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ABSTRACT Ship detection is of great importance and full of challenges in the field of remote sensing.
The complexity of application scenarios, the redundancy of detection region, and the difficulty of dense ship
detection are all themain obstacles that limit the successful operation of traditional methods in ship detection.
In this paper, we propose a brand new detection model based on multitask rotational region convolutional
neural network to solve the problems above. This model is mainly consisting of five consecutive parts: dense
feature pyramid network, adaptive region of interest (ROI) align, rotational bounding box regression, prow
direction prediction and rotational nonmaximum suppression (R-NMS). First of all, the low-level location
information and high-level semantic information are fully utilized throughmultiscale feature networks. Then,
we design adaptive ROI align to obtain high quality proposals which remain complete spatial and semantic
information. Unlike most previous approaches, the prediction obtained by our method is the minimum
bounding rectangle of the object with less redundant regions. Therefore, the rotational region detection
framework is more suitable to detect the dense object than traditional detection model. Additionally, we can
find the berthing and sailing direction of ship through prediction. A detailed evaluation based on SRSS for
rotation detection shows that our detection method has a competitive performance.

INDEX TERMS Convolutional neural network, remote sensing, ship detection.

I. INTRODUCTION
With the development of remote sensing technology, high-
resolution remote sensing images can be easily obtained.
Automatic ship detection has been playing a significant role
in the field of remote sensing for a long time and has made
a great progress in promoting national defense construction,
port management, cargo transportation, and maritime res-
cue [1]. Simultaneously, the information of ship’s berthing
and sailing direction are also of huge significance. How-
ever, the characteristics of the large aspect ratio make ship
detection become more difficult than other object detec-
tions, such as vehicles [2]–[6], buildings [7]–[12] and air-
crafts [13]–[18]. What’s more, the complexity of application
scenarios, the redundancy of detection region, and the diffi-
culty of dense ship detection have posed a great challenge for
ship detection and direction prediction.

In recent years, deep learning has achieved great suc-
cess in computer vision [19]–[24]. Much attention has been
paid to object detection based on deep learning meth-
ods and has made great achievement. Region proposals
with convolutional neural network (RCNN) [25] provide
an excellent pipeline for object detection. Although RCNN
has some obvious defects in computation speed and stor-
age space, its detection results are far better than tra-
ditional detection methods. Fast-RCNN [26] significantly
improve the efficiency of detection and effectively reduce
the storage by using shared computing. Faster-RCNN [27]
adopts a trainable region proposal network (RPN) instead
of Selective Search method to achieve end-to-end train-
ing while improving detection efficiency and accuracy.
It is consist of two stage: region proposal and region
classification.
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The methods above are known as horizontal region detec-
tion which are suitable for natural scene detection but not
for satellite remote sensing ship detection. In satellite remote
sensing images, the ships have a large aspect ratio and are
often densely arranged in complex scenes. Once the ship is
inclined, the redundant regions of the horizontal bounding
box and the regions of overlap between the ships will be rela-
tively large. The disadvantage of this situation is obvious and
disastrous. Specifically, complex scenes often contain many
noise objects, which greatly affect the performance of the
ship detection. In addition, large redundant regions introduce
a lot of noise, causing the feature information to be inter-
fered or even submerged. As shown in Fig. 1(a), a large object
overlap region causes the object to be discarded after the oper-
ation of nonmaximum suppression (NMS). To address these
problems above, we propose a new, end-to-end, rotational-
region-based object detection framework for ship detection
in high-resolution satellite images which can handle differ-
ent complex scenarios, detect intensive objects, and reduce
redundant detection regions, as illustrated in Fig. 1(b). More-
over, our framework can predict the berthing and sailing
direction of ship, which cannot be achieved by the horizontal
region detection method.

FIGURE 1. Rotational region detection algorithm perfectly solves the
problem of traditional detection algorithm in dense object detection. The
green, red bounding boxes represent predictions boxes and missing
prediction boxes respectively. (a) Horizontal region detection.
(b) Rotational region detection.

Our framework mainly is consist of five consecutive parts:
Dense Feature Pyramid Network (DFPN), adaptive region
of interest (ROI) Align, rotational bounding box regression,
prow direction prediction and rotational nonmaximum sup-
pression (R-NMS). Compared with detection methods based

on convolutional neural network (CNN), our framework is
more suitable for ship detection and has achieved more pro-
moting performance.

The main contributions of this paper are as follows:

1) DFPN
We use a newmultiscale feature fusion network called DFPN,
which can effectively integrate the low-level location infor-
mation and high-level semantic information to provide more
advanced features for object detection.

2) ADAPTIVE ROI ALIGN
Adaptive ROI Align is proposed in this paper to mitigate the
effects of redundant noise regions in the proposals and keep
the completeness of semantic and spatial information.

3) PROW DIRECTION PREDICTION
The berthing and sailing direction of ship can be found
through prediction. This method is simple but effective, with
a high prediction accuracy.

4) R-NMS
In order to obtain more accuracy prediction results, we pro-
pose R-NMS which has more stringent constraints.

The rest of this paper is organized as follows. Section II we
briefly review related work on object detection. Section III
introduces the details of the proposed method. Section IV
presents experiments conducted on a remote sensing dataset
to validate the effectiveness of the proposed framework.
Finally, section V discusses and concludes the results of the
proposed method.

II. RELATED WORK
Ship detection has been investigated by a wide variety of
methods in recent years. In this section, we briefly review
the existing machine-learning-based ship detection algorithm
and deep-learning-based ship detection algorithm.

In the past few years, some machine-learning-based
methods have been proposed for ship detection [28]–[32].
Yu et al. [33] and Zhu et al. [34] propose features of texture
and shape by sea-land segmentation, then an algorithm such
as the contrast box algorithm or semi-supervised hierarchi-
cal classification is used to get the candidate object region.
Bi et al. [35] use a bottom-up visual attention mechanism to
select prominent candidate regions throughout the detection
scene. Yang et al. [36] propose a novel detection frame-
work via sea surface analysis to solve the task of automatic
ship detection in high-resolution optical satellite images with
various sea surfaces. This proposed method first use two
new features to analyze whether the sea surface is homoge-
neous or not. Then, they propose a linear function combining
pixel and region characteristics to select ship candidates.
Finally, false alarms are filtered by adopting compactness and
length-width ratio. Shi et al. [37] present a method to detect
ships in a ‘‘coarse-to-fine’’ manner. Specially, they convert
an optical image into a hyperspectral form by adopting
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FIGURE 2. Overall framework of rotational region ship detection. This framework mainly consists of five consecutive parts: DFPN, adaptive ROI Align,
rotational bounding box regression, prow direction prediction and R-NMS.

anomaly detector and local shape features, then extract
ships through hyperspectral algorithm. Corbane et al. [38]
present a complete processing chain for ship detection based
on statistical methods, mathematical morphology and other
signal-processing techniques such as the wavelet analysis and
Radon transform. This automatic ship detectionmodel is used
to complement existing regulations, especially the fishing
control system.

Although these machine-learning-based ship detection
algorithm above have shown promising performance, they
have poor practicability in complex scenarios. With the appli-
cation of deep CNN in object detection [39]–[43], deep-
learning-based ship detection algorithm are also widely used
in remote sensing ship detection. Kang et al. [44] take the
objects proposals generated by Faster R-CNN for the guard
windows of CFAR algorithm, then pick up the small objects,
thus reevaluating the bounding boxes which have relative low
classification scores in detection network. Zhang et al. [45]
propose a new ship detection model based on CNN which
is called SCNN, fed with specifically designed proposals
extracted from the ship model combined with an improved
saliency detection method. Kang et al. [46] build a contex-
tual region-based CNN with multilayer fusion for SAR ship
detection, which is an elaborately designed deep hierarchi-
cal network, and composed of a RPN with high network
resolution and an object detection network with contextual
features. Tang et al. [47] adopt compressed domain for fast
ship candidate extraction, while DNN is exploited for high-
level feature representation and classification, and ELM is
used for efficient feature pooling and decision making.

These methods above are mostly based on horizontal
region detection. Detection results tend to have very large
redundant regions, and is not conducive to NMS opera-
tion. We propose a novel object detection model based on

multitask rotation region CNN which effectively integrates
the low-level location information and high-level semantic
information. Meanwhile, this method mitigate the effects of
redundant noise regions in the proposals and get rotational
bounding box with prow direction. Compared with other
deep-learning-based ship detection framework, our method
can achieve state-of-the-art detection performance, even in
dense scenes.

III. PROPOSED METHOD
The overall framework of our rotational region ship detec-
tion method is illustrated in Fig. 2. DFPN, adaptive ROI
Align, rotational bounding box regression, prow direction
prediction and R-NMS are the five important components
of our method. Firstly, DFPN [1] is an effective multiscale
feature fusion network which enhances feature propagation,
encourages feature reuse, and ensures the effectiveness of
detecting multiscale objects. Then, we get proposals from the
RPN to provide high-quality region proposals for the next
stage. In order to keep the completeness of semantic and
spatial information, we design an adaptive ROI Align to mit-
igate the effects of redundant noise regions in the proposals.
Furthermore, compared with traditional framework, second
stage of our model has horizontal and rotational branches
that respectively predict the horizontal bounding box and the
rotational bounding box. Meanwhile, the rotation branch can
also predict the berthing and sailing direction of ship. Finally,
we use R-NMS which has more stringent constraints so as to
obtain the final prediction.

A. DENSE FEATURE PYRAMID NETWORK
The low-level location information and high-level seman-
tic information are very important to object detection. The
feature pyramid [32] is an effective multiscale method to
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FIGURE 3. A multiscale feature pyramid connection. Each feature map is
densely connected, and merged by concatenation.

fuse multilevel information, so we adopt a multiscale feature
pyramid connection which is called DFPN [1]. Fig. 3 depicts
the structure of this densely connected multiscale pyramid
feature fusion network.

In this paper, we use ResNet [48] as backbone and
choose the last layer of each residual block as the feature
maps {C2,C3,C4,C5} in the bottom-up feedforward net-
work. According to the residual network structure, the strides
of each feature map correspond to {4, 8, 16, 32} pixels.
In the top-down network, we get higher resolution features
{P2,P3,P4,P5} through lateral connections and dense con-
nections. We set the number of channels for all feature maps
to 256 so as to reduce the number of parameters. The specific
definition is as follows:

P5 = Conv1×1(C5)

Pi = Conv3×3[
5∑

j=i+1

Upsample(Pj)⊕Conv1×1(Ci)] (1)

where Pi is the fused feature map corresponding to Ci.
Convk×k (.) represents the convolution operation, and k is
the size of the convolution kernel. Upsample(.) represents
nearest neighbor up-sampling in this paper. ⊕ represents the
operation of concatenation.

We assign five scales {32, 64, 128, 256, 512} pixels to
{P2,P3,P4,P5,P6} respectively (P6 is simply a stride two
subsampling of P5). Taking into account of the characteristics
of ships, the ratios of anchor are {1 : 7, 1 : 5, 1 : 3, 1 :
2, 1, 2, 3, 5, 7}. Each feature point for each feature map will
generate 9 anchors (1 × 9), 36 outputs (4 × 9) for each
regression layer, and 18 outputs (2 × 9) for each classifica-
tion layer. A large number of experiments show that DFPN
has a great feature of fusion, and significantly improve the
detection performance

B. ADAPTIVE ROI ALIGN
The large aspect ratio is a major feature of the ship. How-
ever, once the ship is inclined, the redundant regions of the
proposal are relatively large. A lot of noise will reduce the
quality of feature extraction, or even submerged features.

Fig. 4(a-c) shows three methods for obtaining fixed-length
feature vectors: ROIAlign [1], RROIAlign [49], and adaptive
ROI Align. It is obvious that ROI Align is accompanied
by a lot of noise, causing the target features to be over-
whelmed. Although RROI removes all the noise through
affine transformation, it loses the spatial information of the
object. We designed Adaptive ROI Align, a method that
automatically filters noise regions by introducing a mask.
This mask is trainable and is obtained by convolving the
proposals. Adaptive ROI Align makes the spatial information
be retained, while leaving a small amount of noise to improve
the stability of the network.

Fig. 4(d) visualizes the three methods for obtaining fixed-
length feature vectors. As we can see, coast is the main
noise in the image, ROI Align can’t completely remove it.
RROI Align lost spatial information and produced the feature
deformation at the same time, which are not conducive to
angle regression and prow direction prediction in the second
stage. The adaptive ROIAlign better solves the problem of the
method above, and have access to high-quality feature maps.

C. PROW DIRECTION PREDICTION
As shown in Fig. 5(a), we use the four parameters
(xmin, ymin, xmax, ymax) to represent the horizontal rectangle
in the first stage, and use the five parameters (x, y,w, h, θ) to
represent the arbitrary rotation rectangle in the second stage.

Considering the range of angles is [−90, 0), we can see that
rotation angle θ cannot represent the prow direction of the
object, but the prow direction is certainly in the direction of
the four sides of theminimum bounding rectangle. In the light
of these facts, we label the four sides of the rotation bounding
box counterclockwise, as shown in Fig. 5(b). Meanwhile,
we predict the berthing and sailing direction of the ship in
the rotation branch.

Fig. 6 shows the detection results of four different scenar-
ios, we have achieved amazing performance with such simple
predictions. Part of the wrong prediction is to judge the stern
of the prow. In our opinion, this network first learned that
the prow must be in the long edge direction and then judged
which side of the long edge is the prow.

D. MULTITASK LOSS FUNCTION
During training of the RPN, each anchor is assigned a binary
class label and five parametric coordinates. The feature maps
were input to the RPN network through a 3 × 3 convo-
lutional layer, followed by two sibling 1 × 1 convolution
layers for regression and classification. We need to find pos-
itive and negative samples from all anchors, which we call
a mini-batch. The positive sample anchors need to satisfy
the following conditions: the Intersection-over-Union (IoU)
overlap between an anchor and the ground-truth is greater
than 0.6. The negative samples are defined as: IoU overlap
less than 0.25. The total number of positive and negative
samples is 256, the ratio is 0.5. Similar to the RPN stage,
the second stage classifies each proposal and assign five and
four parametric coordinates to regress the final bounding box
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FIGURE 4. Structure and visualization of three Align methods. (a) ROI Align. (b) RROI Align. (c) Adaptive ROI Align. (d) Visualization of the three methods
for obtaining fixed-length feature vectors.

FIGURE 5. Representation of horizontal bounding box, rotational
bounding box and prow direction. (a) Representation of horizontal
bounding box and rotational bounding box. (b) Prow direction.

in rotational branch and horizontal branch respectively. The
ratio of positive and negative samples in mini-batch is 0.5,
the threshold is 0.5 and the total number of samples is 128.

After adding the angle information, rotational bounding
box can locate the object more accurately. The regression of
rotational bounding box is defined as follows:

tx = (x − xa)/wa, ty = (y− ya)/ha,

tw = log(w/wa), th = log(h/ha),

tθ = θ − θa + kπ/2 (2)

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha,

t∗w = log(w∗/wa), th = log(h∗/ha),

t∗θ = θ
∗
− θa + kπ/2 (3)

where x, y,w, and h denote the box’s center coordinates and
its width and height. Variables x, xa, and x∗ are for the
predicted box, anchor box, and ground-truth box, respectively

FIGURE 6. Detection results with prow direction. The green, yellow
bounding boxes represent predictions boxes and error prow direction
prediction boxes respectively. (a) Scene one: The ships are arranged side
by side but in different directions. (b) Scene two: The ships berth in the
harbor and dock. (c) Scene three: Large objects. (d) Scene four: Small
objects.

(likewise for y,w, h). The parameter k ∈ Z keeps θ in the
range [−90, 0). In order to keep the bounding box in the
same position, w and h need to be swapped when k is an odd
number.
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We use multitask loss to minimize the objective function,
which is defined as follows:

L(pi, li, u∗i , ui, v
∗
i , vi, h

∗
k , hk )

=
1
Ncls

∑
i

Lcls(pi, li)

+ λ1
1

Nreg−h

∑
j

pjLreg−h(u∗j , uj)

+ λ2
1

Nreg−r

∑
k

pkLreg−r (v∗k , vk )

+ λ3
1

Nreg−r

∑
k

pkLreg−r (h∗k , hk ) (4)

where li represents the label of the object,pi is the probability
distribution of various classes calculated by the soft-max
function, ui, vi represent the predicted parameterized coordi-
nate vectors, u∗i , v

∗
i represent the offset of ground-truth. h

∗
k , hk

represent the prow direction of ground-truth and prediction
respectively. The hyper-parameter λ1, λ2, λ3 in (4) control
the balance between the four task losses; all experiments use
λ1 = λ2 = 1, λ3 = 10 in this paper. In addition, the functions
Lcls and Lreg are defined as:

Lcls(p, l) = − log pl (5)

Lreg(t∗i , ti) = smoothL1 (t
∗
i − ti) (6)

smoothL1 (x) =
{

0.5x2, if |x| < 1
|x| − 0.5, otherwise

}
(7)

E. ROTATIONAL NONMAXIMUM SUPPRESSION
NMS is to obtain high quality bounding boxes with small
IoU overlap. When ships are densely arranged, the tradi-
tional NMS often faces such a dilemma that the bounding
box has a large IoU overlap. Therefore, IoU computation
on axis-aligned bounding box may lead to an inaccurate
IoU of skew interactive bounding box and further ruin the
bounding box prediction. An implementation for Skew IoU
computation [49] with thought to triangulation is proposed to
deal with this problem.

The sensitive relationship between IoU overlap and rota-
tion angle often affect the detection results. For example, for
a ship with aspect ratio of 1: 7, the IoU is only 0.38 when
the angles differ by 15 degrees. Therefore, we design R-NMS
which has two constraints: (a) preserve the prediction results
with IoU less than 0.7; (b) if the IoU is in the range of
[0.3, 0.7], discard the prediction results that the angle differ-
ence is greater than 15◦.

IV. EXPERIMENTS
In this section, we will introduce our dataset first. Then we
present several groups of comparative experiments to explore
the detection performance of the proposed framework. All
experiments are conducted on a computer with an NVIDIA
GeForce GTX 1080 GPU, and 8 GB of memory.

A. DATASET AND SETTINGS
In the experiments, we evaluate the proposed framework on
one data sets designed for remote sensing image rotation
region detection, one of which is a satellite remote sensing
ship image dataset (SRSS) that we have collected and labeled.

SRSS is collected publicly fromGoogle Earthwith 50 large
scene images sized 10, 000 × 10, 000 pixels, covering
25 square kilometers. The resolution of satellite remote sens-
ing images is 0.5 meters. In addition, these satellite remote
sensing images have the tri-band information (include red,
green, and blue) after geometric correction. Geotif is the
format of satellite image with latitude and longitude informa-
tion. The images contain scenes of civilian ports, naval base,
offshore areas, and far seas. The annotation content is a set of
contour points starting from the prow. We divide the images
into 1, 000 × 1, 000 subimages with an overlap of 0.4, then
filter out images that do not contain ships, resulting in about
8000 final images. Meanwhile, the ratio of training set to test
is 1:4.

All experiments were implemented on the deep learning
framework, tensorlfow [50]. We use the pretraining model
ResNet-101 to initialize the network. For SRSS dataset,
we train a total of 40 k iterations, with a learning rate of 0.001
for the first 20 k iterations, 0.0001 for the next 10 k iterations,
and 0.00001 for the remaining 10 k iterations. The optimizer
chosen is MomentumOptimizer. Furthermore, we flip the
image randomly in the training process, while subtracting the
mean value [103.939, 116.779, 123.68] which comes from
ImageNet [22]. Subtracting mean can centralize all dimen-
sions of the input data, which is conducive to model training.

B. EVALUATION INDICATORS
To quantitatively evaluate the performance of different frame-
work in object detection, we use the precision–recall curve
(PRC), and F-measure (F1), which are three well-known and
widely applied standard measures approaches for compar-
isons [51].

PRC is obtained from four well-established evaluation
components in information retrieval, true positive (TP),
false positive (FP), false negative (FN), and true negative
(TN) [46]. TP and FP indicate the number of correct pre-
dictions and error predictions. FN is the sum of regions not
proposed. Based on these four components, we provide the
definition of precision and recall rate as:

Precision =
TP

(TP+ FP)
(8)

Recall =
TP

(TP+ FN )
(9)

F1 is a statistic that is commonly used in the field of
object detection. The higher the F1 value, the better the
performance. The definition is as follows:

F1 =
2× Precision× Recall
Precision+ Recall

(10)
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TABLE 1. Performance of different feature maps combination strategies.

TABLE 2. Performance of three methods for extracting fixed-length
feature vectors.

TABLE 3. Detection performance of five methods.

C. EVALUATION OF DFPN
As we all know, low-level feature semantic information is
relatively scarce, but the object location is accurate. On the
contrary, high-level feature semantic information is rich, but
the object location is relatively rough. Therefore, the choice
of feature maps is particularly important. In this section,
we chose six different feature maps combination strategies to
explore the impact on the detection performance. The specific
combination strategies are shown in Table 1. As we can see,
the model achieved the worst detection performance when
using only the P3 feature map. Furthermore, the combination
of P3+P4 is significantly better than the combination of
P2+P3 and the combination of P4+P5. This is due to the fact
that most of the ships in our data match the anchors in P3 and
P4. What’s more, the P2 layer is mainly used for small object
detection, P5 layer for large object detection. When using all
feature maps, the detection performance is optimized: 85.2%
for Recall, 84.5% for Precision, and 84.9% for F-measure.

In summary, multiscale detection networks are signifi-
cantly better than single-scale detection networks, especially
in the detection of small objects. Only make full use of
effective fusion of various layers of feature information, can
we achieve better results.

D. EVALUATION OF ADAPTIVE ROI ALIGN
Due to the large number of redundant regions in ship detec-
tion, the ultimate detection performance is often compro-
mised. Fig. 6 shows three methods for extracting fixed-length

FIGURE 7. Detection results of three Align methods. The red boxes and
green boxes represent mission prediction boxes and correct detection
boxes respectively. (a) ROI Align. (b) RROI Align. (c) Adaptive ROI Align.

FIGURE 8. The P-R curves of different methods. The proposed method
has the state-of-the-art performance.

FIGURE 9. Accuracy of prow direction prediction.

feature vectors, while comparing their differences and their
advantages and disadvantages. In this section, we will con-
duct specific experiments on these three methods, and para-
metrically compare the performance among them.
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FIGURE 10. The detection results of the proposed method near coast.
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Table 2 shows the detection performance of ROI Align
(R-DFPN) [1], RROI Align (RRPN) [49] and Adaptive
ROI Align. Obviously, adaptive ROI Align achieved the
best results, especially the recall. Because the noise in the
redundant regions often interfere with or even submerges
the features, the ROI Align detection results often have
missing detection and false alarms, as shown in Fig. 7(a).
Although RROI Align completely eliminates the interfer-
ence of redundant regions, it loses spatial information. The
detection performance of RROI Align still unsatisfactory,
which is reflected in the inaccurate prediction results and
large angle deviation, as illustrated in Fig. 7(b). Because of
the sensitive relationship between IoU overlap and rotation
angle, the recall of RROI Align has been improved slightly.
Fig. 7(c) shows adaptive ROI Align has the advantage of
reducing the influence of noise and preserving the spatial
information. Therefore, the detection result of adaptive ROI
Align is accurate and the recall is high.

E. COMPARISONS WITH OTHER SHIP
DETECTION METHODS
In order to prove our proposed method is more competitive
than traditional detection methods which are state-of-the-art
in computer vision, we compare our proposed method with
Faster-RCNN, FPN, FPN-Soft-NMS and LSTM-Based [52].

Table 3 show the quantitative comparison results of five
methods, measured by F1. In the comparison of traditional
detection methods (Faster-RCNN and FPN), FPN based on
multiscale network has better performance. Meanwhile, FPN
obtains the highest Precision value among (89.3%) the five
methods. Soft-NMS [53] makes the bounding box, whose
IoU exceeds the threshold have a certain probability to be
reserved, so it is helpful to the dense scene detection. The
results show that the FPN-Soft-NMS achieves an increase
of about 1.2% without adding additional training and com-
putational burden. LSTM-Based is a novel structure of the
detection network, which introduces the LSTM structural
unit. At the same time, it uses the Hungarian algorithm to
serialize the output of the final detection result without any
post-processing. This approach avoids the use of nonmaxi-
mum suppression operation and is suitable to use in dense
scenes. However, this method still has certain limitations
to highly overlapping objects, such as large aspect ratio
ships. In the final detection results, detection performance
of LSTM-Based is not prominent. Compared with the four
detection framework above, the detection model proposed
in this paper has achieved the best detection performance,
and has the highest recall. Although our method offers supe-
rior performance in both multiscale and high-density object,
we can see from Table 3 that the Precision of our method is
not the highest, being behind that of the traditional method.
This phenomenon shows that our method has a higher false
alarm.

The time required for computing is summarized in Table 3.
LSTM-Based has the fastest detection speed. Although our

method is the slowest of all detection algorithms, it is still
very efficient.

Different Recall and Precision can be obtained by chang-
ing the confidence score threshold of detection. Fig. 8 plots
the performance curves of different methods. As shown in
the figure, the proposed method has the highest recall in a
given precision. Similarly, with a specific recall, the proposed
method has the highest precision. In short, the method we
proposed has the best performance.

F. EVALUATION OF PROW DIRECTION PREDICTION
In this section, we will estimate the accuracy of the
prow direction prediction of our rotational region detection
method. Fig. 9 is the statistical results. The accuracy of prow
predictions depends on the recall and we discover that the
prediction accuracy in each direction is close to the recall,
therefore it is a strong evidence that this simple prediction
method is efficient and feasible.

An interesting phenomenon can be found in the experi-
ment, that the final prediction often appears only in the prow
and stern. We speculate that our network first learned that the
prow must be in the long side and then judged which side of
the long edge is the prow.

V. CONCLUSION
In this paper, we build an end to end ship detection framework
based on rotation regions which can handle different com-
plex scenarios, detect intensive objects, and reduce redun-
dant detection regions. Many novel structures were designed
for this model. For example, we design a new multiscale
feature fusion network, called DFPN, which can effectively
integrate the low-level location information and high-level
semantic information to provide more advanced features for
object detection. Meanwhile, we explore the detection per-
formance of different feature maps combination strategies.
Then, adaptive ROIAlign is proposed in this paper tomitigate
the effects of redundant noise regions in the proposals and
keep the completeness of semantic and spatial information.
In addition, the berthing and sailing direction of ship has been
found through prediction. At last, we adopt R-NMS which
has more stringent constraints to obtain more accurate predic-
tion. Experiments based on SRSS dataset for rotation region
detection show that our detection method has a competitive
performance, as shown in Fig. 10.
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