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ABSTRACT This paper addresses the problem of blind carrier frequency offset (CFO) estimation for multi-
input-multi-output orthogonal frequency division multiplexing systems. Benefiting from the banded struc-
ture of the circulant channel matrix from each transmitting antenna to each receiving antenna, the covariance
matrices formulated by circular shifts of received signals also possess the banded structure in the absence of
CFO for constant modulus signals. Thus, the cost function can be constructed by minimizing the elements
outside the band and a closed-form CFO estimation algorithm is proposed. Since the channel length has
an effect on the proposed estimator and channels with high delay spreads may deteriorate the estimation
performance, an improved version of the proposed algorithm is investigated under the assumption that the
channel remains constant within two consecutive OFDM symbols which is often the case. Experimental
results demonstrate that the proposed algorithm shows better performance than the conventional CFO
estimation schemes in frequency-selective fading channels and the improved version of the proposed
algorithm can further optimize the estimation performance under long channel length conditions.

INDEX TERMS Blind estimation, banded structure, carrier frequency offset (CFO), multi-inputmulti-output
orthogonal frequency division multiplexing (MIMO-OFDM).

I. INTRODUCTION
Orthogonal frequency division multiplexing (OFDM) has
been the most promising multicarrier modulation technique
during the past two decades due to its high bandwidth effi-
ciency and immunity against multipath propagation. It has
been adopted by many wireless standards and applications
such as IEEE 802.11, fourth generation long term evolution
(4G LTE) [1] and some wired applications like digital audio
and video broadcasting. Besides, OFDM is a strong candidate
for the forthcoming fifth generation (5G) wireless commu-
nication together with the multi-input multi-output (MIMO)
technology [2]. The combination of the two major techniques
can greatly improve the system capacity to meet the increas-
ing demand for very high data rates. However, OFDM is quite
sensitive to carrier frequency offset (CFO) resulted from the
mismatch between transceivers or Doppler frequency shift.
The CFO problem persists in MIMO-OFDM systems and

results in inter-carrier interference (ICI) that can cause serious
performance degradation.

Various CFO estimation schemes have been developed
during the past few years and they can be categorized
as data-aided ones and semi-blind/ blind ones. The semi-
blind or blind algorithms are attractive due to the high
bandwidth efficiency. In [3], a subspace based semi-blind
algorithm is proposed for joint CFO and channel estima-
tion, despite using one pilot OFDM block, hundreds of data
blocks are required to achieve satisfied estimation perfor-
mance which is not appropriate for fast time-varying chan-
nels. Besides, the number of receiving antennas is required
to be larger than that of transmitting antennas. Similarly,
another example by exploiting the multi-antenna redun-
dancy at the receiver is the work in [4], which requires the
number of receiving antennas to be at least one more than
that of the transmitting antennas. A blind CFO estimation
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algorithm based on tensor decomposition is developed in [5]
and [6], however, it is only suitable for single-input multi-
output (SIMO)OFDM systems and the number of data blocks
should be no less than the number of subcarriers. In [7],
a kurtosis-type criterion is exploited for CFO estimation in
SISO and MIMO-OFDM systems, but the estimation perfor-
mance is poor under highly frequency-selective channels. The
work in [8] develops a blind CFO estimator by minimizing
the components of the signal power spectrum, but the per-
formance is poor under long channel length conditions. The
algorithms in [9] and [10] assume that the channel frequency
response is almost the same on two neighboring subcarri-
ers, thus by minimizing the power difference between two
adjacent subcarriers with constant modulus (CM) signaling,
the CFO can be estimated. In [11] and [12], the algorithms
utilize the information in time domain and construct the
cost function by minimizing the power difference between
two adjacent OFDM symbols under the assumption that the
channel changes slowly over two successive OFDM symbols.
A more robust algorithm exploiting the banded structure of
the covariance matrix calculated by circular shifts of the
received signal is proposed in [13]–[14] and CFO estimation
with higher accuracy is obtained. The algorithm in [15] fur-
ther improves the algorithm in [14] by incorporating the time
domain information to alleviate the performance loss brought
about by long channel length. Nevertheless, the algorithms
in [9]– [15] are designed for SISO-OFDM systems. The work
in [16] proposes a frequency synchronization scheme formul-
tiuser uplink OFDM systems by exploiting the angle infor-
mation of users, but the assumption that perfect knowledge
about angular spread is available at the BS is not practical.
The algorithm in [17] develops a CFO estimator via rank
reduction criterion, but the number of OFDM symbols in
one data block should be no less than three when there are
two receiving antennas and when the number of receiving
antennas grows, the data block is required to be larger.

In this paper, a new CFO estimation algorithm is pro-
posed for MIMO-OFDM systems. On one hand, the number
of receiving antennas is not required to be larger than that
of the transmitting antennas; On the other hand, the pro-
posed estimator can work in the case when there is only
one OFDM symbol in a data block. The proposed method is
based on the banded structure of auto-covariance and cross-
covariance matrices calculated by circular shifts of multiple
received signals. By minimizing the out-of-band elements of
covariance matrices, a closed form estimator is constructed
and a simple curve fitting method can be employed to
find theminimumof the contrast function. In order tomitigate
the performance degradation caused by long channel length,
the proposed algorithm is further optimized by utilizing the
in-band elements of covariance matrices. Performance of the
proposed algorithms is analyzed and compared with other
schemes under frequency-selective fading channels.

The rest of the paper is organized as follows. The
MIMO-OFDM system model in the presence of CFO is
introduced in Section II. Section III shows the proposed CFO

estimation algorithm and its improved version. The
Cramer-Rao lower bound (CRLB) of CFO estimation for
MIMO-OFDM systems is derived in Section IV. The exper-
imental results and analysis are given in Section V and
Section VI includes some concluding remarks.
Notations: Throughout the work, the notation |·| refers to

the complex modulus and ‖·‖ stands for the matrix Frobenius
norm. The real and imaginary part of a ∈ CN×1 are denoted
by Re{a} and Im{a}, respectively, and diag{a} ∈ CN×N

denotes the diagonal matrix holding the elements of a on its
diagonal. The identity matrix is denoted by IN ∈ CN×N and
the all-ones vector is denoted by 1N = [1, . . . , 1]T ∈ CN .
The superscripts (·)H , (·)T and (·)∗ denote the Hermi-
tian transpose, transpose and complex conjugate operator,
respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Consider a point-to-point MIMO-OFDM system with NT
transmitting antennas, NR receiving antennas and N subcar-
riers as shown in Fig. 1. The frequency-selective channel
with length L is block fading and the channel state infor-
mation (CSI) remains constant among NS OFDM symbols.
Let Sk (i) = [S0k (i), S

1
k (i), . . . , S

N−1
k (i)]

T
denote the i-th (i =

1, 2, . . . ,NS ) data symbol transmitted by the k-th (k =
1, 2, . . . ,NT ) transmitting antenna, the element is assumed to
be constant modulus with

∣∣Snk (i)∣∣2 = 1, n = 0, 1, . . . ,N − 1.
The signal is firstly transformed to time domain by anN point
IDFT and prepended with a cyclic prefix (CP) consists of the
copy of the lastLCP (LCP ≥ L) entries of eachOFDMsymbol.
The OFDM symbols are then transmitted through a multipath
channel. Denote ε as the CFO between the transmitter and the
receiver, normalized by subcarrier spacing, then ε is in the
range of (−0.5, 0.5) [18]. At each receiver, after removing
the CP, the time domain signal received by them-th receiving
antenna can be expressed by

xm(i) = ϕ(ε)(i)
NT∑
k=1

2(ε)8m,kFHSk (i)

+ zm(i), m = 1, 2, . . . ,NR (1)

FIGURE 1. System model for a point to point MIMO-OFDM system with a
blind CFO estimation module.
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where ϕ(ε)(i) = ej2π iε(N+LCP)/N is the common phase shift of
the i-th OFDM symbol and 2(ε) is the diagonal CFO matrix
denoted by

2(ε) = diag{[1, ej2πε/N , . . . , ej2π (N−1)ε/N ]} (2)

F is the N × N DFT matrix with its entry (u, v) given by
F(u, v) = 1/

√
Ne−j2πuv/N , (u, v = 0, 1, . . . ,N − 1) and

zm(i) is the additive white Gaussian noise (AWGN) vec-
tor. Affected by CP appending and removing, the channel
matrix 8m,k is a circular convolution matrix, which can be
written as

8m,k =


h0m,k hN−1m,k · · · h1m,k
h1m,k h0m,k · · · h2m,k
...

...
. . .

...

hN−1m,k hN−2m,k · · · h0m,k

 (3)

in which hm,k = [h0m,k , h
1
m,k , . . . , h

L−1
m,k , . . . , h

N−1
m,k ]

T
is the

channel impulse response vector from the k-th transmitter to
them-th receiver and hlm,k = 0 for l ≥ L. An appealing nature
of the circulant channel matrix is that it can be diagonalized
by the DFT matrix, i. e. 8m,k = FH3F and 3 is a diagonal
matrix.

According to (1), since F2(ε)FH 6= I (I is an identity
matrix), the orthogonality between subcarriers is destroyed
by the CFO and ICI is produced. Hence the CFO must be
compensated before DFT implementation. The purpose of
this work is to get the compensation matrix2∗(ε̃) formed by
the estimated CFO ε̃ from the receiving signals in the absence
of CSI and without using training sequences.

III. PROPOSED CFO ESTIMATION ALGORITHMS FOR
MIMO-OFDM SYSTEMS
A. PROPOSED CFO ESTIMATION ALGORITHM
Let ε̂ denote the trial value of CFO and the compensated CFO
matrix is represented by 2∗(ε̂), i. e. the complex conjugate
of2(ε̂). Then the corrected received signals can be expressed
by

ym,ε̂(i) = ϕ
(ε−ε̂)(i)

NT∑
k=1

2(ε − ε̂)8m,kFHSk (i)

+2∗(ε̂)zm(i), m = 1, 2, . . . ,NR (4)

Amatrix can be formed by stacking circularly shifted column
vectors, i. e.

Dm,ε̂(i) = [ym,ε̂(i),Pym,ε̂(i), . . . ,P
N−1ym,ε̂(i)]

=



y0m,ε̂(i) y1m,ε̂(i) · · · y
N−2
m,ε̂ (i) yN−1m,ε̂ (i)

y1m,ε̂(i) y2m,ε̂(i) · · · y
N−1
m,ε̂ (i) y0m,ε̂(i)

...
...

. . .
...

...

yN−2m,ε̂ (i) yN−1m,ε̂ (i) · · · yN−4m,ε̂ (i) yN−3m,ε̂ (i)
yN−1m,ε̂ (i) y0m,ε̂(i) · · · y

N−3
m,ε̂ (i) yN−2m,ε̂ (i)

 (5)

in which Pn (n = 0, 1, . . . ,N − 1) are permutation matrices.
The covariance matrix between the m1-th received signal and

the m2-th received signal can be obtained from (5) as

Rm1,m2,ε̂(i) =
1
N
Dm1,ε̂(i)D

H
m2,ε̂

(i) (6)

Assuming that the CFO is perfectly estimated, the above
covariance matrix can be expressed by

Rm1,m2 (i) =
1
N

N−1∑
n=0

Pnym1 (i)y
H
m2
(i)(Pn)H

=
1
N

N−1∑
n=0

Pn(
NT∑
k1=1

8m1,k1F
HSk1 (i)+ zm1 (i))

· (
NT∑
k2=1

8m2,k2F
HSk2 (i)+ zm2 (i))

H (Pn)H (7)

Due to the circulant property of permutation matrices and the
channel matrix, (7) can be rewritten as

Rm1,m2 (i) =
1
N

NT∑
k1=1

NT∑
k2=1

8m1,k1

·

N−1∑
n=0

PnFHSk1 (i)S
H
k2 (i)F(P

n)H︸ ︷︷ ︸
T

·8H
m2,k2+e (8)

in which e is the total error matrix generated by noise. When
k1 = k2, the (p, q)-th element tpq of matrix T is

tpq =
N−1∑
n=0

N−1∑
l1=0

S l1k1 (i)e
j 2π l1nN

N−1∑
l2=0

S l2k1
∗

(i)e−j
2π l2(n+p−q)

N

=

N−1∑
l=0

S lk1 (i) · S
l
k1
∗
(i)e−j

2π l(p−q)
N

=

{
N , p = q
0, p 6= q

(9)

which indicates that T is a diagonal matrix and T is no longer
diagonal when k1 6= k2. In this case, Rm1,m2 (i) can be split
into two parts and expressed by

Rm1,m2 (i) =
NT∑
k=1

8m1,k8
H
m2,k

+
1
N

NT∑
k1=1

NT∑
k2=1
k2 6=k1

8m1,k1Ak1,k28
H
m2,k2+e (10)

in which Ak1,k2 =

N−1∑
n=0

PnFHSk1 (i) S
H
k2
(i)F(Pn)H is a

non-diagonal matrix. Since 8m,k in (3) has banded struc-
ture, it can be easily obtained that the banded struc-

ture maintains in
NT∑
k=1

8m1,k8
H
m2,k

. Denote rm1,m2 (i) =

[r0m1,m2
(i), r1m1,m2

(i), . . . , rN−1m1,m2
(i)]

T
as the first column of
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NT∑
k=1

8m1,k8
H
m2,k

, there is

∣∣rnm1,m2
(i)
∣∣2

> 0, 0 ≤ n ≤ L − 1
= 0, L ≤ n ≤ N − L
> 0, N − L + 1 ≤ n ≤ N − 1

(11)

which indicates that some components of rm1,m2 (i) are
missing/out of band at some specific positions. Although the
existence of the second term of (10) weakens the banded
structure of Rm1,m2 (i), it should be noted that if CFO is not
estimated correctly, the banded nature will be further weak-
ened. Therefore, the weakened banded structure of Rm1,m2 (i)
can be utilized for CFO estimation. In the following analysis,

we assume that Rm1,m2 (i) ≈
NT∑
k=1

8m1,k8
H
m2,k
+ e for simple

derivation. Since Rm1,m2,ε̂(i) is Toeplitz, the first column of
Rm1,m2,ε̂(i) is sufficient and it can be calculated by

rm1,m2,ε̂(i) =
1
N
Dm1,ε̂(i)y

∗

m2,ε̂
(i) (12)

Thus the cost function can be achieved by minimizing the
out-of-band elements of rm1,m2,ε̂(i), i. e.

J (ε̂) =
NS∑
i=1

NR∑
m1=1

NR∑
m2=m1

N−L∑
n=L

∣∣∣rnm1,m2,ε̂
(i)
∣∣∣2

ε̃ = argmin
ε̂
J (ε̂) (13)

Following a procedure similar to the one described in [7],
the cost function J (ε̂) can be approximated by a closed form
function (see Appendix A)

J (ε̂) ≈ Acos(2π (ε − ε̂))− A (14)

in which A is a constant irrelevant with ε and ε̂. Since A < 0,
the function J (ε̂) reaches the minimum when ε̂ = ε. The
function in (14) follows a sinusoidal structure, hence the min-
imization process can be performed by a curve-fitting method
instead of exhaustive line search. Specifically, the value of
J (ε̂) is calculated at three points ε̂ = 1

4 ,−
1
4 , 0 and the

estimation of ε can be obtained by

ε̃ =



1
2π

tan−1(
b
a
), a ≥ 0

1
2π

tan−1(
b
a
)−

1
2
, a < 0, b > 0

1
2π

tan−1(
b
a
)+

1
2
, a < 0, b ≤ 0

(15)

where a = (J (1/4)+J (−1/4))/2−J (0) and b = (J (−1/4)−
J (1/4))/2.

B. AN IMPROVED VERSION OF THE PROPOSED CFO
ESTIMATION ALGORITHM
It can be observed from (13) that the number of the out-of-
band elements depends on the channel length L when the
number of subcarriers N is fixed, and channels with high
delay spreads may deteriorate the CFO estimation perfor-
mance. The drawback can be compensated by combining

the in-band information under the assumption that the chan-
nel effect remains constant between two consecutive OFDM
symbols. Specifically, rm1,m2,ε̂(i) can be re-expressed by

rm1,m2,ε̂(i) = [r0m1,m2,ε̂
(i), . . . , rL−1m1,m2,ε̂

(i), r̃Lm1,m2,ε̂
(i), . . . ,

r̃N−Lm1,m2,ε̂
(i), rN−L+1m1,m2,ε̂

(i), . . . , rN−1m1,m2,ε̂
(i)]T (16)

where rm1,m2,ε̂(i) is split into two parts, i. e. the
in-band vector rNZm1,m2,ε̂

(i) and the out-of-band vec-
tor rZm1,m2,ε̂

(i) which are defined as rNZm1,m2,ε̂
(i) =

[r0m1,m2,ε̂
(i), . . . , rL−1m1,m2,ε̂

(i), rN−L+1m1,m2,ε̂
(i), . . . , rN−1m1,m2,ε̂

(i)]
T
and

rZm1,m2,ε̂
(i) = [r̃Lm1,m2,ε̂

(i), . . . , r̃N−Lm1,m2,ε̂
(i)]T , respectively.

Now the improved cost function can be formulated as

J I (ε̂) =
NS−1∑
i=1

NR∑
m1=1

NR∑
m2=m1

{(
∥∥∥rNZm1,m2,ε̂

(i+ 1)− rNZm1,m2,ε̂
(i)
∥∥∥2)

+ (
∥∥∥rZm1,m2,ε̂

(i+ 1)
∥∥∥2 + ∥∥∥rZm1,m2,ε̂

(i)
∥∥∥2)}

ε̃ = argmin
ε̂
J I (ε̂) (17)

The above cost function incorporates both the out-of-band
and in-band information, hence the performance loss brought
by long channel response can be compensated by the first
term in (17). The improved cost function can be approximated
as (see Appendix B)

J I (ε̂) ≈ Bcos(2π (ε − ε̂))− B (18)

in which B < 0 is a constant independent of ε and ε̂.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, the computational complexities of the pro-
posed algorithms and the compared algorithms are evaluated
in terms of complex multiplications. The state of art algo-
rithms in [7], [9], [11], [13], and [15] are labelled as ‘‘Kur-
tosis’’, ‘‘PDE-F’’, ‘‘PDE-T’’, ‘‘Cov’’ and ‘‘Cov-fitting’’,
respectively. Although the cost functions in [11], [13], and
[15] are designed for SISO-OFDM systems, they can be
generalized toMIMO-OFDM systems by summating the cost
function corresponding to each received signal just like the
way in [7] and [9]. The numerical complexity of the proposed
algorithm mainly comes from calculating the first column of
the covariance matrices and calculating the square absolute
value of the out-of-band elements. The number of covariance
matrices is 1

2NR(NR + 1), thus the first part and second part
calculation require 1

2NR(NR+ 1)× 3N 2
×NS and 1

2NR(NR+
1) × 3(N − 2L + 1) × NS multiplications, respectively.
Similarly, the improved version of the proposed algorithm
named ‘‘Proposed-fitting’’ requires extra calculation for the
in-band elements, thus adding 1

2NR(NR + 1) × 3(2L − 1) ×
NS multiplications compared with the proposed algorithm.
For the ‘‘Cov’’ and ‘‘Cov-fitting’’ methods, the num-
ber of covariance matrices needed for calculation is NR,
which leads to less computational complexities com-
pared with the proposed and ‘‘Proposed-fitting’’ methods.
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TABLE 1. Computational complexities comparison.

The ‘‘Kurtosis’’ algorithm requires 3NRNSN log2N multipli-
cations for DFT and 9NRNSN multiplications for kurtosis cal-
culation. As for the ‘‘PDE-T’’ and ‘‘PDE-F’’ methods, they
require 3NRNSN log2N multiplications for DFT and 3NRNSN
multiplications for the square absolute value calculation of
the elements. In summary, the computational complexities
of the mentioned algorithms are listed in Table 1. Since the
number of subcarriers N is usually larger than that of the
receiving antennas NR, the proposed algorithms cost more
than the compared algorithms.

IV. CRAMER-RAO LOWER BOUND
In this section, the CRLB of CFO estimation for
MIMO-OFDM systems is derived. For the simplicity of
expression, (1) is rewritten as

xm(i) = 2(ε)FH
NT∑
k=1

diag{S̄k (i)}Hm,k + zm(i) (19)

inwhichHm,k = [Hm,k (1),Hm,k (2), . . . ,Hm,k (N )]T ∈ CN×1

is the frequency domain channel response and diag{Hm,k} =

FH8m,kF. S̄k (i) = ϕ(ε)(i)Sk (i) denotes the equivalent trans-
mitted symbol under the effect of accumulative phase shift.
We place the vectors xm(i),m = 1, 2, . . . ,NR next to each
other and obtain the following N × NR matrices

X(i) = [x1(i), x2(i), . . . , xNR (i)]

= 2(ε)FH
NT∑
k=1

diag{S̄k (i)}Hk + Z(i) (20)

in which Hk = [H1,k ,H2,k , . . . ,HNR,k ] ∈ CN×NR

and Z(i) = [z1(i), z2(i), . . . , zNR (i)] ∈ CN×NR . Let
� and ⊗ denote the Khatri-Rao product and Kronecker
product, respectively, by defining V(k)

= (2(ε) ⊗
INR )(F

∗
� HT

k ), V = [V(1),V(2), . . . ,V(NT )], and S̃(i) =
[S̄T1 (i), S̄

T
2 (i), . . . , S̄

T
NT (i)]

T , (20) can be rewritten as

vec(XT (i)) = ṼS(i)+ vec(ZT (i)) (21)

where vec(·) denotes the vectorization operator.

For constant modulus signals, S̃(i) can be denoted as
S̃(i) = [ejθ1,i , ejθ2,i , . . . , ejθNT N ,i ]T , thus by denoting θ (i) =
[θ1,i, θ2,i, . . . , θNTN ,i]

T and H = [HT
1 ,H

T
2 , . . . ,H

T
NT ],

the unknown parameters can be expressed as α =

[θT (1), θT (2), . . . , θT (NS ), ε,Re{vec(H)T }, Im{vec(H)T }]T .
Then the components of the Fisher information matrix can be
given by

[CRLB−1{α}]m,n =
2
σ 2
z
Re{

NS∑
i=1

[
∂VS̃(i)
∂αm

]
H

[
∂VS̃(i)
∂αn

]} (22)

where σ 2
z is the noise variance and αm is the m-th element

of α. After some tedious yet straightforward calculations,
the following matrix can be obtained

0 =

 01 02 j02
0H2 03 j03
−j0H2 −j0H3 03

 (23)

where

01 =

NS∑
i=1

[
∂VS̃(i)
∂ε

]
H

[
∂VS̃(i)
∂ε

] =
NS∑
i=1

S̃H (i)VHDHDVS̃(i)

02 =

NS∑
i=1

[
∂VS̃(i)
∂ε

]
H

[
∂VS̃(i)
∂vec(H)

]

=

NS∑
i=1

S̃H (i)VHDH ((2(ε)(11×NT⊗F
∗)diag{S̃(i)})⊗ INR )

03 =

NS∑
i=1

[
∂VS̃(i)
∂vec(H)

]
H

[
∂VS̃(i)
∂vec(H)

]

=

NS∑
i=1

(diag{S̃∗(i)}(1NT×NT ⊗ IN )diag{S̃(i)})⊗INR (24)

in which D = j 2πN diag{0, 1, . . . ,N − 1} ⊗ INR .
Define

41,i = [
∂VS̃(i)
∂θ (t)

]
H

[
∂VS̃(i)
∂ε

] = −j · diag{S̃∗(i)}VHDVS̃(i)

42,i = [
∂VS̃(i)
∂θ (i)

]
H

[
∂VS̃(i)
∂vec(H)

]

= −j · diag{S̃∗(i)}VH ((2(ε)(11×NT
⊗F∗)diag{S̃(i)})⊗ INR )

4i = [41,i, 42,i, j42,i] (25)

and denote β = [ε,Re{vec(H)T }, Im{vec(H)T }]T , the CRLB
of β can be obtained as

CRLB(β)=
2
σ 2
z
[Re{0}

−

NS∑
i=1

Re{4H
i }Re{diag{S̃

∗(i)}VHVdiag{S̃(i)}}
−1
Re{4i}]−1

(26)

Then the first entry of CRLB(β) gives the CRLB for the CFO
estimation CRLB(ε).
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V. EXPERIMENTAL RESULTS
In this section, the efficiency of the proposed algorithm is
examined in a two input two output MIMO-OFDM system
with N = 128 subcarriers and the CP length is LCP = 16.
The channel has L independent Raleigh-fading taps with

exponentially decaying powers set as E[
∣∣∣hlm,k ∣∣∣2] =

e−l/3/
L−1∑
i=0

e−i/3, l = 0, 1, . . . ,L − 1. AWGN is added to

each receiver with the signal to noise ratio (SNR) defined as
SNR = 10log10

‖xm(i)−zm(i)‖2

‖zm(i)‖2
dB. The performance is evalu-

ated by the bit error rate (BER) and mean square error (MSE)

defined as MSE = 1
Mc

Mc∑
p=1

∣∣ε − ε̃p∣∣2, where ε̃p is the esti-

mated value of ε in the p-th trial and the total number of
Monte Carlo trials is Mc = 1000.

We first test the banded structure of the covariance
matrices of the received signals under a six tap channel
(L = 6) with QPSK transmitting signals. Let Vε(n) =
NS∑
i=1

NR∑
m1=1

NR∑
m2=m1

∣∣rnm1,m2,ε
(i)
∣∣2, 0 ≤ n ≤ N − 1 denote the

energy of the n-th element of the covariance vector of the
received signals, Fig. 2 shows the curves of Vε(n) with
15dB SNR and NS = 7 when there is no CFO (ε = 0),
ε = 0.3 and the compensated result by the proposed estima-
tor, respectively. Besides, the SISO case (NT = NR = 1) with
ε = 0 is illustrated as a benchmark. It can be observed from
Fig. 2 that Vε(n) ≈ 0, L ≤ n ≤ N − L when ε = 0 in the
SISO-OFDM system and the banded structure is weakened
in the MIMO-OFDM system due to the interaction among
different transmitting signals. However, the existence of CFO
further weakens the banded structure and the CFO can bewell
estimated by the proposed algorithm.

In what follows, the estimation performance of the
proposed algorithms is compared with the ‘‘Kurtosis’’,

FIGURE 2. Curves of Vε(n) for QPSK transmitting symbols under a six tap
channel.

‘‘PDE-F’’, ‘‘PDE-T’’, ‘‘Cov’’ and ‘‘Cov-fitting’’ algorithms,
respectively. Since the algorithm of ‘‘Kurtosis’’ is also
applied to non-constant modulus signals, the estimation per-
formance of different algorithms for 16QAM transmitting
signals are also established as comparisons. Unless otherwise
specified, the normalized CFO is uniformly distributed in the
range (−0.5,0.5) in all the simulations.
The resulting MSE and BER versus SNR with NS = 7

under a six tap channel is demonstrated in Fig. 3 and Fig. 4,
respectively. Besides, the CRLB performance is also shown
in Fig. 3 as a comparison. The results verify the superior
performance of the proposed algorithm over other algorithms
and it can be observed that the proposed estimator is closer
to CRLB, although all the algorithms suffer from an error
floor under high-SNR regions. Furthermore, the algorithms
all perform worse when the transmitting sources are 16QAM
signals compared with the QPSK case, yet the proposed

FIGURE 3. MSE versus SNR with NS = 7 for QPSK and 16QAM
transmitting signals, respectively.

FIGURE 4. BER versus SNR with NS = 7 for QPSK and 16QAM transmitting
signals, respectively.
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algorithm still outperforms other algorithms. Compared with
the ‘‘Cov’’ algorithm, the performance of the proposed algo-
rithm is improved. The reason is that the proposed algorithm
utilizes the extra information in the cross-covariance of dif-
ferent received signals.

The MSE and BER versus block size NS with 15dB SNR
under a six tap channel is presented in Fig. 5 and Fig. 6,
respectively. The CRLB curve is also plotted in Fig. 5. It can
be observed that larger block size can improve the estimation
performance, although the value of NS is restricted by the
coherence time of actual time-varying channels. The pro-
posed algorithm, which almost reaches the CRLB, shows
better performance than the other algorithms.

In order to evaluate the estimation performance of algo-
rithms under different CFO values, Fig. 7 shows the MSE
performance versus ε with 15dB SNR and NS = 7 for QPSK
transmitting signals. Apart from the superior performance of
the proposed algorithm over other algorithms, it is seen that

FIGURE 5. MSE versus NS with 15dB SNR for QPSK and 16QAM
transmitting signals, respectively.

FIGURE 6. BER versus NS with 15dB SNR for QPSK and 16QAM
transmitting signals, respectively.

FIGURE 7. MSE versus ε with 15dB SNR and NS = 7 for QPSK transmitting
signals.

FIGURE 8. MSE versus L with 15dB SNR and NS = 7 for QPSK transmitting
signals.

performance of the algorithms remains basically unchanged
unless |ε| is very close to 0.5. This is not unexpected and the
performance loss in large CFO can be compensated by means
of null subcarriers [19].

To investigate the impact of channel length on the estima-
tion performance, channels with increased lengths are gener-
ated along with the increase of CP length. Fig. 8 and Fig. 9
depict the MSE and BER versus L, respectively, with 15dB
SNR and NS = 7 for QPSK transmitting signals. As indi-
cated by the results in Fig. 8 and Fig. 9, the ‘‘Kurtosis’’,
‘‘PDE-T’’ and ‘‘PDE-F’’ algorithms are almost invariant
to channel length, while algorithms based on the banded
structure of covariance matrices are affected by the chan-
nel length, just like the ‘‘Cov’’, ‘‘Cov-fitting’’, ‘‘Proposed’’
and ‘‘Proposed-fitting’’ methods. When the channel length
gets longer, the out-of-band elements are less in number,
which makes the proposed method perform worse. While for
the ‘‘Proposed-fitting’’ algorithm, the incorporation of the

51810 VOLUME 6, 2018



L. Yang et al.: Blind CFO Estimation for MIMO-OFDM Systems

FIGURE 9. BER versus L with 15dB SNR and NS = 7 for QPSK transmitting
signals.

in-band elements amounts to lengthen the useful data, thus
improving the estimation performance compared with the
proposed one.

VI. CONCLUSIONS
In this paper, a blind CFO estimation algorithm is proposed
for MIMO-OFDM systems. Observing that the banded struc-
ture of covariance matrices maintains in MIMO systems in
the absence of CFO, a cost function is constructed by min-
imizing the out-of-band elements of the covariance matri-
ces formed by circular shifts of received signals. Simulation
results demonstrate the validity of the proposed algorithm
under multipath frequency-selective channels. Furthermore,
an improved algorithm is further developed by incorporating
both the in-band and out-of-band information of covariance
matrices, thus the performance degradation of the proposed
algorithm can be alleviated when the channel length becomes
longer. Since the proposed cost functions can be approxi-
mated by a sinusoidal closed form function, CFO can be
easily estimated by a three-trial curve fitting method with low
complexity.

APPENDIX A
The derivation of (14) is presented in this Appendix. First,
(4) is re-written here as

ym,ε̂(i) = ϕ
(ε−ε̂)(i)

NT∑
k=1

2(ε − ε̂)dm,k (i), m = 1, 2, . . . ,NR

(27)

where dm,k (i) = 8m,kFHSk (i) and the noise term is omitted
for brevity. If dm,k (i) = [d0m,k (i), d

1
m,k (i), . . . , d

N−1
m,k (i)]T ,

the n-th element of ym,ε̂(i) is given by

ynm,ε̂(i) = ϕ
(ε−ε̂)(i)ej

2π (ε−ε̂)n
N

NT∑
k=1

dnm,k (i) (28)

From (5) and (12), the n-th element of rm1,m2,ε̂(i) is

rnm1,m2,ε̂
(i) =

N−n−1∑
p=0

yp+nm1,ε̂
(i) · ypm2,ε̂

∗(i)

+

N−1∑
p=N−n

yp+n−Nm1,ε̂
(i) · ypm2,ε̂

∗(i), 1≤n≤N−1

(29)

Submitting (28) into (29), there is

rnm1,m2,ε̂
(i) = ej

2π (ε−ε̂)n
N

N−n−1∑
p=0

NT∑
k=1

dp+nm1,k
(i) ·

NT∑
k=1

dpm2,k
∗(i)

+ ej
2π (ε−ε̂)(n−N )

N

N−1∑
p=N−n

NT∑
k=1

dp+n−Nm1,k
(i)

·

NT∑
k=1

dpm2,k
∗(i) (30)

Let
N−n−1∑
p=0

NT∑
k=1

dp+nm1,k
(i) ·

NT∑
k=1

dpm2,k
∗(i) = λnm1,m2

(i) and

N−1∑
p=N−n

NT∑
k=1

dp+n−Nm1,k
(i) ·

NT∑
k=1

dpm2,k
∗(i) = µnm1,m2

(i), then there

is

rnm1,m2,ε̂
(i) = ej

2π (ε−ε̂)n
N (λnm1,m2

(i)+ e−j2π (ε−ε̂)µnm1,m2
(i))

(31)∣∣∣rnm1,m2,ε̂
(i)
∣∣∣2 = ∣∣λnm1,m2

(i)
∣∣2 + ∣∣µnm1,m2

(i)
∣∣2

+ 2Re{λnm1,m2
(i)µnm1,m2

(i)∗}cos(2π (ε − ε̂))

− 2Im{λnm1,m2
(i)µnm1,m2

(i)∗}sin(2π (ε − ε̂))

(32)

Since rnm1,m2
(i) for L ≤ n ≤ N − L represents the out-

of-band elements of rm1,m2 (i), λ
n
m1,m2

(i) + µnm1,m2
(i) can

be approximated as zero, thus Im{λnm1,m2
(i)µnm1,m2

∗(i)} =

− Im{
∣∣λnm1,m2

(i)
∣∣2} ≈ 0 and Re{λnm1,m2

(i)µnm1,m2
∗(i)} =

−Re{
∣∣λnm1,m2

(i)
∣∣2} < 0. Therefore, (32) can be approximated

as∣∣∣rnm1,m2,ε̂
(i)
∣∣∣2 ≈ −2∣∣λnm1,m2

(i)
∣∣2cos(2π (ε − ε̂))

+ 2
∣∣λnm1,m2

(i)
∣∣2, L ≤ n ≤ N − L (33)

and J (ε̂) ≈ Acos(2π (ε − ε̂)) − A with A < 0 is proved
straightforward.

APPENDIX B
The derivation of (18) is presented here. According to the

results in Appendix A,
∥∥∥rZm1,m2,ε̂

(i+ 1)
∥∥∥2 also follows (33).
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rNZm1,m2,ε̂
(i + 1) corresponds to the in-band elements and the

a-th element of rNZm1,m2,ε̂
(i+ 1) can be written as

ram1,m2,ε̂
(i+ 1) = ej

2π (ε−ε̂)a
N (λam1,m2

(i+ 1)

+ e−j2π (ε−ε̂)µam1,m2
(i+ 1)),

a = 0, 1, . . . ,L − 1, N − L + 1, . . . ,N − 1

(34)

Then there is

ram1,m2,ε̂
(i+ 1)− ram1,m2,ε̂

(i)

= ej
2π (ε−ε̂)a

N ((λam1,m2
(i+ 1)− λam1,m2

(i))

+ e−j2π (ε−ε̂)(µam1,m2
(i+ 1)− µam1,m2

(i))) (35)

Let λam1,m2
(i + 1) − λam1,m2

(i) = λa and µam1,m2
(i + 1) −

µam1,m2
(i) = µa, then∣∣∣ram1,m2,ε̂
(i+ 1)− ram1,m2,ε̂

(i)
∣∣∣2

=
∣∣λa∣∣2 + ∣∣µa∣∣2 + 2Re{λaµa∗}cos(2π (ε − ε̂))

− 2Im{λaµa∗}sin(2π (ε − ε̂)) (36)

Since the channel is assumed to remain constant between
two consecutive OFDM symbols, in the absence of CFO,
there is ram1,m2

(i + 1) ≈ ram1,m2
(i). Hence λam1,m2

(i + 1) +
µam1,m2

(i + 1) ≈ λam1,m2
(i) + µam1,m2

(i) and λam1,m2
(i + 1) −

λam1,m2
(i) ≈ −(µam1,m2

(i + 1) − µam1,m2
(i)), i. e. λa ≈ −µa.

Therefore, (36) can be approximated as∣∣∣ram1,m2,ε̂
(i+ 1)− ram1,m2,ε̂

(i)
∣∣∣2

≈ −2
∣∣λa∣∣2cos(2π (ε − ε̂))+ 2

∣∣λa∣∣2,
a = 0, 1, . . . ,L − 1, N − L + 1, . . . ,N − 1 (37)

and
∥∥∥rNZm1,m2,ε̂

(i+ 1)− rNZm1,m2,ε̂
(i)
∥∥∥2 can be approximated as

A′cos(2π (ε − ε̂))− A′. Since all the terms in (17) are cosine
functions with different constants independent of ε − ε̂,
the sum of them is also a cosine function with the same
minimum and (18) can be proved accordingly.
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