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ABSTRACT With the popularity of 5G network technology, cloud computing paradigm in data center (DC)
networks has drawn increased attention. DC is a pool of computational and storage resources interconnected
using a communication network. To handle the growing demands of cloud computing services, resources
in DC should be used efficiently. In this paper, we design a new DC resource provisioning scheme based
on the cooperative game theory. Using the matching game model and Mood value, we propose new
resource allocation algorithms, which attempt to equalize users’ satisfactions with respect to an effective
distribution of the DC resource. Due to the competitive and coordinative DC environments, our proposed
game approach can adaptively respond to the current cloud computing service requests. The main novelty
possessed by our resource provisioning scheme is to capture the dynamics of DC network operations with the
consideration of efficiency and fairness. Finally, we show the advantages of our proposed scheme through
computer simulations. Comparing with other existing protocols, performance evaluations demonstrate that
our game-based approach can outperform the existing state-of-the-art methods in terms of DC resource
usability, service success ratio and fairness. In addition, we provide the guidance on the future research
direction including other issues.

INDEX TERMS Matching game theory, cloud computing paradigm, mood value, data center, cooperative
resource provisioning.

I. INTRODUCTION
The advent of cloud computing paradigm has given rise to
new and exciting prospects for 5G network technology. It can
flexibly lease processing, storage, and network resources
on-demand, according to users’ temporal needs. Nowadays,
cloud computing is evolving as everything as a service on the
network service [1]. As cloud computing paradigm is becom-
ing mainstream, data center (DC) must serve an ever-growing
demand for computation and storage resources. The term
‘data center’ can be interpreted as an offsite storage cen-
ter that consists of servers and other equipment needed to
keep the stored data accessible both virtually and physi-
cally. Underpinning cloud computing is a DC infrastructure,
which is maintained and managed by local as well as global
operators and typically offers as-a-services to corporate and
individual customers over the Internet [1]–[3].

DCs are the crucial part of any cloud computing service.
Effective operation of DCs will not only help to reduce
service costs but also to deliver high quality cloud services
to customers. To efficiently exploit the DC infrastructure,
the operation of DCs is becoming ever more challenging.
One major problem for DC operations is lack of perfor-
mance guarantee, which includes both resource limitations
and unpredictable cloud service demands. To solve this
problem, we should find the right balance between the
conflicting aims of keeping service costs down, reducing
energy consumption, improving quality of service (QoS), and
enhance resource usability. However, it is a complex and
difficult work under a dynamically changing DC environ-
ment [2], [4]–[6], [23], [24].

Virtualization is an enabling technique to facilitate the
sharing of resources. To meet constantly growing cloud

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

52047

https://orcid.org/0000-0003-1967-151X


S. Kim: New Adaptive DC Resource Provisioning Scheme Based on the Dual-Level Cooperative Game Approach

service requirements, this technology bridges the foreground
commercial usage and the background resource management
on underlying DC infrastructures. To provide the adaptive
DC capability, it is an essential step to logically isolate com-
puting, storage, and network resources, and these resources
should be freely configured on-demand. For the high flexi-
bility, predictable performance, reliability and controllability,
virtual resource pools using virtualization technology act
cooperatively and collaborate with each other while funda-
mentally altering assumptions about the physical locations of
resources [7], [8].

DC virtualization encompasses a broad range of tools,
technologies and processes that enable a DC to operate and
provide cloud computing services. It not only helps in optimal
DC infrastructure utilization, but also in reducing DC capital
and operational costs. As virtualization technology becomes
the mainstream way in DCs, the effective and efficient place-
ment of virtual machines (VMs) becomes an important issue.
VMs, each of which acts like a real machine with an operating
system, are created on underlying physical resources. Tradi-
tionally, VMs are used to partition and share DC resources
while allowing the secure and isolated co-existence of mul-
tiple VMs on the same physical resources. VMs are well
studied before the appearance of DCs, dated back to 1970’s.
However, traditional VM implementations have been consid-
ered in the relatively static environment, which is in stark
contrast to the dynamic nature of DCs [7], [9].

Individual DC enables the coexistence of multiple VMs
while allowing each VM to be independently implemented
and managed with topology constraints. Therefore, the DC
resources can be scheduled with fine-granularity, which
improves resource utilization significantly. To meet service
requirements such as lower cost, better scalability, and addi-
tional management flexibility, each VM runs independently
with a proprietary DC resource. Therefore, accommodating a
number of VM placements requires an efficient mapping of
VMs onto the DCs. This VM placement is to select a suitable
DC to deploy each newly-created VM in runtime. Recently,
the VM placement process has been the basic key issue in
DC virtualization and has a large solution space with a high
computational complexity [9], [10].

Nowadays, cooperative game theory becomes a hot
research topic and has received a generous concern. Coop-
erative games are games where groups of players may
enforce cooperative behaviors. Therefore, players choose
their strategies through a consensus decision-making pro-
cess. For designing fair and efficient cooperative game strate-
gies, some solution concepts have been proposed. In this
study, we adopt the fundamental ideas of matching game
and Mood value, and prove that they are very powerful
tools for the VM placement and DC resource distribution
problems. Under widely dynamic and diversified DC opera-
tions, key challenges of matching game and Mood value can
satisfy certain reasonable principles while ensuring rational
behaviors [11], [12].

Inspired by the above discussion, we have developed a
new dual-level cooperative game model while ensuring good
global properties. We take a novel step towards providing an
effective tradeoff between global optimality and practicality.
At the first-level, VMs find out the finest DC by considering
its computation constraints. According to the matching game,
we find an effectiveway tomatch eachVMwith a specificDC
so that no unmatched pair can later find out that they can both
do better by matching each other. Therefore, each VM can be
placed on the most adaptable DC. At the second-level, each
DC distributes its CPU capacity to its corresponding VMs
using the Mood value. When placing VMs on a DC, different
VMs require different amounts of CPU resource capacity to
meet such requirements. If the available resource in the DC
is not enough to fully satisfy VM demands, DC resource
distribution becomes a challenging problem. By using the
Mood value, which has been developed as a cooperative
resource allocation rule, we attempt to equalize the satisfac-
tion of each VM. With the respect of dual-level cooperative
game approach, we can analyze and solve effectively the
VM placement and DC resource distribution problems, going
beyond existing approaches that do not explore the setting
where a judicious mixture of coordination and collaboration
is often advantageous in competitive environments.

A. RELATED WORK
Considerable state-of-the-art research has been conducted on
the design of resource provisioning schemes for DCs. Refer-
ence [13] investigates a new game theory based consolidation
method of VMs in DCs with system constraints. First, this
scheme predicts the future load values of resources to timely
adjust the load for the higher degree of load balance. Second,
physical resources are grouped according to the number of
VMs and a pre-processing algorithm is used to decide VM
migrations. Finally, the developed game basedmethod selects
the physical resources to get the optimal energy consump-
tion. The main novelty of this scheme is to reduce energy
consumption as well as balance loads without unnecessarily
increasing the number of VM migrations.

The main idea in [2] is that a simplified model of the
core scheduling issues should be taken into account dur-
ing the VM placement. Usually, ignoring the scheduling of
cores during VM placement leads to an over-simplification
that may cause a suboptimal VM placement. As an ideal
scheme, the approach in [2] identifies a constraint program-
ming to formulate complex constraints, and defines the VM
placement as a global optimization problem with a well-
defined objective function. By incorporating different heuris-
tics, it enables a balance between solution quality and running
time. Finally, a simulation-based empirical analysis shows
that the proposed approach can deliver significantly better
results compared to a typical non-multicore-aware heuristic
protocols [2].

Reference [14] proposes a new energy and QoS aware
VM placement optimization algorithm to add the global QoS
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guarantee while considering the VM placement optimization
problem. To effectively solve the VMplacement optimization
problem, this scheme improves the particle swarm optimiza-
tion technique by redefining its parameters and operators,
and adopts a local fitness-first strategy to update the parti-
cle position by eliminating the assumption of server homo-
geneity. With a tradeoff between energy consumption and
global QoS guarantee, the scheme in [14] designs a novel
energy-aware virtual machine placement for a tree-like data-
center network, which is adopted by the commercialized DC.
Experimental results show that the proposed approach can
reduce energy consumption while still satisfying the global
QoS guarantee [14].

This scheme [15] proposes a novel Markov chain model,
which allows a system administrator to explicitly set a QoS
goal. For a known stationary workload and a given state
configuration, the control policy obtained from the Markov
model optimally solves the host overload detection problem
in the online setting by maximizing the mean intermigration
time, while meeting the QoS goal. This underlying analytical
model allows a derivation of an optimal randomized control
policy for any known stationary workload and a given state
configuration. And then, a new control algorithm is devel-
oped for the problem of host overload detection as a part of
dynamic VM consolidation. In addition, this algorithm han-
dles unknown nonstationary workloads using the multi-size
sliding window workload estimation technique. The exper-
imental study has shown that the proposed scheme is effi-
cient in handling multiple mixed heterogeneous real-world
workloads [15].

Authors in the work [16] mainly discuss the communi-
cation cost optimization problem based on service oriented
VM placement, and develop the Service Oriented VM Place-
ment (SOVMP) scheme. They propose a service-oriented
VM placement strategy in DCs and a genetic algorithm
to solve service oriented VMs placement optimization and
communication cost problem. The proposed VM placement
strategy is also suitable for the intelligent computing platform
of IoT back end. Such service oriented concept can increase
resource utilization rate and reduce the communication cost
between VMs. In the part of resource utilization rate, they put
emphasis on the communication cost between VMs for better
use of resource. Under the situation of limited resources,
their service oriented VM placement strategy based on the
optimal configuration for different types of VMs can be
fully optimized to achieve the minimum communication
overhead [16].

In [17], the Many-Objective Virtual Machine Placement
(MOVMP) scheme is proposed to model a many-objective
VM placement method. Most existing studies do not com-
prehensively consider all objectives, instead only considering
some of them. This scheme considers multiple control issues
such as energy consumption, resource utilization, load bal-
ance and robustness, and these objectives are simultaneously
considered in practical scenarios. To address these issues,
energy efficient evolutionary algorithm is developed; it is a

high performance algorithm for many-objective problems.
The MOVMP scheme also considers actual requirements of
cloud providers and offers practical and good experience
for end users. Experimental results show that the MOVMP
scheme can improve the performance of the VM place-
ment problem in terms of energy saving, load balance, and
robustness [17].

Some earlier studies [2], [13]–[17] have attracted con-
siderable attention while introducing unique challenges in
handling the VM placement problems in DCs. In this paper,
we demonstrate that our cooperative game based scheme
significantly outperforms these existing SOVMP [16] and
MOVMP [17] schemes.

B. CONTRIBUTION
Driven by service requirements, the number of VMs has
increased so that new challenges to the resource allocation
technology of DCs have emerged. As more or all VMs on
a DC are performing computational tasks, there is a strong
possibility of CPU capacity contention; it will reduce the
QoS. To satisfy the growing service requirements, developing
a flexible and dynamic resource distribution protocol has
become a major challenge. In this work, we focus on the
DC resource provisioning problem for heterogeneous VMs.
According to the cooperative game solution, we design a
fair-efficient resource distribution scheme in order to strike
the appropriate performance balance among contradictory
requirements. Our dual-level game approach can strike an
appropriate performance balance between efficiency and fair-
ness. Although several VM placement control schemes for
DCs have been proposed, there is little work that has con-
sidered the most proper combination of the efficiency and
fairness requirements. Inspired by the above discussed chal-
lenges, our main contributions are i) to develop a simple
matching algorithm and Mood value implementation algo-
rithm, ii) to explore the sequential interaction of matching
and resource distribution algorithms to jointly design an inte-
grated dual-level gamemodel, and iii) to strike an appropriate
performance balance.

C. ORGANIZATION
The rest of the paper is organized as follows. In Section II,
we address our proposed VM placement and DC resource
allocation algorithms. Based on the matching game model,
VMs are dynamically placed in appropriate DCs. And then,
physical resources in the DC are dynamically allocated
for VMs according to the Mood value. In particular, this
section provides fresh insights into the main features of
our game-based approach, and shows the main steps of
the proposed scheme to increase readability. In Section III,
we present the experimental simulation results and perfor-
mance analysis. By comparing with existing SOVMP [16]
and MOVMP [17] schemes, we validate the performance
superiority of the proposed scheme. Finally, our conclusions
are summarized in Section IV. In this section, we also offer
recommendations for future work direction and discuss the
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remaining open challenges in this research area along with
possible solutions.

II. THE PROPOSED DC RESOURCE
PROVISIONING ALGORITHMS
In this section, we apply the key design principles to address
the VM placement and the DC resource distribution prob-
lems. To solve these problems, we present a novel dual-level
cooperative game model, which consists of the many-to-one
matching algorithm and the Mood value based DC resource
distribution algorithm.

A. CLOUD SYSTEM ARCHITECTURE AND
DUAL-LEVEL GAME MODEL
In this study, we consider the cloud computing system
infrastructure with multiple DCs and VMs platforms. Cloud
computing service, i.e., Infrastructure as a service (IaaS),
is characterized by resource demands, and the correspond-
ing VM is created with resource allocated by the DC. Usu-
ally, important resource to execute VMs is the DC’s CPU
capacity for computations. As the number of VMs increases,
the resource contentions also increase. Under the dynamic
changing cloud computing environments, some DCs may be
underload, idle, or resource-intensive; that is, the resources
in DCs are not being utilized effectively. Therefore, the use
of static VM placement algorithm and DC resource distri-
bution algorithm will tend to cause the resource waste or
inadequacy, which results in system inefficiency and load
imbalance inter-DCs and intra-DC [13], [18]. To tackle these
control problems, we propose a dual-level cooperative game
model. At the first phase, VMs are placed on appropri-
ate DCs. At the second phase, the limited resource in each
DC is distributed fair-efficiently to placing VMs. To pro-
vide a well-balanced solution, we characterize game model
G =

{
{D,V} ,

{
SDC i , SVM j

}
,
{
UDC
i ,UVM

j

}
,K,S, t

}
at

each time period t ∈ T of gameplay;
• Game players: the sets of DCs and VMs. We suppose
that there are n DCs, i.e., D = {DC1, . . . ,DCn}
and at some time, that there are m VMs, i.e., V =
{VM1, . . . ,VMm}.

• Strategy: The strategy of the DC1≤i≤n
(
SDC i

)
is a feasi-

ble resource distribution to ensure VMs’ operations. The
strategy of the VM1≤j≤m

(
SVM j =

{
MVM j ,mVM j

})
is a

set of requested resource amounts for the cloud service
where MVM j and mVM j are the maximum and minimum
DC’s resource requests, respectively.

• Utility: UDC
i and UVM

j are the utility functions of DC i
and VM j, respectively.

• Tasks:K is the set of randomly generated cloud service
tasks K = {K1 . . .K8}; each K has its own mVM and
MVM .

• Feasible matching tuples: S is the set of all possible
matching pairs.

• T = {1 . . . t, t + 1 . . .} is a time, which is represented by
a sequence of time steps with imperfect information.

TABLE 1. The notations for symbols and functions.

Table 1 lists the notations used in this paper. Based on their
own expectations, each DC and VM focus on its own work-
load and computation outcome, respectively. From the DC’s
viewpoint, utility function

(
UDC

)
is determined based on

the currently working load. To avoid the working overhead,
the smaller computation load is the better way for each DC.
From the VM’s viewpoint, utility function

(
UVM

)
is derived

from the outcome gained by the cloud computing service; it is
defined according to application’s characteristics. Usually,
the more DC resource is used, the higher the satisfaction is
obtained. In the proposed game model, the utility functions
of DC i and VM j, e.g., UDC

i and UVM
j , are defined as follows;

UDC
i

(
φtDC i ,M

DC i
)
= cos

(
θ ×

φtDC i

MDC i

)
UVM
j

(
xVMj ,MVM j

)
= 1−

δ

1+ exp
(
β ×

xVMj
MVMj

) (1)

where θ , δ and β are the control parameters. MDC i is the
total CPU capacity for the DC i and φtDC i is the DC i’s allo-
cated CPU capacity for running VMs at the time t . xVMj is
the assigned CPU computation capacity for the VM j where
mVM j ≤ x

VM
j ≤ MVM j .

B. MANY-TO-ONE MATCHING ALGORITHM
FOR VMs AND DCs
As an instance of cooperative game theory, we use the match-
ing game theory to design the VM placement algorithm.
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In 1962, Gale and Shapley developed a many-to-one match-
ing model for the college admission problem [12]. In the
many-to-one matching game, game players on each side have
preferences over players on the other side, and have enough
information to rank players on the other side. Therefore,
player in one side tries to be matched to the other player in
opposite side so as to satisfy both players as much as possi-
ble [12]. In this paper, we formulate a cooperative game to
solves the matching problem between the two sets: DCs and
VMs. The main objects of each DC and VM are to host
a set of VMs, and to select a specific DC, respectively,
while maximizing their payoffs. To coordinate VMs and DCs
while maximizing the system efficiency, DCs and VMs can
exchange the information such as their strategies, and make a
set of matching pairs. In particular, a VM can enter a bilateral
contract with one DC while a DC can provide its resource
to multiple VMs. Therefore, we can capture the matching
between DCs and VMs as a many-to-one matching.

To decide the effective matching pairs, one of major
concerns is to estimate a pair preference. Using UDC

i and

UVM
j functions, the pair preference of DC i and VM j

(
2
VM j
DC i

)
is defined as similar as the one used with the weighted-
multiplication-of-objective-functions method. Based on the
decision science, this approach deals with the properties of
utility functions [19]. At time t,2

VM j
DC i is estimated as follows;

2
VM j
DC i

(
t, φtDC i , x

VM
j

)
=

(
2∑
i=1

((ωi × fi)+ 1)2
) 1

2

,

s.t.,

f1 = UDC
i

(
φtDC i ,M

DC i
)

f2 = UVM
j

(
xVMj ,MVM j

)
(2)

where 0 < ω < 1 is a weight coefficient factor for each
preference where ω2 = 1 − ω1. For the stable matching,
the 2VM

DC allows one to transform multi-objective fun ctions
into a mono-objective one. The main goal of our matching
game is to find the optimal set of pairs, which maximize the
total sum of all pairs’ 2VM

DC values. To satisfy this goal, DCs
and VMs are put into D and V sets in random order, and each
VM in the set V in turn examines the DCs in the counterpart
setD. DCs have preferences over VMs, and DCs have enough
information to rankVMs. Therefore, eachDC in one side tries
to be matched to the other VM in opposite side so as to satisfy
both DC and VM as much as possible. In the main loop of
the matching algorithm, DCs find out the most suitable VMs
according to (3).

MSP
(
DC i,VM j

)
=

(
2
VM j
DC i

(
t, φtDC i , x

VM
j

)
|VM j ∈ V and

×

(
φtDC i + x

VM
j

)
≤MDC i

)
(3)

At the first-level game, xVMj is assumed as the mVM j of VM j.
To get the stable pairs, our developed matching algorithm
identifies all potential changes and swaps throughout match-
ing procedure execution. For example, if a DC picks the

counterpart VM in the already matched pair, swapping can
occur on the basis ofMSP values; the newmatch by swapping
should be higher MSP value than its present matching pair.
Definition 1: A many-to-one matching among DCs and

VMs is a function 0D
V : D

⋃
V → S

((
DC i,VM j

))
DC i∈D,

VM j∈V where S ((DC,VM)) is the matching set of (DC,VM)
pairs.

The outcome of our matching game is stable when no
VM will incur a higher MSP value from changing or swap-
ping its matched DC unilaterally. Let Q

(
S
(
D
⋃

V
))

denote
the total sum of all2VM

DC values within the S
((
D
⋃

V
))
. A sta-

ble outcome of the matching game is the feasible strategy
profile S

((
D
⋃

V
))∗ such that for

Q
(
S
(
D
⋃

V
))

≥ Q
((
0D
V

(
D
⋃

VM j

))⋃(
S
(
D
⋃

V−VM j

)))
s.t., 0D

V

(
D
⋃

VM j

)
/∈ S

(
D
⋃

V
)
and VM j ∈ V (4)

In general, a stable outcome may not exist in a matching
game [20]. Therefore, we should prove the existence of a
stable outcome for the many-to-one matching game of DCs
and VMs by constructing an exact potential function, which
can express the payoff changes when all players change
their strategies. The existence of a potential function is the
characteristic of a potential game. An important feature of
a potential game is that potential game has been shown
to always converge to a Nash equilibrium when the best
response dynamics is performed [12].
Proposition 1: The proposed the DC-VM matching game

is potential game.
Proof: First, consider the situation that a VM sim-

ply changes its corresponding DC. We assume that(
DC i,VM j

)
and

(
DCk ,VM j

)
are feasible paring ele-

ments and S′DC i←→DCk |VM j
((DC,VM)) represents the

S ((DC,VM)) but the DC i and DCk are swapped by
the VM j. Based on these notations, we can define the pair
set S′DC i←→DCk |VM j

((DC,VM)) like as S′DC i←→DCk |VM j

((DC,VM)) =
(
DCk ,VM j

)
+S ((DC,VM))DC∈D,VM∈V\VM j .

For the matching game model in the proposed scheme,
the potential function can be expressed as follows:

9
(
S
((
DC i,VM j

))
DC i∈D,VM j∈V

)
=

∑
VM j∈V

(
MSP

(
DC i,VM j

)
|DC i ∈ D

)
(5)

With the pair
(
DC i,VM j

)
in S ((DC,VM)), the change in

the potential function by the DC i and DCk swapping by the
VM j is

9
(
S
′

DC i←→DCk |VM j
((DC,VM))

)
= 2

VM j
DCk

(
t, φtDCk , x

VM
j

)
+

∑
VM r∈V\VM j

(DC l ∈ D |MSP (DC l,VM r ))

s.t.,
(
φtDCk + x

VM
j

)
≤MDCk (6)
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The goal is to assign each VM’s matching value that is
perfectly aligned with the global potential function in (5).
To satisfy this goal, we should show that each VM’s
matching value can capture the VM’s marginal contribu-
tion to the potential function. In our matching game, the
VM j’s matching value change by the swapping of DC i and
DCk

(
X
(
DC i←→ DCk |VM j

))
is defined as;

X
(
DC i←→ DCk |VM j

)
=

(
2
VM j
DCk

(
t, φtDCk , x

VM
j

)
−2

VM j
DC i

(
t, φtDC i , x

VM
j

))
(7)

X
(
DC i←→ DCk |VM j

)
, provided that all other VMs with-

out VM j collectively still stay S′(DC l,VM r )DC l∈D,VM r∈

V\VM j , is

X
(
DC i←→ DCk |VM j

)
=

(
2
VM j
DCk

(
t, φtDCk , x

VM
j

)
−2

VM j
DC i

(
t, φtDC i , x

VM
j

))
=

(
2
VM j
DCk

(
t, φtDCk , x

VM
j

)
−2

VM j
DC i

(
t, φtDC i , x

VM
j

))
+

 ∑
DC l∈D,VM r∈V\VM j

(
2
VM r
DC l

(
t, φtDC l , x

VM
r

))

−

∑
DC l∈D,VM r∈V\VM j

(
2
VM r
DC l

(
t, φtDC l , x

VM
r

))
=

2VM j
DCk

(
t, φtDCk , x

VM
j

)

+

∑
VM r∈V\VM j

(
2
VM r
DC l

(
t, φtDC l , x

VM
r

))
−

2VM j
DC i

(
t, φtDC i , x

VM
j

)

+

∑
VM r∈V\VM j

(
2
VM r
DC l

(
t, φtDC l , x

VM
r

))
= 9

(
S
((
DC i,VM j

))
DC i∈D,VM j∈V

)
−9

(
S
′

DC i←→DCk |VM j
(DC,VM)

)
(8)

�
Second, consider the swapping situation. We assume that(
DC i,VM j

)
and (DCk ,VM l) pairs are in the S (DC,VM)

and S′DC i←→DCk |VM j←→VM l
((DC,VM)) represents the

S ((DC,VM)) but the DC i and DCk are swapped in the
pairs (DC i,VM l) and

(
DCk ,VM j

)
. Therefore, we can

define the pair set S′DC i←→DCk |VM j←→VM l
((DC,VM)) =

(DC i,VM l) +
(
DCk ,VM j

)
+ S′ ((DCd ,VM r ))DCd∈D,VM r∈

V\VM j,VM l . The change in the potential function by the VM j
and VM l swapping is

9
(
S′DC i←→DCk |VM j←→VM l

((DC,VM))
)

= 2
VM l
DC i

(
t, φtDC i , x

VM
l

)
+2

VM j
DCk

(
t, φtDCk , x

VM
j

)

+

∑
VM r∈V\VM j,VM l

(MSP (DC l,VM r ) |DCd ∈ D),

s.t.,
(
φtDC i + x

VM
l

)
≤MDC i and

(
φtDCk + x

VM
j

)
≤MDCk

(9)

The matching value change by the swapping ofDC i andDCk(
X
(
DC i←→ DCk |VM j←→ VM l

))
is defined as;

X
(
DC i←→ DCk |VM j←→ VM l

)
=

(
2
VM l
DC i

(
t, φtDC i , x

VM
l

)
+2

VM j
DCk

(
t, φtDCk , x

VM
j

))
−

(
2
VM j
DC i

(
t, φtDC i , x

VM
j

)
+2

VM l
DCk

(
t, φtDCk , x

VM
l

))
=

(
2
VM l
DC i
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= 9

(
S
((
DC i,VM j

))
DC i∈D,VM j∈V

)
−9

(
S′DC i←→DCk |VM j←→VM l

((DC,VM))
)

(10)

�
Based on the best response update to determine a stable out-
come, our many-to-one matching algorithm can be executed
to converge to a stable outcome. In the proposed scheme,
DCs and VMs are responsible for the information exchange
in an online fashion. Our matching algorithm consists of
three phases: initiation, matching and swapping phases. In the
below procedure, lines 1 and 4 describe the initiation phase
for the VMs and DCs. The loop from lines 5 and 14 describes
the matching and swapping phases. Through this repeated
matching loop, a VM can match at most one DM.

C. MOOD VALUE BASED DC RESOURCE
DISTRIBUTION ALGORITHM
After the many-to-one matching among VMs and DCs, each
DC distributes its limited resource to the corresponding VMs.
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Algorithm 1 Matching Game Model Procedure
VMs and DCs’ Matching Game Algorithm

Input: VMs’ resource requests and DCs’ resource
capacities.
Output: stable mapping pairs between VMs and DCs
1: Each VM collects all the information of DCs.
2: Individual VMs calculate their preferences for DCs
using Eq.(1)-(3), and build their own preference lists.

3: Each DC collects all the information of VMs.
4: Individual DCs calculate their preferences for VMs
using Eq.(1)-(3), and build their own preference lists.

5: Each VM proposes to its most preferred DC according
to its preference list.

6: Repeat
7: If (DC can accept all VMs within its capacity
constraint MDC ) then

8: that DC temporarily holds all the matching VMs.
9: Else
10: according to the DC’s preference list, the DC

selects the most preferred VMs without violating
the capacity constraint.

11: based on the DC’s decision, the requested VM
can be rejected or accepted by swapping.

12: End If
13: Not matched VM proposes to its next most preferred

DC according to its preference list.
14: Until noVM can change the current matching solution.
15: Confirm the stable matching pairs

DC resource allocation becomes a challenging problemwhen
the available resource is limited and not enough to fully sat-
isfy VMs’ maximum demands

(∑
MVM

)
. In such situations,

resource allocation algorithms need to ensure the efficiency
for the resource usability and the fairness among VMs. Under
awareness about the available resource amount and VMs’
demands, our major goals are i) defining the level of justice
in the resource distribution and ii) formulating a model to
allocate a quantitative resource amount for each VM, and
iii) finding the best set-value solution in terms of efficiency
and fairness. To satisfy these goals, we are also inspired by
cooperative game theory.

A classical set-value solution for n-player cooperative
games is the core, which is defined as the set of allocations
that cannot be improved upon by any coalition. The core,
sometimes it is called as a cooperative Nash equilibrium,
is useful to obtain the stability condition of the coalitional
cooperative game. However, the core is always well-defined,
but can be empty. In addition, the fairness concept would
still prevent a stable cooperation in some situations where
the core is non-empty. Therefore, a new solution that provides
themost preferable distribution strategy is required [11], [12].
In 2017, F. Fossati et al proposed the main concept of Mood
value [11].With the core, theMood value is a strong set-value
solution concept based on the fair distribution of total gains

to the players, assuming that they all collaborate. Therefore,
by using theMood value approach, we can attempt to equalize
each VM’s satisfaction with respect to an effective distribu-
tion of the DC resource.

At the second-level game, we develop a novel DC resource
allocation algorithm based on the Mood value. Generally, the
resource distribution problem for n VMs leads to the similar
conflict situation as in the money division problem for n
claimants. Therefore, the DC resource allocation algorithm
is analogous to the bankruptcy game model. The bankruptcy
game assumes that a company becomes bankrupt and this
company owes money to n money claimants; the money is
needed to be divided among these claimants. This conflicting
situation also introduces an n player cooperative game where
the players are seeking for the equilibrium point to divide the
money [12], [21]. The bankruptcy game is defined asG(N, v)
where N = {C1 . . .Ci . . .Cn} represents the claimants of the
bankruptcy situation and v is the characteristic function that
associates to each coalition (S) of claimants: 2N → R where
v (∅) = 0 [11], [12], [21]:

v (S) = max (0,E −
∑

Ci∈N\S

dCi )

s.t., S ⊂ N \ {∅}, E <
∑
Ci∈N

dCi and dCi ∈ d (11)

where E ≥ 0 is an estate that has to be divided among the

claimant set N and dCi is the Ci’s demand. d ∈ R|N|+ is
the claim vector of all claimants. The important properties
of bankruptcy game are i) super-additivity, ii) supermodular
and iii) Pareto optimality.

i) ν (S1)+ ν (S2) ≤ ν
(
S1
⋃
S2
)
,

s.t., ∀S1, S1 ⊆ N and S1
⋂
S2 = ∅

ii) ν (S1)+ ν (S2) ≤ ν
(
S1
⋂
S2
)
+ ν

(
S1
⋃
S2
)
,

s.t., ∀S1, S1 ⊆ N

iii)
∑
Ci∈N

ϒCi = E,

s.t., 0 ≤ ϒCi ≤ di

(12)

where ϒCi means the actually assigned resource division for
the Ci. The restriction (iii) implies that no claimant gets more
than he claims or less than zero and that the total amount
E is divided among the claimants. Based on the bankruptcy
game model, we can re-define the DC resource distribution
problem. Simply, we can assume the VM i as the Ci and E
is the DC’s MDC . N is the set of VMs, which are placed
in the DC, and dCi is the MVM i . The Ci’s quality of experi-
ence

(
QoEN

Ci

)
, which is a measure of the delight or annoy-

ance of the Ci’s experience with the resource distribution, is
defined as

QoEN
Ci =

ϒCi − ZmCi
ZMCi − ZmCi

,

s.t.,

{
ZMCi = ν (N)− ν (N\Ci)

ZmCi = ν (Ci)
(13)
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where ZMCi and ZmCi are the maximal and minimal right for
the Ci, respectively. If

∑
Ci∈N dCi ≤ E , the QoEN

Ci is 1.
Therefore, theCi is measured to be completely satisfied when
the Ci gets ZMCi and extremely unsatisfied when he gets ZmCi ,
i.e., the QoEN

Ci is 0 [11].
By using the game-theoretic interpretation, the dissatisfac-

tion degree for fairness can be defined. According to the gain
of the player from the cooperation, it is defined as the ratio
of the loss incurred by the complementary coalition to the
loss incurred by the current coalition itself. Mathematically,
the dissatisfaction degree of coalition S with the resource
distribution vector V (S) (S (N,V (S))) is formulated as
follows [11], [22];

S (N,V (S)) =
V (N\S)− ν (N\S)

V (S)− ν (S)

=
ν (N)− V (S)− ν (N\S)

V (S)− ν (S)
(14)

The dissatisfaction degree of the coalition S quantifies its
desire to leave that coalition. If the V (S) is the same as
the ν (S), the desire of disrupting the coalition S is maximum.
If the V (S) = (ν (N)− ν (N\S)), the desire of disrupting
the coalition S is zero. If the V (S) > (ν (N)− ν (N\S)),
i.e., S (S,V) < 0, all the members in the coalition S are
hyper-enthusiastic to cooperate each other while maintaining
the S coalition. Based on the relationship of S (S,V (S)),
QoECi in the equation (13) can be re-defined as follows [11];

QoEN
Ci =

ϒCi − ZmCi
ZMCi − ZmCi

=
ϒCi − ν (Ci)

ZMCi − ν (Ci)

=
V (Ci)− ν (Ci)

ν (N)− ν (N\Ci)− ν (Ci)
(15)

According to (14), S (N,V (Ci)) can also be re-defined given
by;

S (N,V (Ci))

=
ν (N)− V (Ci)− ν (N\Ci)

V (Ci)− ν (Ci)

=
ν (N)− V (Ci)− ν (N\Ci)− (ν (Ci)− ν (Ci))

V (Ci)− ν (Ci)

=
ν (N)− ν (N\Ci)− ν (Ci)

V (Ci)− ν (Ci)
−

V (Ci)− ν (Ci)
V (Ci)− ν (Ci)

=
ν (N)− ν (N\Ci)− ν (Ci)

V (Ci)− ν (Ci)
− 1 =

1

QoEN
Ci

− 1

⇐⇒ QoEN
Ci =

1
(S (N,V (Ci))+ 1)

(16)

Definition 2: Using the bankruptcy game model charac-
terized by G(N, v), the Mood value is a set-value solution
for each Ci ∈ N. The Mood value for the Ci (Mv (N,Ci))
is defined as follows [11];

Mv (N,Ci) =
{
V (Ci) |QoEN

Ci = QoEN
Cj and ∀Ci,Cj ∈ N

}
(17)

Due to the relation between the QoEC and S (N,V (C)),
the Mood value solution provides the same dissatisfaction
degree for each C . In other words, equalizing the dissatis-
faction degree of each C means to equalize the mood of
each C . Therefore, the fairness idea behind the Mood value
is that each C has the same S (N,V (C)) and the resource
distribution rule to equalize the S (N,V (C)) is theMv (N,C)
for each C . In this study, we design a new DC resource
distribution algorithm based on the Mood value. First, each
individual DC ensures the mVM request amounts for all the
placed VMs. And then, ν (Ci) is simply calculated based on
the UVM

i

(
xVMi ,MVM i

)
according to (1). Finally, the remain-

ing DC’s resource is distributed for the placed VMs using the
Mood value.

D. MAIN STEPS OF PROPOSED DUAL-LEVEL
RESOURCE CONTROL ALGORITHM
Recently, DCs play an important role to deliver high quality
cloud computing services to end users. For the effective oper-
ation of DCs, the limited resource is virtualized to support
different application tasks. Virtualization adds flexibility to
DC management but that flexibility comes at the expense
of control overhead. This paper considers a new method to
share fair-efficiently the limited DC resource based on the
matching game and Mood value. In order to implement our
dual-level game model, we logically partition the time-axis
into equal intervals of length unit_time. Every unit_time,
our proposed scheme is repeatedly executed through a step-
by-step online manner. The main steps of the proposed DC
resource provisioning algorithm are given next.
Step 1: At the initial time, cloud computing system param-

eters and application tasks are characterized by the simulation
scenario and Table 2.

TABLE 2. System parameters used in the simulation experiments.

Step 2: Users generates sequentially application tasks
and related VMs are dynamically formed. At that time,
DCs are waiting to execute the generated VMs. Each
VM has maximum and minimum DC’s resource requests,
i.e., MVM and mVM .
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Step 3: The payoffs of each DC and VM are defined
according to (1). Based on these payoffs, the pair preference
of each DC-VM is calculated using the equation (2).
Step 4: Based on the proposed the DC-VMmatching algo-

rithm, we can get the stable many-to-one matching pairs.
Step 5: After obtaining the stable matching pairs, we can

categorize VMs; each DC can have multiple placed VMs.
If the total sum of the placed VMs’ MVM amounts is less
than the DC’s available resource

(
MDC

)
, each MVM is fully

allocated for the corresponding VM; QoE is 1 and all VMs
are completely satisfied.
Step 6: If the total sum of the placed VMs’ MVM amounts

is larger than the MDC , all the placed VMs are ensured
their mVM , preferentially. And then, the remaining DC’s
resource is distributed to the placed VMs based on the Mood
value.
Step 7: Based on the step-by-step repeated game process,

the VMs and DCs interact with each other in an online
manner.
Step 8: Every unit_time, our dual-level game model is

executed sequentially to provide a fair-efficient DC resource
distribution solution.
Step 9: Under the dynamic cloud computing system envi-

ronment, our game based control approach is constantly
self-monitoring the current system conditions; proceeds to
Step 2 for the next dual-level game iteration.

III. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed
protocol. In order to evaluate the implementation of the pro-
posed model, the performance analysis is performed by com-
paring the existing SOVMP scheme [16] and MOVMP [17]
schemes. To ensure a fair comparison, the following simula-
tion assumptions and cloud computing system platform are
used.
• There are ten DCs, i.e., D = {DC1, . . . ,DC10},
and multiple VMs, which are generated based on the
Poisson process; the generation rate range λ is varied
from 0 to 3.

• VMs can be categorized as eight different task groups,
i.e., {K1, . . . ,K8}. Each K is specified according to
the minimum and maximum computation requirements.
They are generated with equal probability.

• The time-axis is partitioned by equal intervals of length,
called unit_time, and our dual-level game model is exe-
cuted at each unit_time.

• For computation simplicity, the DC’s resource is speci-
fied in terms of basic computation units (BCUs), where
one BCU is the minimum amount of resource distribu-
tion, e.g., 50MHz in our system, by using the Mood
value method.

• System performance measures obtained on the basis
of 100 simulation runs are plotted as functions of the
offered task generation rate.

• For simplicity, we assume the absence of physical obsta-
cles in the experiments.

To demonstrate the validity of our proposed method, we mea-
sured the normalized DC resource usability, cloud service
success ratio, and fairness among VMs in the cloud system.
Table 2 shows the system parameters used in the simulation.

FIGURE 1. Normalized DC resource usability.

Figure 1 compares the DC resource usability of each
scheme. In this study, the DC resource is the CPU com-
putation capacity. To estimate the total system efficiency,
the DC resource usability is a key factor in the cloud ser-
vice operation. All schemes exhibit a similar trend; however,
the proposed scheme outperforms the existing methods from
low to high task generation intensities. By using a dual-
level cooperative game paradigm, VMs in our scheme are
adaptively placed in the most adaptable DC and get the DC
resource efficiently; it can improve the DC resource usability
than other SOVMP and MOVMP schemes.

FIGURE 2. Cloud service success ratio.

Figure 2 compares the cloud service success ratio. In this
study, each application task for cloud service is formed as
a VM. Therefore, the cloud service success ratio can be
thought as a task complete probability to the total num-
ber of generated tasks. Based on the cooperative game fea-
tures, VMs and DCs in our scheme are dynamically matched
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and the DC’s available resource is distributed effectively to
its corresponding VMs. Therefore, the gain in this perfor-
mance evaluation criterion is a result of our scheme’s self-
adaptability and real-time effectiveness. As you see in Fig.2,
the proposed scheme attains superior cloud service success
ratio to other schemes, whichwere designed as one-sided pro-
tocols and do not respond to current cloud system conditions.

FIGURE 3. Fairness among VMs in the cloud system.

The curves in Figure 3 indicate the fairness among VMs
in the cloud system. In this study, the evaluation of fairness
is measured based on the concept of Jain’s index, which
has been frequently used to measure the fairness of system
resource allocations [11]. Usually, the Jain’s index is bounded
between 1/n and 1 where n is the total number of resource
requesters. The maximum fairness is measured when all the
requesters obtain the same fraction of demand and the mini-
mum fairness is measured when it exists only one requester
that receives all the resource. The Jain’s index has the good
properties - Population size independence, Scale and metric
independence, Boundedness and Continuity [11]. According
to the feature of Mood value, each DC fairly distributes
its remaining resource in a distributed online manner while
reflecting VMs’ features.

Under widely different and diversified task generation
intensities, our dual-level cooperative game approach can
obtain synergistic and complementary characteristics for
cloud services. It is an effective and suitable way to operate
practically the cloud computing system. Therefore, the sim-
ulation results shown in Figures 1 to 3 demonstrate that the
proposed scheme can attain an appropriate fair-efficient sys-
tem performance, something that the existing SOVMP [16]
and MOVMP [17] schemes cannot offer.

IV. SUMMARY AND CONCLUSIONS
Virtualization is the enabling technique to facilitate the
sharing of limited system resource, with high flexibility, pre-
dictable performance, reliability and controllability. Nowa-
days, DC virtualization has been the subject of recent research
interests. In particular, with the large amount of cloud

computing services, how to place VMs efficiently to available
DCs has become an essential topic in 5G networks. In this
study, we develop a new DC resource provisioning scheme
for cloud computing services. By considering the current
resource constraints, the major challenge is to ensure global
QoS metrics for different service requests. In contrast to
existing protocols in this research area, we present two coop-
erative game formulations by adopting the main concepts of
matching game model and Mood value. Using the step-by-
step interactive dual-level game process, we can effectively
provide the DC resource for different VMs while rewarding
a tradeoff between service fairness and system efficiency.
Under widely different and dynamic cloud computing situa-
tions, the proposed scheme adaptively responds to the current
DC situations and find an adaptable solution for the cloud sys-
tem operations. Through extensive simulation experiments,
we can confirm that the proposed scheme is a more robust
and efficient method than other existing protocols. As a part
of future work, we plan to extend the presented approach
with other resource dimensions such as energy consump-
tions and I/O devices. In addition, we will focus on the VM
migration issue among DCs for load balancing. Furthermore,
we would like to enhance the presented approach with more
advanced game models by adding bargaining solutions and
mechanism designs. It can improve the system robustness.
Finally, we would like to take a research opportunity to
address the differential privacy and deep learning algorithms
in the VM placement problems.
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