the convergence speed of
the server-repair cost is slowed down when the weight e2
increases, and its convergence value becomes larger. These
simulation results indicate that different weight values indeed
affect the convergence performance.

C. COMPARISON WITH CVI ALGORITHM
CVI and MHVI algorithm are simulated respectively to deal
with the Bellman iteration. The total of SFCs ranges from

FIGURE 6. Ratio of T 1
e to T 2

e .

10 to 70, and the weight e2 = 0.5. The performance compar-
ison between CVI and MHVI is shown in Fig.5 and Fig.6.

In Fig.5, CVI algorithm is used to obtain the optimal solu-
tion while MHVI algorithm is applied to get the approximate
solution. The solution includes the convergence values of util-
ity, the total delay and server-repair cost. When the scale of
SFCs is small, the approximate convergence values of MHVI
algorithm are very close to the optimal convergence values
of CVI. With the number of SFCs increasing, convergence
values of MHVI algorithm gradually deviate slightly from
the optimal convergence, but the differences between two
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FIGURE 7. Performance comparison of three point-based algorithms. (a) Utility. (b) Total delay. (c) Server-repair cost.

solutions are small enough to have a little effect on practical
application.

In this simulation, we also record the convergence time
of two algorithms with certain number of SFCs. Let T 1

e
be the convergence time of CVI algorithm, and T 2

e be the
convergence time of MHVI algorithm. The ratios of T 1

e to
T 2
e have been calculated with different number of SFCs,

as Fig.6 shown. In Fig.6, the ratio is always larger than 1,
which indicates that the complexity of CVI algorithm is
indeed larger than it of MHVI. Besides, with the growth
of the scale of SFCs, the ratio rapidly increases. When the
scale of SFC becomes larger, the convergence time of CVI
algorithm rises very fast due to its exponential complexity.
However, the convergence time of MHVI algorithm grows
slowly. Therefore, the ratio rapidly increases with the number
of SFCs rising.

D. COMPARISON WITH TRADITIONAL POINT-BASED
ALGORITHM
We make the simulations about the three point-based algo-
rithms for POMDP, including MHVI, HSVI (heuristic search
value iteration) and PBVI (point-based value iteration). The
total of SFCs in three RAN slices is equal to be 70 and the
e2 is set as 0.5. The performance of three solutions is shown
in Fig.7.

The simulation results indicate that the utility gradually
increases to the convergence value with iterations, while total
delay and server-repair cost both decrease until convergence.
The convergence speed of PBVI is slowest among the three
solutions, and the solution easily traps in local optimum. The
reason of poor performance for PBVI is that it searches the
reachable belief points based on the points density, which is
an extremely inefficient search policy. Compared with PBVI,
the HSVI accelerates the convergence speed and searches
the reachable points according to the value functions, so it
could improve the global searching ability and have a better
convergence value. Especially, the MHVI searches effective
points according to the distribution of belief points and value
functions, which further improve global searching ability so
as to it can searches the reachable points deeply and widely.

Besides, the searching policy is efficient and it could guaran-
tee enough convergence speed. Therefore, the performance of
MHVI is best among the three solutions.

E. COMPARISON WITH EXISTING SCHEMES
We compare the performance of POMDP scheme, MA
scheme introduced in [15], and MDP scheme introduced
in [16]. The total of SFCs ranges from 10 to 70. Every time
the number of SFCs changes, POMDP,MDP andMA scheme
are simulated respectively. Specifically, we evaluate the per-
formance of the three schemes in three aspects, including total
delay, throughput and resource utilization.

1) The system delay of three schemes is shown in Fig.8 (a).
Considering the topology is completely observed, the MDP
scheme and MA scheme could not make use of some
available network resources on some servers which are
directly considered to be broken according to the observation
results. But the POMDP scheme estimates the real topology
condition according to the partial observation results, and
could find more available network resources than other two
scheme. Thus the POMDP scheme has the lowest system
delay among the three schemes. Besides, due to the differ-
ence of decision-making mechanism between MDP and MA,
the MDP has lower total delay than MA scheme. However,
when the number of SFCs is over 50, the MDP scheme’s
system delay rapidly increases and seems to be close to the
latency of MA scheme.

2) The variation of throughput is shown in Fig.8 (b).
Based on realistic topology, the POMDP scheme leads to
the highest throughput among the three schemes. When
the number of SFCs is relatively small, the throughput
increases quickly. The throughput growth has slowed down
when the total of SFCs is over 50. With the policy of
MDP, the network throughput is lower than it in POMDP
scheme. Especially, when the total of SFC is over 70, the
throughput rapidly drops off. The MA scheme has the lowest
throughput, and it rises slowly until the total of SFCs is
over 50. Therefore, the simulation result indicates that the
POMDP scheme could improve the throughput in dynamic
network.
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FIGURE 8. Performance comparison of three SFC deployment schemes. (a) Total delay. (b) Throughput. (c) Resource utilization.

FIGURE 9. Selection comparison of three RAN slices.

3) The resource utilization of three schemes are described
in Fig.8 (c). Apparently, the utilization ratios of com-
puting and bandwidth resource for POMDP scheme both
are the highest among the three schemes, which indicates
that POMDP scheme could take advantage of the network
resources by estimating the real topology. Disable to deal with
the observation errors, the MDP scheme has a lower resource
utilization ratio. The MA scheme easily wastes resources,
so its utilization ratio is lowest. In short, the POMDP scheme
indeed improves the resource utilization.

F. SELECTION DECISION
Finally, we discuss the selection decisions of three RAN
slices. The total of SFCs is set equal to 70, and the weight
e2 is set as 0.5. The MHVI algorithm is simulated to obtain
the approximately optimal policy for SFC deployment in
three RAN slices. In the approximately optional deployment
policy, the frequency of each method of VNF placement
chose by each slice is calculated.

As shown in Fig.9, the slice 1 with massive arrival data
and strict delay requirement prefers choosing the optional
3 and 4, which means a lot of VNFs of SFCs placed in
DU to reduce resource consumption of fronthaul network.
Since the slice 2 has less arriving data than slice 1, which
results that the requirement of frontal network resource tails

off, it prefer choosing option 5 and 6. In slice 3, there are
the least traffics through the slice among the three RAN
slices. So the slice 3 tends to choose option 6 to reduce the
resource consumption of DU pool whose computing resource
and bandwidth resource are less than CU pool.

VII. CONCLUSION
In this paper, the problem of SFC deployment in RAN
slices has been defined as a series of deployment decisions.
Partially observing the NTI by HPDM, the POMDP-based
scheme was formulated to maximize the utility associated
with the total delay and server-repair cost. And the MHVI
algorithmwas proposed to obtain approximately optimal SFC
deployment policy with lower complexity. Simulation results
indicated that the POMDP-based SFC deployment scheme
could improve the system delay, throughput and resource
utilization.
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