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ABSTRACT A visual model plays an important role in developing an efficient and robust visual tracker.
The visual cues employed in the state-of-the-art models are usually predefined and fixed for all the tested
videos. However, the discriminative ability of features usually varies among videos. Therefore, using a fixed
set is both redundant and noisy: only a subset of any fixed set will present distinct profiles for modeling.
Thus, selecting a highly discriminative cue subset in visual modeling should improve the tracking accuracy.
In this paper, an optimization method based on a binary artificial immune algorithm is proposed that selects
an effective, discriminative feature subset that is adaptive to specific videos. Specifically, a metric is defined
to measure the discriminative abilities of visual models. Then, the visual modeling problem is transformed
into an optimization scheme, and a binary artificial immune algorithm is introduced and specially designed
to solve the modeling problem. Moreover, to preserve the subset of visual cues that are most adaptive to
the tracking condition, the selected cues are assigned adaptive weights and modeled in a Sequential Monte
Carlo framework. To show its effectiveness, the proposed algorithm is tested on ten representative videos. The
experimental results demonstrate the improvement in tracking performance, the improved tracker performs
better or comparable with previous excellent trackers from the literature.

INDEX TERMS Artificial immune algorithm, binary, visual model, tracking.

I. INTRODUCTION
Modeling the appearance of a target is a key problem in visual
tracking; thus, developing a discriminative visual model has
received much attention from researchers. The model is a
central issue of tracking because its performance fundamen-
tally determines the robustness and stability of the tracking
system. Complex tracking conditions, deformations in the
target’s appearance, and nebulous boundary areas between
the target and its background all pose great challenges to
a robust tracker. The goal of visual modeling is to develop
a discriminative representation model that helps to easily
identify a target from its background.

To achieve the above goal, an initial effort is to find various
types of representative visual features such as color [1], edge,
texture, and motion [2]. These features have performed well
inmany applications and have beenwell developed. Recently,

the feature extraction methods most commonly used for these
three visual cues are HSV [3], HOG [4], and LBP [5]. Satis-
factory results have been achieved in prior studies utilizing
these methods, for example, in [7]–[9].

However, given the requirements of many complex appli-
cations, these single-cue-based methods are inefficient. The
appearance of non-rigid targets always varies in videos and is
usually affected by background changes such as illumination,
occlusion and motion. In such cases, the single-cue-based
models are incapable of coping with the variations in the
target’s visual appearance. A typical solution adopted by
recent existing works is to integrate multiple cues into an
integrated model in which multiple cues are weighted and
summed [10] into a hierarchical model [11], a Gaussian mix-
ture model [12] or an HMMmodel [13]. Integrating multiple
cues into a single model results in better performance because
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FIGURE 1. shows the overall framework of the proposed optimized adaptive visual model. Note
that, the feature vectors should be row vectors.

some of the cues have high discriminative ability for some
specific video frames but shows decreased discriminative
ability when the conditions change; in such cases, other cues
then play a more important role. That is, employing a larger
set of cues allows them to compensate for one another over
a tracking sequence. This type of model has been success-
fully employed in existing trackers [14]. However, in all the
experiments with these applications, the integration models
are fixed for all the tested videos, which is inefficient in many
real applications?

For visual models, deep learning has become an impor-
tant research topic in recent years and shows good perfor-
mance [15]–[17]. In particular, in the last two years, deep
learning has received increased attention: deep learningmeth-
ods have been reported in many works [15]–[22] and jour-
nals [25], [26] and have achieved great success. However, it is
unknown which parts of the network and which parameters
play more important roles. It is also difficult to provide clear
explanations about which features are more important for
a specific video. Nevertheless, some excellent works have
optimized trackers using other approaches [23], [24].

In this paper, we develop an effective visual model that can
be controlled and explained. We propose a novel scheme for
building an effective adaptive visual model, called the Binary
Artificial Immune Algorithm (BAIA) that addresses the
above challenges under an optimization and online updated
framework.

The first contribution of this work is a novel resolution to
model adaptiveness, which transforms the typical modeling
problem into an optimization problem. The second contri-
bution is the introduction of an evolutionary algorithm into
the tracking problem; here, we leverage the artificial immune
algorithm to select the best subset of features from the feature
pool. The artificial immune algorithm is chosen to solve
the optimization problem Because it provides diversity; in
the algorithm, the cloning and variation of antibodies are
helpful in producing new antibodies. In addition, the artificial
immune algorithm guarantees convergence and converges
quickly, reducing the time required to find the optimal solu-
tion. Thus, this algorithm is suitable for optimizing the visual

model. This scheme guarantees the discriminative ability
of the specific selected visual cues. Furthermore, for the
two contributions mentioned above, we also propose inte-
grating the selected feature subsets into a sequential Monte
Carlo framework, which ensures that the specifically defined
visual model can adapt to variable tracking conditions.
Figure 1 shows the overall framework of the proposed BAIA
scheme-based visual model. We conduct extensive experi-
ments on a widely used benchmark [27] and demonstrate
the superior performance of the proposed method over sev-
eral excellent state-of-the-art methods, including TLD [28],
Struck [29], VTD [30], LOT [31], LSHT [32], CN [33], FCT
[34] and KCF [35].

The remainder of this paper is organized as follows: In
Section 2, we define the adaptive visual model as an optimiza-
tion problem. Then, in Section 3, this optimization problem
is solved by an artificial immune algorithm. The proposed
approach is presented in depth. Section 4 presents the results
of extensive experiments conducted on benchmark datasets.
Finally, conclusions are drawn in Section 5, and future work
is discussed.

II. PROBLEM DEFINITION
A. PROBLEM DESCRIPTION
The importance of using a visual model in tracking prob-
lems does not have to be reiterated; finding a method to
build a visual model with sufficient discriminative ability
is the main concern of this work. To resolve this problem,
we must clearly outline the challenges and define the concept
of discriminative ability. Specific video frames in Figure 2
are presented to address the difficulties. In the first image
Figure 2(a), the target of interest appears visually similar to its
background. In the second image Figure 2(b), the boundary
between the target and background is unclear. In the third
video frame, the target is heavily occluded and shows an
incomplete appearance. From these three examples, we can
see that the main modeling task is to distinguish the target
from the background and that one challenge is to avoid con-
fusing the target with its background. From this point of view,
for the second challenge, discriminative ability can be defined
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FIGURE 2. Challenges in visual modeling problem:(a)the background interference with
similar appearance, (b)confused boundary, and (c) occlusion.

as the distinguish ability degree of the two classes (target and
background) in the projected feature space.

The pixels of these two classes can be projected in a feature
space when employing a specific feature extraction method.
The object detection task is to find the boundary for classifi-
cation between the two classes. For the abovementioned dif-
ficulties, this boundary is difficult to define because the two
classes are easily confused. Consequently, a more discrim-
inative visual model provides a clearer boundary between
the two classes. That is, the projected points observed by
a visual model with sufficient discriminative ability will be
easy to classify. For a given video, the most adaptive visual
modelmust exist. Thus, the problem becomes an optimization
problem in which the key issue is how to describe ‘‘easy to
classify’’.

B. OPTIMIZATION PROBLEM DEFINITION
To provide an objective description of the distribution of
foreground and its background, in this paper, we propose a
discrete sampling-based method. Specifically, some random
samples are generated from a uniform distribution U (a, b) as
follows:

xi = xg +1x, 1x ∼ U (a, b) (1)

where xg is the real state, andD = {xi, yi}mi=1, yi ∈ {0, 1} is the
generated sample set. Observed from a specific visual model,
these samples will show distinguishable similarities(weights)
in the observation space.Specifically, the foreground and
background samples have comparatively higher and lower
weights, respectively. A visual model that preserves a greater
discriminative ability will result in a larger discriminative
degree between the sample weights. Based on the idea of
LDA [36], we describe the above visual modeling problem
as one of maximizing the following generalized Rayleigh
quotient:

J =
wT Sbw
wT Sww

(2)

where Sb and Sw represent the between-class scatter matrix
and the within-class scatter matrix, respectively:

Sb = (µo − µb)(µo − µb)T (3)

Sw=6o+6b=6x∈Xo (x−µo)
T
+6x∈Xb (x−µb)(x−µb)T

(4)

FIGURE 3. The 2D diagram of the discriminative ability measurement. In
this figure, ‘‘+’’ and ‘‘−’’ represent the positive and negative samples,
the ellipses represent the outer contour of the sample sets, and the blue
and red circles are the projected center on the line w.

Assume that the generated sample set is D = {xi, yi}mi=1, yi ∈
{0, 1}, where, Xi, µi, 6i represent the sample set, mean value
and covariance matrix of the class i ∈ o, b (the symbol
of o represents for the object and b for the background),
respectively. If all samples are projected onto a line w, then
the projections of the centers of the two classes will be wTµo
and wTµb, the covariance of the two classes will be wT6ow
and wT6bw [37].

As shown in Figure 3, for an excellent visual model,
the projected points of the samples in the same class should be
closer, and the points in the different classes should be farther
apart.

III. BINARY ARTIFICIAL IMMUNE ALGORITHM BASED
MODEL OPTIMIZATION
Feature selection is important in pattern recognition and
machine learning applications such as gene classification,
protein prediction, and text classification. Cheng et al. [38]
proposed a Fisher-Markov selector to identify the most use-
ful features for describing essential differences among the
possible populations. Li et al. [39] proposed a multiobjective
biogeography-based optimization method to select a small
subset of informative gene-expression data. Evolutionary
algorithms have also shown great success in many other
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fields; however, to the best of our knowledge, they have not
been applied in the visual tracking field.

Based on the above analysis, it should be possible to build
the best visual model for a given feature set. Through the
above objective optimization function, we are able to build
a visual model with sufficient discriminative ability. The
remaining task is to develop an effective feature selection
method.

We take the ensemble tracking framework [40] as an exam-
ple and implement an optimized visual model on it. The
objective function defined in the previous section is general
and easily generalized to a similar visual model.

A. ENSEMBLE TRACKING FRAMEWORK
In the ensemble tracker, N weak classifiers are weighted and
summed as a strong one as follows:

H (x) = 6N
n=1αn · hn(x) (5)

Similar discriminative model-based methods have have
achieved considerable success in computer vision. These
models include AdaBoost [43], [44] and ensemble track-
ing [45], [46]. For each video frame t , the weights αn of the
weak hypotheses are denoted as a vector, V . In the sequen-
tially arriving datasets, the detection windows are represented
as a pyramid patch model. In our design, each weak classifier
is assigned to one patch in the pyramid visual model, as men-
tioned in the next section. At time t, given the input data x,
the task of the tracker is to predict its label, y.

y =

{
+1, H (x) ≥ τ
−1, otherwise

(6)

where τ is a threshold controlling the positive and negative
labels.

B. SAMPLE REPRESENTATION
The pyramid patch-based visual model [47] is employed to
generate weak hypotheses. Each patch is represented by the
proposed optimized feature vector and is assigned one weak
classifier. As shown in Figure 1, the candidate region is repre-
sented as a pyramid-like set of patches. Overall, the detection
region is divided into n × n uniform patches. In addition,
larger patches that cover different parts of the target are also
modeled by evenly dividing the detection region into 4 × 4,
2 × 2, and 1 × 1 regions. Both global and local features are
extracted in this pyramid model. Therefore, the model will be
robust against uniform changes in the target’s appearance.

We extract the discriminative features from each patch in
the pyramid model to form feature vectors. Similar to other
state-of-the-art trackers, we collect effective tracking features
such as HSV, HOG, and LBP. The HSV color space contains
three components that respectively represent hue, saturation,
and value. The HSV color system more closely approxi-
mates human color perception than does the RGB system and
comprises a type of color histogram. When extracting the
HSV histogram from the image, we first convert the input

RGB image into the HSV color space; then, we form the
HSV histogram feature vector by quantizing the HSV spatial
feature into a 256-dimensional feature histogram. The HOG
features mainly describe a local region and the image features
are formed by calculating a histogram of the local gradient
direction. The LBP operator is defined as a window with a
size of 3 × 3: the center pixel of the window is used as a
threshold, and the gray values of the 8 surrounding pixels are
compared. When the value of a surrounding pixel is greater
than the value of the central pixel, that pixel is assigned
a 1; otherwise, it is assigned a 0. In this way, the 8 points
in the 3× 3 neighborhood can be compared to produce an
8-bit binary number (usually converted to a decimal number,
i.e., LBP code, a total of 256). That is, this procedure obtains
the LBP value of the center pixel of the window, which is used
to reflect the texture information of the area. For generaliza-
tion, the feature can be extended in other applications.

C. MODEL OPTIMIZATION AND UPDATING
Many effective evolutionary algorithms exist [48], [49] for
solving optimization problems. The theory of the immune
network was proposed in 1974 by Jerne [50], and an arti-
ficial immune system (AIS) was clearly defined in 1996.
The artificial immune algorithm (AIA) achieves the antigen
recognition, cell differentiation, memory and self-regulating
functions of the biological immune system by imitating the
immune system of the human body. AIA is widely used in
many optimization-related problems because it has diversity,
guarantees convergence, and converges quickly. In addition,
the algorithm is both more efficient and has less degener-
ation compared with other evolutionary algorithms such as
the genetic algorithm (GA), ant colony, and artificial bee
colony algorithms. For specific problems, the algorithm com-
plexity is different. Binary artificial immune algorithm can
converge quickly, which means less time complexity in this
problem.The time complexity of BAIA is O(n).

An ‘‘antigen’’ corresponds to the objective function and
its constraint conditions. Each possible solution is called
a ‘‘B-cell’’ or ‘‘antibody’’ with an affinity and is repre-
sented by an n-dimensional real vector. The initial individual
B-cell vectors are randomly generated. The best solutions
are considered to be B- cells with greater affinity, while poor
solutions are B-cells with less affinity. In AIA, a B-cell is a
vector that follows cloning and mutation steps to reach the
optimal solution. A new candidate B-cell is generated from
all the solutions through clone and mutation operators.

In AIA, the cloning strategy is used to change the existing
solutions. B-cells with greater affinity are cloned to generate
a new B-cell population. Mutation is a probabilistic operator
that randomly modifies B-cells at a certain mutation rate.
Themutation strategy simulates the characteristics of a super-
mutation during the B-cell cloning procedure in the immune
response.

Based on the feature pool, feature selection is achieved
through a binary feature pool procedure, and the selection
result is a binary vector in which 0 and 1 respectively

51590 VOLUME 6, 2018



W. Gao et al.: BAIA for Adaptive Visual Detection

Algorithm 1 Binary Artificial Immune Algorithm Based
Optimization(BAIA)
Input: The antigen:the objective function and the constrain
Output: The optimum B-cell:the optimum solution
1: function BAIA
2: initialize the B-cellpopulation A of size N
3: for each iteration:
4: for i = 0 to N-1 do
5: Affinity_A[1] = calcuAffinity(A[i])
6: end for
7: Sort A in ascending order of Affinity_A
8: for i = 0 to n-1(n<N) do
9: A_Clone[i] = A[i]
10: end for
11: newpm = random(0,1)
12: for i = 0 to n-1 do
13: if newpm > pm then
14: A_Mutation[i][newpm × n] =
15: !A_Clone[i][newpm × n]
16: end if
17: Affinity_A_Mutation[i] = calcuAffin-

ity(A_Mutation)
18: end for
19: Sort A_Mutation in ascending order of Affin-

ity_A_Mutation
20: for i = 0 to (1/2)× (n− 1) do
21: A_Final[i] = A_Mutation[i]
22: end for
23: for i = (1/2)× (n− 1) to N-1 do
24: A_Final[i] = A[i-(1/2)× n]
25: end for
26: A = A_Final
27: end function

represent selecting or not selecting a specific feature. The
optimization problem is described as follows:

Maximizing : J =
wT Sbw
wT Sww

subject to x ∈ � (7)

where, � is the decision space. x = (x1, x2, . . . , xD) ∈ �
is a D-dimensional decision variable vector. The algorithm
details is presented in Algorithm 1.

In our experiments, the affinity increases as the iteration
steps increase, and the mutation ratio decreases with the
increase in B-cell affinity. Therefore, themutation probability
will decrease to a certain degree (e.g., 1%). In the first frame
of the video, the above algorithm is able to generate a feature
set with optimum discrimination ability on the given feature
pool. As tracking progresses, the tracker should be updated
to remain adaptive to the variable tracking conditions. In the
proposed tracker, the ensemble parameters relevant to the
visual cues are modeled in a sequential Monte Carlo frame-
work as in [40].

D. THE BINARY FEATURE SELECTION MECHANISM
After the above algorithm description, we find that for a spe-
cific video sequence, the algorithm yields an optimal solution
for feature selection. The optimal solution is formatted as a
binary string and an affinity value. The affinity value is used
to describe the discriminative ability of the optimal solution.

In recent research, binary representations have
numerous applications in machine learning and feature
extraction [41], [42]. In this paper, ‘‘binary’’ means that the
individual in the algorithm is expressed in the form of a
binary string, which conforms to both the description of the
individual in the algorithm and the operators of the algorithm.
In each individual, 0 represents elimination and 1 represents
selection. Figure 5 shows an example of using binary entities
to filter features. The first vector is the initial extracted feature
vector; the middle sequence is the optimal solution; the third
is the selected feature subset. The three colors in the graph
refer to the three types of features.

IV. EXPERIMENTS AND DISCUSSION
In many real applications, the videos to be analyzed depict
a variety of situations; thus, using a uniform visual model
for all situations is unreliable. The proposed solution in this
paper resolves the problem by learning an adaptive visual
model and transforming the visual model problem into an
optimization problem. Our goal is to select features that have
a high discriminative ability for a certain video from a given
feature pool. In this study, ten representative videos from the
OTB 2013 Benchmark [27] dataset are used in the experi-
ments. The videos include common tracking challenges such
as abrupt motion, severe occlusions, complex backgrounds,
illumination variations, and deformations.

The proposed method was implemented in the MATLAB
development environment by extending the code originally
provided by Bai [40]. All the experiments were executed on
a computer with a 3.4 GHZ processor and 4 GB of memory.
In all the experiments, tracking accuracy was measured by
three metrics: ACLE (Average Center Location Error), AOR
(Average Overlap Ratio) and OPE (one-pass evaluation).

A. PARAMETER SETTINGS
The main controlling parameters of the algorithm include
the encoding ratio, iterations, and the mutation probability.
The encoding ratio is the ratio of the selected subset to the
feature pool size, which determines the size of the selected
subset. The convergence of the artificial immune algorithm
is determined by the number of iterations; therefore, its set-
ting directly determines the optimization performance. The
mutation probability is another factor that controls the opti-
mization speed: a too-small ratio leads to slow convergence,
and a too-large ratio leads to ‘‘hopping’’ of the solutions.
Figure 4 shows curves that illustrate the influence of the
three parameters on the tracking accuracy. All the curves were
created using the video ‘‘boy’’ as an example. The resulting
optimal parameter settings are subsequently employed for
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FIGURE 4. The influence curves of the parameters on the tracking performance, and the controlling parameters includes (a) Encoding ratio, (b) Iteration
step, and (c) Mutation Probability.

FIGURE 5. The Binary feature selection mechanism.

the other test videos. The curves show that the parameters
have less influence on the AOR and more influence on the
ACLE. Specifically, when the encoding ratio is set to 0.75 or
0.9, the tracker achieves the lowest ACLE value and the
highest AOR value (although the difference is small). When
the encoding ratio is set to 0.8, 0.85, 0.95 or 1, the ACLE
increases. These results demonstrate that some features are
redundant to the tracking performance and should be removed
from the visual model. Between the 0.75 and 0.9 values,
we choose 0.75 as the encoding ratio to improve the effi-
ciency. The tracker shows better performance when the num-
ber of iterations is set between 15 and 20. The tracker obtains
the best performance when the mutation probability is set
to 0.3 with a 0.01 decrease at each iteration step. In the
subsequent experiments, the encoding ratio, iterations, and
mutation probability are set to 0.75, 20, and 0.3, respectively,
with a 0.01 decrease at each iteration. Overall, the tracking
performance is not particularly sensitive to the parameters.
Similar results can be obtained using the ‘‘Girl’’ as a test
video, although it performs slightly worse as an example.

B. COMPARISON AND DISCUSSES
This paper focuses on developing a feature selection
strategy to improve the visual tracking performance.

Therefore, we first transform the problem of visual mod-
eling into an optimization problem and then use an artifi-
cial immune algorithm to solve it. Thus, the main concern
of this paper is the feature selection strategy. In contrast,
the optimization algorithm selected here is only one possible
solution: many optimization algorithms such as the genetic
algorithm or the bee colony algorithm could be used to
solve the optimization problem. A large number of studies
have investigated the computational complexity and effec-
tiveness of these algorithms. The selected artificial immune
method requires only approximately 20 iterations to achieve
our feature selection goal. The algorithm is not required
to converge to a certain accuracy; therefore, a discussion
of different optimization methods is of little significance
to the feature selection problem. Therefore, we do not
compare the selected algorithm with others in this paper;
instead, we compare our method with several state-of-the-
art discriminative tracking models, including the following:
TLD [28], Struck [29], VTD [30], LOT [31], LSHT [32],
CN [33], FCT [34] and KCF [35]. In addition, the proposed
method is also compared by applying the tracker without a
feature selection step. These specific trackers were selected
because they perform well, are popular and their code is open
source.
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FIGURE 6. ACLE comparison curves on eight representative challenging video sequences.

TABLE 1. Tracking performance comparison (ACLE(unite: pixels)) with the
state-of-the-art trackers, where the bold data is the best.

Tables 1 and 2 shows a comparison of the ten trackers
with regard to their ACLE and AOR scores; the ACLE
and AOR curves of typical video sequences are shown
in Figures 6 and 7. As shown, the proposed algorithm
achieves the best results in most of the examples but performs
slightly worse on some videos, such as basketball, car4 and
girl, whose common features are occlusion (OCC) and
offset (OPR). These results may occur for two reasons: first,
the feature extraction algorithm selected for the extraction
feature stage may not be comprehensive enough; second,
the base tracker (RET) we selected is not good at dealing

TABLE 2. Tracking performance comparison (AOR[0.00,1.00]) with the
state-of-the-art trackers, where the bold data is the best.

with occlusion and offset. In addition, a more efficient feature
extraction algorithm can be considered in subsequent work.

Figures 6 and 7 visually show the performance of our
method at different tracking stages. Our method is basically
stable for most videos and shows obvious improvement com-
pared to the other tested methods. In addition, Figure 8 shows
the performance of the proposed method in OPE (one-pass
evaluation) on seven videos compared with the 29 other
trackers as reported in [27]. The seven videos included Boy,
Basketball, Football1, Coke, Couple, Girl, and Walking2.
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FIGURE 7. Comparison curves of AOR on eight representative challenging video sequences.

FIGURE 8. Our method in OPE perfomance on seven videos comparing with other trackers.

As the data shows, the proposed method achieved the best
results compared with the other state-of-the-art trackers. It is
worth mentioning that our method’s superiority is obvious
when compared with the same tracker using the same frame-
work but without feature selection. This result demonstrates
that it is better to refrain from employing all the features in
the visual model because some features cause noise that may
decrease the tracking performance. Moreover, these results
verify that using a fixed visual model is usually redundant,

noisy and not adaptive. The visual models employed in other
trackers are all fixed; consequently, they are unable to build
adaptive visual models for the specific videos.

Figure 9 shows the tracking results on some key frames
and the corresponding situation of the visual model.For the
video ‘‘basketball’’, an athlete moves continually through
a crowd of people with similar appearances. This situation
poses great challenges to the robustness of a visual model.
For example, at frame ]283, another athlete in the same green
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FIGURE 9. Result examples on some key frames of the representative videos.The data for the selected features are shown to the right of the figure. The
three original feature vectors of HSV, HOG and LBP are 128× 1, 36× 1 and 58× 1, respectively; the sizes of the selected features are provided at the right
of the vector column for the three videos.

clothes moves behind the target. Many trackers with fixed
visual models lose the target and lock on the wrong athlete.
In our model, the feature selection result shows that more
textural features (LBP) and fewer color features (HSV) are
selected for such a video. In this sequence, the main challenge
is confusion between the target and the other athlete with
similar color attributes. To address this situation, the pro-
posed tracker reduces the percentage of color cues after
the optimization step. For the video ‘‘coke’’, frequent and
severe occlusions challenge the visual model. Over the whole
sequence, the leaves in the background have textures and
edge features similar to the target. Therefore, the proposed
tracker selects more color feature elements. Similarly, for the
video ‘‘couple’’, the color cue shows comparatively superior
discriminative ability; thus, the color cue is selected with
more feature elements in the final visual model.

V. CONCLUSIONS
In this paper, we proposed a novel idea to achieve an adaptive
form of visual modeling. Specifically, by considering visual
modeling as an optimization problem, we proposed using a
method called the Binary Artificial Immune Algorithm to
build an optimum visual model for a given feature pool.

In the collected visual cue pool, the discriminative ability of
the visual model is measured by discrete random samples
and defined as the objective function of the optimization
problem. The Binary Artificial Immune Algorithm yielded
an excellent solution to the given problem and achieved good
tracking performance. Compared with other state-of-the-art
trackers, the proposed tracker shows obvious advantages.
Finally, the proposed method can easily be extended to other
visual models because the problem definition is independent
of the feature pool and modeling methods.
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