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ABSTRACT With the booming of 3-D image processing in the entertainment industry and 3-D multimedia
applications todays, the technology for assessing the quality of stereoscopic image faces more challenging
tasks than its 2-D counterparts, such as binocular combination, stereo matching, and binocular rivalry. In this
paper, a novel stereoscopic image quality assessment method is proposed by jointly exploring binocular
fusion and rivalry models. In the quality-aware feature extraction stage, multi-scale binocular combination
and binocular rivalry energy responses are first generated from reference and distorted stereopairs. In addi-
tion, considering that the changes of luminance affect the quality of stereoscopic image greatly, multi-
scale visual features relating to image quality are obtained from its luminance maps as another binocular
combination and rivalry features. Then, the dissimilarity of quality-aware features between the reference
stereopair and its distorted version is quantified. Finally, such dissimilarities are mapped into an objective
score to represent the perceptual quality of stereoscopic image through the pooling strategy of support vector
regression. Experiments conducted on LIVE 3-D databases demonstrate that the proposed method achieves
96.61% and 96.03% in terms of Pearson’s linear correlation coefficient on Database Phase I and Phase II,
respectively, outperforming most of the state-of-the-art methods.

INDEX TERMS Stereoscopic image quality assessment, stereo vision, binocular fusion, binocular rivalry.

I. INTRODUCTION
Imaging is one of the main ways for human beings to obtain
visual information todays. Due to compression, retargeting,
coding or decoding operations during image processing,
the quality of images degrades more or less through image
transmission channels. So it’s necessary to recognize and
evaluate the quality degradation of images [1], [2]. Over the
past few years, many classic methods have been created to
deal with the problem about two-dimensional Image Quality
Assessment (2D IQA), such as Structural SIMilarity (SSIM)
[3], Visual Information Fidelity (VIF) [4] and so on. With
the development of three-dimensional (3D) imaging tech-
nologies, the researches on evaluating degradation of stereo-
scopic images are needed to be explored urgently [5]–[8]. Yet,
these existing methods proposed to evaluate the plant image
quality are not involved in the field of stereoscopic image.
Compared to its 2D counterparts, there have many limitations
on how to explain the processing mechanism of binocular

vision in exploring the quality degradation of stereopairs.
Recently, although large amounts of experimental studies on
Stereoscopic Image Quality Assessment (SIQA) have been
performed, it’s still a puzzle in fully understanding the neu-
ral mechanism of visual cortex about how the human brain
perceives and deals with stereoscopic natural image [5].

Early methods [6] tried to extend some well-known 2D
IQA methods to 3D tasks by directly employing these
approaches (e.g., SSIM and VIF) to each of views in stere-
opair independently and combining the two obtained objec-
tive scores into a final quality score with different weights.
However, these methods achieved poor performance due to
ignoring the internal relationship between the left and right
views. To improve the performance, binocular perceptual
properties (e.g., binocular disparity and binocular combina-
tion) had been taken into account in some approaches later.
You et al. [7] first pointed out that the degradation of quality
in disparity maps also influences the overall objective quality
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score, and they extended the previous experiments by analyz-
ing the quality of disparity maps extremely and improved the
performance to a certain extent.

Motived by the effects of binocular masking and
binocular rivalry when viewing asymmetrical stereopairs,
Chen et al. [8] took the local energy response of left and
disparity-compensated right views as corresponding weight-
ing coefficients to explain the binocular rivalry behaviors
of human perception, and then integrated two views into
a monocular image. Bensalma and Larabi [9] developed
a Binocular Energy Quality Metric (BEQM) by estimat-
ing the associated binocular energy of simple and complex
cells, and utilizing complex wavelet transform to obtain the
final responses of stereoscopic images. In [10], the energy
responses of the reference and distorted stereopairs, con-
structed by log-Gabor filter, were modulated by binocular
response and binocular mask components. However, due to
the lack of fully understanding on the binocular perceptual
vision, these methods do not capture the intrinsic properties
of binocular vision (i.e., how the cyclopean vision is created
and recognized from two eyes in the brain).

It has been claimed that there still exist other binocular
properties (e.g., binocular fusion or suppression) for stereo
vision in human brain [11]–[13]. By jointly utilizing the
effects of different binocular properties on stereo vision,
Shao et al. [11] divided stereoscopic images into monocular
regions, binocular fusion regions and binocular suppression
regions. And then each region was evaluated respectively and
the measured results were integrated into an overall score.
This framework was further improved in another study of
Shao et al. [12] by building monocular and binocular visual
perception models. Considering monocular and binocular
cells in primary visual processing mechanism, Cao et al. [13]
classified image regions into monocular and binocular visual
regions, extracted several visual characteristics from those
regions to calculate monocular and binocular local quality,
and generate the overall quality. Yet, it remains quite unclear
how to classify the binocular fusion and suppression spatial
regions by complex human visual cortex, and the visual
processing cannot be simulated by these proposed methods
correctly.

Hence, more and more researches focus on the core issue
that how to generate the so-called ‘cyclopean’ image from
two eyes by simulating the binocular behaviors of simple
and complex cells in human brain. Lin et al. [14] focused
on the simulations of binocular properties and applications
of low-level features, and then created the cyclopean phase
and amplitude maps to measure perceptual quality. In [15],
monocular energy response, binocular energy response and
binocular rivalry response were established from original
and distorted stereopairs to simulate the Receptive Fields of
simple and complex cells in the primary visual cortex (V1)
area, respectively. Shao et al. [16] extracted energy responses
and phase maps from stereopair by modeling visual proper-
ties of human visual cortex, and then transformed them into

microstructure andmacrostructure features by applying a new
feature encoding and similarity measure approach.

As mentioned above [8]–[16], the facts are need to be
pointed that there are two visual pathways carrying visual
information through neural processing in human brain,
in which the ventral pathway represents for the perception
and recognition of natural scene. The retinal information,
captured from the RFs of the ganglion cells, are firstly
transferred to the Lateral Geniculate Nucleus (LGN), and
then sent further to the ventral stream for visual information
representations and integrations. The ventral stream begins
from simple and complex cells in V1 area, and then goes
through the V2, V3 and V4 areas [17], [18]. As the largest
area of the visual cortex, the area V1, which mainly consists
of two types of cells named simple cells and complex cells,
is critical to the generation of early vision and responsible for
the perception of human visual. The simple cells in V1 deal
with the retinal information of left and right views receiving
from corresponding LGN respectively, and the complex cells
are used to connect the left and right retinal signals to binoc-
ular signals, responsible for binocular combination in stereo
vision.

Inspired by the mechanism of stereo vision in human
brains, an effective algorithm for assessing quality of stereo-
scopic images is proposed in the paper. By simulating the neu-
ral processing of simple and complex cells, features related to
both binocular fusion and binocular rivalry are first extracted
from reference and distorted stereopairs, respectively. Then
after the stages of similaritymeasurement and features encod-
ing, several similarities of binocular features between pristine
stereopair and its distorted version are quantified. Finally,
all the similarities are synthesized and mapped into an over-
all objective quality score by Support Vector Regression
(SVR). Experimental results on the publicly available 3D
databases demonstrate that the proposed algorithm achieves
better performance in predicting the quality of stereoscopic
distorted images than the existing state-of-the-art methods
in both symmetric and asymmetric distorted stereopairs.
The main contributions in the paper are summarized as
follows:

1) Through the deep analysis of binocular visual mecha-
nisms, several quality-aware features are captured to charac-
terize stereoscopic image structure and information by jointly
simulating binocular fusion and binocular rivalry properties
in human brain.

2) We spread a novel binocular visual integration algo-
rithm based on an existing stereoscopic image integration
model (called DSKL model) by using gain-control and gain-
enhancement models. The novel integration algorithm can
explain the intrinsic properties of binocular fusion well.

The rest of this paper is organized as follows. In Section II,
details of the proposed method jointly considering binocular
fusion and rivalry properties of stereo vision are presented.
Section III shows the experimental results and discussions.
And conclusions are drawn in Section IV.
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FIGURE 1. Framework of the proposed SIQA method.

II. PROPOSED METHOD
Based on the detailed analysis of neural processing and the
review of some existing objective SIQA methods, a novel
algorithm is proposed by jointly considering binocular fusion
and rivalry properties of Human Visual System (HVS),
in which the framework is illustrated as Figure 1. For
given reference and distorted stereopairs, multi-scale energy
responses are extracted respectively by log-Gabor filter since
it can better model the receptive field profile of simple cells
in V1. Moreover, luminance maps are generated from stere-
opairs considering that the changes of luminance reflect the
quality degradation of stereo images. Further, various binoc-
ular visual features are extracted from multi-scale energy
responses and luminance maps by applying binocular fusion
and binocular rivalry models to simulate complex cells in
V1 of binocular vision. Then, a set of feature vectors are
obtained through the features encoding strategy using Local
Binary Patterns (LBPs), which are relative to subjective visual
system. Finally, these similarities of all binocular visual
features between the reference and distorted stereopairs are
quantified by dissimilarity measurement and mapped into an
objective quality score by the SVR.

A. BINOCULAR FUSION MODEL
The retinal information received from the left and right RFs
of the ganglion cells is combined into the single visual signals
by complex cells of V1 in the visual nervous system, called
binocular fusion. There have developed numerous biological
models to simulate the binocular combination behaviors of
complex cells, in which the main goal is to generate a single
‘‘cyclopean’’ perceptual image from visual signals captured
by two eyes. Ding et al. [19] provide a contrast binocular
combination method, in which a single combined image
can be created from two eye’s signals by jointly employing

gain-control and gain-enhancement models, called the Ding,
Sperling, Klein and Levi (DSKL) model.

One problem directly employing the DSKL model to the
proposed algorithm is that the DSKL model takes two sine
waves as input, but the inputs of our algorithm are the left
and right images, which only contain contrast information
and lack of phase components. Inspired by the DSKL model,
we spread the model by employing the position shift mecha-
nism instead of the phase shift mechanism of DSKL model
to generate the disparity map [20], and then integrate the
left and disparity-compensated right views to the cyclopean
image using gain-control and gain-enhancement models of
the DSKL model. To represent the position shift mecha-
nism, a robust dense stereo reconstruction algorithm pro-
posed in [21] is adopted to generate a binocular disparity map
owing to its better performance in dealing with the issues of
occlusion and depth discontinuities. In the features extraction
of binocular fusion, log-Gabor responses on different spatial
frequencies and orientations, and luminance maps of left and
disparity-compensated right views are firstly extracted as the
quality-aware features [18]. And then, applying the improved
DSKL model to represent binocular fusion behavior of com-
plex cells, multi-scale binocular fusion energy responses and
multi-scale binocular fusion luminance maps are generated.

1) THE GENERATION OF MULTI-SCALE LOG-GABOR
RESPONSES
Previous researches have shown that each eye’s RFs proper-
ties in the V1 can be modeled by Gabor-like filters, in which
the log-Gabor filter is selected in this paper due to its bet-
ter performance in modeling the RFs properties than other
Gabor-like filters [18]. The filter can be described as follows:

LG(f , θ) = exp{−
[log(f

/
f0)]2

2[log(σf
/
f0)]2
−

(θ − θ0)2

2σ 2
θ

} (1)
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where f0 and θ0 are the central frequency and orientation
angle, and 4 scales and 4 orientations (i.e., 0◦, 45◦, 90◦ and
135◦) are selected in this paper. σθ and σf define the filter’s
angular bandwidth and scale bandwidth.

2) GAIN-CONTROL AND GAIN-ENHANCEMENT MODEL
The gain-control model is one of the most effective
binocular combination models because it can explain the neu-
ral processing of binocular vision well, including Fencher’s
paradox and the cyclopean perception [22]. In addition,
the phenomenon of gain-enhancement has been found in
center-surround interactions that the gain enhancement from
one eye to the other eye also receives the suppression from
the other eye [23]. In the DSKL model, a cyclopean image
can be generated by jointly considering the gain-control and
gain-enhancement models as following:

Ev(x, y; f ) =

∑
θ

|Cv(x, y; f , θ)|

gc

E∗v (x, y; f ) =

∑
θ

|Cv(x, y; f , θ)|

ge
(2)

where Cv(x, y: f , θ ) denotes the energy response map of
a single view in a specific scale and orientation, in which
v ∈{l, r}. Ev(x, y: f ) and E∗v (x, y: f ) are the total energy
response across different orientations in different scales for
gain-control and gain-enhancement. gc and ge represent the
gain-control threshold and the gain-enhancement threshold,
respectively.

Considering the two gain effects of total contrast energy
applied by the other eye, the monocular energy responses of
left or right view can be re-expressed.

|Cl(x, y; f )|ce =
1+ E∗r (x,y;f )

1+βEl (x,y;f )

1+ Er (x,y;f )
1+αEl (x,y;f )

∑
θ

|Cl(x, y; f , θ)|

|Cr (x, y; f )|ce =
1+

E∗l (x,y;f )
1+βEr (x,y;f )

1+ El (x,y;f )
1+αEr (x,y;f )

∑
θ

|Cr (x, y; f , θ)| (3)

where α and β are different gain-control efficiencies to rep-
resent different effects in final monocular energy response
|Cv(x, y; f )|ce of gain-control and gain-enhancement,
in which v ∈{l, r}.

3) BINOCULAR ENERGY RESPONSES
By combination of the left and disparity-compensated right
views after interocular interaction, the binocular energy
response in different scales |C(x, y; f )| can be finally
expressed by the following function (4), as shown at the top
of the next page: where ϕr and ϕl denote the phase of energy
response of the left and right views.

4) SIMILARITY MEASUREMENT
Through the similar binocular combination method,
the binocular energy response of distorted stereopairs can be

also created, denoted as |CD(x, y; f )|. Due to the degree of cor-
ruption dependents on the image’s distortion level, or quality
degradation, dissimilarity quantification between the refer-
ence stereopair and its corresponding distorted version should
be used to calculate the degree of corruption in distorted
stereopair and assess the quality of stereoscopic distorted
image as follows:

SBF(x, y; f ) =
2 |CR(x, y; f )| × |CD(x, y; f )| + T1
|CR(x, y; f )|2 + |CD(x, y; f )|2 + T1

(5)

where SBF (x, y: f ) represents the similarity map of binocular
energy response in different scales for binocular fusion prop-
erty, and T1 is a constant to avoid the denominator being equal
to zero.

5) BINOCULAR LUMINANCE MAP
In addition, the changes of the luminance can also reflect the
distortion level of stereopair [24]. Then luminance maps of
left and right views can be extracted and transformed into
binocular luminance response through simple and complex
cells of area V1 by the similar contrast binocular combination
way. Note that, different with energy response, the luminance
map lacks of orientation angle information. Thus in the stage
of binocular combination, the combination function can be
simplified to

|I(x, y; f )|

=

√
Il(x, y; f )2ce+Ir (x, y; f )2ce+2Il(x, y; f )ce×Ir (x, y; f )ce

= Il(x, y; f )ce + Ir (x, y; f )ce (6)

where likely to the binocular generation of energy responses,
Iv(x, y; f )ce denotes the final luminance map of the view v
for binocular fusion property by considering the effect of two
gain models.

B. BINOCULAR RIVALRY MODEL
In addition to binocular fusion in V1 area of nervous system,
another very important physiological phenomenon in human
vision is binocular rivalry [17]. Binocular rivalry responses
in V1 area play vital roles in simulating the effects of binoc-
ular interaction in human brain. Specifically, when different
monocular stimuli signals of complex cells are transmitted to
corresponding retinal locations of the two eyes, the cyclopean
visual signals can be dominated by the visual signals from one
eye with the higher energy response, instead of the average
results of the two monocular stimuli signals. Based on this
observation, binocular rivalry, as the result of the monocular
stimuli dominating stereo perception, can be recognized as a
plausible explanation. Thus, it is wise to consider the property
of binocular rivalry into the paper to improve the performance
of the proposed algorithm.

Through the simple cells of V1 area, the visual signals
of left and right eyes are transformed into corresponding
energy responses, respectively. In order tomeasure the quality
degradation of corresponding distorted image in two views,

51340 VOLUME 6, 2018



G. Sun et al.: SIQA by Considering Binocular Visual Mechanisms

|C(x, y; f )| =
∥∥|Cl(x, y; f )|ce + |Cr (x, y; f )|ce∥∥

=

√
|Cl(x, y; f )|2ce + |Cr (x, y; f )|

2
ce + 2 |Cl(x, y; f )|ce |Cr (x, y; f )|ce cos(φr − φl) (4)

the similarity maps are generated by dissimilarity quantifica-
tion between original and distorted images in each of views
independently, as follows:

Sv(x, y; f ) =
2
∣∣CR,v(x, y; f )∣∣× ∣∣CD,v(x, y; f )∣∣+ T2∣∣CR,v(x, y; f )∣∣2 + ∣∣CD,v(x, y; f )

∣∣2 + T2 (7)

where CR,v(x, y: f ) and CD,v(x, y: f ) denote the energy
response maps of reference and distortion stereopairs in dif-
ferent scales, in which v ∈{l, r}. Sv(x, y: f ) is the similarity
map between the reference stereopair and its distorted version
in the left or right view. T2 is a constant and not equal to zero.

According to the researches on binocular rivalry model,
each of two eyes exerts gain control on the signals received
by the other eye in corresponding spatial locations, and the
ability of gain control to the other eye is in proportion to the
energy response of its own visual signal. Usually, a linear
model is used to simulate the binocular interaction mecha-
nism of HVS, as follows:

SBR(x, y; f ) = wr (x, y; f )× Sl(x, y; f )

+wr (x, y; f )× Sr (x, y; f ) (8)

where SBR(x, y: f ) represents the similarity maps of binoc-
ular energy response in different scales for binocular rivalry
property, wl(x, y: f ) and wr (x, y: f ) are the binocular rivalry
weighting coefficients to indicate the relative receiving con-
tribution of both eyes, denoted as

wl(x, y; f ) =
1+Ml(x, y; f )

1+Ml(x, y; f )+Mr (x, y; f )

wr (x, y; f ) =
1+Mr (x, y; f )

1+Ml(x, y; f )+Mr (x, y; f )
(9)

whereMl(x, y: f ) andMr (x, y: f ) are the energy responses of
the left and right views in different scales, respectively.

C. FEATURES ENCODING
The various binocular feature maps (i.e., multi-scale binocu-
lar fusion and rivalry energy responses, multi-scale binocular
fusion and rivalry luminance maps) have been obtained from
phase A and B. However, there has a high dimensionality and
easy to overfit if directly using those binocular feature maps
as inputs of regression learning. Instead of directly mapping
those binocular features into an objective score, dimension
reduction strategy can be considered to solve the problems
about high dimensionality and complicated calculation.

LBPs are recognized as an effective structural and textural
information operator and usually used in dimension reduc-
tion [25]. By comparing eight local neighbor pixels with a
central pixel and concatenating the results, it can form a non-
directional binary local structural pattern. However, the sta-
tistical histogram of LBP maps can output 256-dimensional

features, which also means the high dimensionality. As an
improved version of standard LBPs, the rotation-invariant
uniform LBPs [25], only having 10-dimensional outputs for
eight neighboring pixels, are adopted in the paper.

After features encoding strategy by the rotation-invariant
uniform LBPs, the 160-dimensional feature vectors are gen-
erated from 16 different binocular feature maps. In order to
estimate whether the features extracted by the features encod-
ing are quality-aware for stereo images, the joint normalized
histograms of feature vectors in the different distortion levels
of JPEG2000 compression (JP2K) and Gaussian Blur (GB)
created from two distorted stereopairs on LIVE 3D IQA
Database Phase I are drawn in Figure 2.

From Figure 2, we can find that: (i) the distorted types
of stereopairs can be easily distinguished through the shapes
of the joint normalized histograms in low distortion level,
which indicates these feature vectors are content-independent
and type-dependent. (ii) the joint normalized histograms of
feature vectors in different distorted levels are also different,
and thus these extracted binocular features can reflect the
degree of quality degradation of distorted stereopairs, which
is called quality-aware features. In other words, these joint
normalized histograms can be recognized as stable binocular
quality-aware features to estimate stereo image quality.

D. POOLING STRATEGY
As what mentioned before, 160-dimensional features can be
generated from 16 binocular feature maps. However, it is still
difficult to understand the quality of 3D images from 160-
dimensional features, intuitively. For the purpose of mapping
the feature vectors into a final objective quality score, a
pooling strategy should be established. In the early days, the
pooling strategy generally adopt a linear function approach,
by assigning different weights to each of the features, and
allowing them to be linearly superposed to map the final
quality score. Recently, the technology of machine learning
has been successfully applied in the regression analysis. In the
paper, SVR is employed to construct a regression function to
give out an objective score (Qo) due to its effectiveness and
moderate computational complexity [26].

Qo = SVR(Index1, Index2, · · · , Index160) (10)

where Index1 to Index160 represent 160-dimensional quality-
aware features, and through the pooling strategy of SVR, Qo
can be finally generated.

SVR consists of the training and testing processes. In the
training process, we randomly divide the dataset into five
subsets with no overlap by cross-validation scheme. Four
of them (i.e., 80%) are used for training and the rest one
(i.e., 20%) is used for testing. Since the performance of the
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FIGURE 2. Joint normalized histograms of the quality-aware features in different distortion types and levels. (a) JP2K. (b) GB.

train-test procedure is dependent on the selection of training
and testing content, we repeat it 1000 times and obtain the
median results of 1000 iterations of cross-validation.

III. EXPERIMENTAL RESULTS
A. DATABASES
Experiments are conducted on two large-scale databases: the
LIVE 3D IQADatabase Phase I [8] and Phase II [27]. Phase I
includes 365 symmetrically distorted stereopairs while Phase
II has 120 symmetrically distorted stereopairs. In addition,
phase II also contains 240 asymmetrically distorted stere-
opairs, where the degrees of stereoscopic image distortion in
the left and right views are different. The distorted stereopairs
in phase I and phase II are contaminated by five types of

distortions (i.e., JP2K, JPEG compression, White Noise
(WN), GB, and Fast-Fading (FF)). In order to further validate
the performance of the proposed algorithm, theWaterloo IVC
Database Phase II [28], [29] is also tested in the paper. The
Waterloo IVC Database Phase II is created from 10 reference
stereopairs, containing 130 symmetrically and 330 asymmet-
rically distorted stereopairs with three types of distortions
includingWN,GB and JPEG in four distorted levels. It’s wor-
thy emphasis that Waterloo IVC Database Phase II contains
the Hybrid distortion in asymmetrical distortion, where the
left and right views of asymmetrically distorted stereopairs
have different distortion types.

To better illustrate the experimental results of the
proposed algorithm, some classical Full-Reference (FR)
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TABLE 1. Overall performance in LIVE 3D databases phase I and II.

methods including You’10 [7] and Chen’13 [8], and several
state-of-the-art methods such as Cao’16 [13], Shao’17 [16],
Ma’17 [15], Xu’16 [30], Lin’17 [14], Geng’17 [31] and
Jiang’18 [32] are selected. In order to evaluate the perfor-
mance of SIQA methods quantitively, three metrics includ-
ing Pearson’s Linear Correlation Coefficient (PLCC), Spear-
man’s Rank-order Correlation Coefficient (SRCC) and Root
Mean Squared Error (RMSE) are adopted. PLCC and RMSE
are used to evaluate prediction accuracy and consistency with
human subjective evaluation, while SRCC is an indicator of
prediction monotonicity. Larger PLCC and SRCC and lower
RMSE indicate better performance.

B. OVERALL PERFORMANCE
The overall experimental performance comparison on LIVE
databases between the proposed algorithm and other state-
of-art methods is shown in Table 1, where the best results are
highlighted in boldface.

From these results of the overall assessment performance,
we can find that the overall performance of our method is
far better than the compared methods both on LIVE Phase
I and on Phase II, especially on Phase II. Owing to that
Phase II contains both symmetrically and asymmetrically
distorted images while Phase I only contains symmetrically
distorted images, the performance of all the listed methods
on Phase II is worse than that on Phase I more or less.
In real applications, a stereoscopic pair may be distorted
symmetrically or asymmetrically. Therefore, the comparison
on Phase II is more constructive. The results indicate that the
proposed algorithm can achieve better performance on the
prediction of asymmetric distortion.

In addition, some important information is released from
the table. First, the early methods, like You’s scheme [7],
achieve poor performance in all distortion types on both
two LIVE 3D Databases because it is a simple exten-
sion from 2D image quality assessment methods, indicating
that directly applying 2D methods into SIQA is unreason-
able, especially in asymmetrically distorted stereopairs. Sec-
ond, Chen’s method [8] achieves better performance on 3D
LIVE Databases Phase II than the early methods because
the method considers binocular properties, like binocular
combination and binocular rivalry. However, considering
binocular visual system as a simplistic combination model,

the performance of Chen’s method cannot be greatly
improved. With the researches of perceptual images on visual
cortex system go deeper, the framework of 3D IQA con-
structed by Shao, Ma and other researchers become more
and more reasonable, and the performance is getting bet-
ter and better. Finally, the performance of those methods
that consider binocular vision is more impressive than early
methods, which indicates the facts that these quality-aware
features extracted by binocular visual properties can reflect
the objective quality of stereopair well.

C. ROBUSTNESS ACROSS DIFFERENT DISTORTION TYPES
In order to more comprehensively evaluate the prediction per-
formance of the proposed algorithm, the experiments com-
paring with these state-of-art algorithms are also operated on
the individual distortion types. Table 2 and Table 3 show the
individual performance comparisons of different distortion
types on LIVE Phase I and Phase II and the top metrics are
highlighted in boldface. Due to part of the results are not
provided in the original articles, ‘‘-’’ is used to indicate for
unavailable results.

From Table 2 and 3, it’s clear to find that the perfor-
mance of the proposed algorithm achieves the top results
on different distortion types ten times in terms of PLCC
and SRCC, followed by Ma’s method (six times), Jiang’s
method (two times), Xu’s method and Geng’s method (one
time). In addition, the proposed algorithm also achieves per-
fect results on the individual distortion types in terms of
RMSE. Although the performance on the types of asym-
metrical JPEG compression and symmetrical Gaussian Blur
distortion types is slightly worse than some of the best
performance, there is only a narrow margin comparing to
the leading methods. In addition, the proposed algorithm
achieves better results than other FR algorithms for other
distortion types across all databases. Overall, the performance
of the proposed algorithm is more stable and satisfying across
all different symmetrical and asymmetrical distortion types
than other algorithms, and well closest to human subjective
evaluation.

D. ROBUSTNESS ACROSS DIFFERENT DATABASES
For further validating the effectiveness and robustness of
the proposed algorithm, experiments on the Waterloo IVC
Database Phase II are conducted and the overall performance
is illustrated in Table 4. Note that, since the Waterloo IVC
Database Phase II is only created in recent years, there are not
much research on the database, so we can only list the experi-
mental results of several available FR andNo-Reference (NR)
SIQA algorithms (i.e., NR Chen’s [33], SINQ [34], ADD-
SSIM [35], FR Chen’s [8] and Wang’s [28]) on the database
for comparison. In addition, the performance in symmetrical
and asymmetrical distortion of the proposed algorithm are
also listed in Table 5. As we can see from Table 4, the per-
formance of the proposed algorithm still outperforms that of
all other compared methods on the Waterloo IVC Database
Phase II. These compared results again confirm the efficacy
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TABLE 2. The performance comparison of individual distortion types on phase I.

TABLE 3. The performance comparison of individual distortion types on phase II.

TABLE 4. Overall performance in Waterloo IVC Database Phase II.

of the proposed 3D IQA algorithm. From Table 5, it’s easy to
see that the proposed algorithm achieves impressive perfor-
mance in prediction of symmetrically distorted images, while
for asymmetric distortion, the performance is particularly
poor. That’s because the Hybrid distortion in Waterloo IVC
Database Phase II can’t be predicted well by the proposed
algorithm.

E. INTUITIVE REPRESENTATION OF ALGORITHM
PERFORMANCE
Furthermore, in order to intuitively demonstrate the perfor-
mance of the proposed algorithm, the scatter plots of the
overall predicted objective quality scores against subjective

TABLE 5. The performance of the proposed algorithm in Waterloo IVC
Database Phase II.

quality scores on LIVE Phase I and Phase II are drawn
in Figure 3. In the scatter plots, the horizontal axis means pre-
dicted objective quality scores after objective score mapping
and the vertical axis shows subjective image quality scores
of distorted stereopairs on LIVE 3D Database Phase I and
Phase II. The distribution of scatter plot represents the predic-
tion performance of the proposed metric, in which we can get
the conclusion that the performance of the proposed metric
achieves high consistency with the subjective quality scores
and the performance on asymmetrical distorted stereopairs is
not worse than that on symmetrical distorted stereopairs.

We also draw the scatter plots of DMOS versus the pre-
dicted quality scores of different distortion types on LIVE
Phase I and Phase II, and different distortion types are rep-
resented by scatters with different colors, shown in Figure 4.
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FIGURE 3. Scatter plots of the overall predicted quality scores against the subjective scores (DMOS) of the proposed
metric on LIVE 3D IQA Database Phase I and II. (a) LIVE 3D Phase I. (b) LIVE 3D Phase II.

FIGURE 4. Scatter plots of predicted quality scores against the subjective scores (DMOS) of the proposed metric on
five types of distortion on LIVE 3D IQA Database Phase I and II. (a) LIVE 3D Phase I. (b) LIVE 3D Phase II, respectively.

According to the scatter plots, it is clear that predicted objec-
tive quality scores of the proposed algorithm are well correl-
ative with DMOSs in most distortion types (i.e., JP2K, WN
and FF), as the scatter plots of JP2K, WN and FF distortion
types aremore distributed closely beside the fitting curve than
that of other distortion types. The same conclusions can also
be seen from the indices of PLCC, SRCC and RMSE.

Besides, in order to obtain content-independent perfor-
mance results, 5000 results of performance metrics have
been conducted across 1000 iterations of cross-validation
in the quality mapping stage. For a good SIQA algorithm,
5000 performance results should be consistent and similar,
called ‘‘stabilization’’. To demonstrate the stabilization of the
proposed algorithm, the box-plots of PLCC metric on three
different databases are drawn in Figure 5. From Figure 5,
it is easy to find that the proposed algorithm is concentrated
and only has small whiskers on the three different databases,
which means the performance of our algorithm is stable and
impressive. In addition, we can also find that the stabilization
of performance on LIVE 3DDatabase Phase I is significantly
better than the other two databases, in which that onWaterloo
IVC Database Phase II is the worst. The results concluded
from box-plots are consistent with the previous obtained
conclusions.

FIGURE 5. Box-plots of PLCC metric of the proposed algorithm across
1000 iterations of cross-validation on LIVE 3D IQA Database Phase I and
II, and Waterloo IVC Database Phase II, respectively.

To sum up, the proposed algorithm outperformsmost exist-
ing state-of-the-art algorithms in terms of the high consis-
tency with subjective evaluation for most of all distortion
types in both databases, as well as the robustness across
symmetrical or asymmetrical distortions as a result of taking
the properties of binocular fusion and binocular rivalry into
account.
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IV. CONCLUSION
A novel stereoscopic image quality assessment method con-
sidering primary visual cortex mechanism including binoc-
ular fusion and binocular rivalry is presented in the paper.
With two binocular visual pathways for exploring the quality
of stereopairs, binocular fusion and binocular rivalry features
are captured and then the similarities between the distorted
stereopair and its corresponding undistorted version are quan-
tified. After features encoding by LBPs, several quality-
aware features are generated and finally pooled into an
objective quality score. Experiments prove that the proposed
method is more accurate and robust in predicting stereoscopic
image quality than most existing methods.
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