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ABSTRACT An accurate scenario of customer’s power consumption patterns is a worthwhile asset for
electricity provider. This paper proposes a cluster survival model of concept drift in load profile data. The
cluster survival model of concept drift retrieves the dynamic behaviors of the clusters over time.We formulate
a new data stream clustering algorithm, I-niceStream, which identifies the number of clusters and initial
cluster centers automatically for producing the clustering results. We derive a modified Kullback–Leibler
divergence for computing the concept drift scores from the clustering results. The concept drift scores are
used to estimate the related clusters and the clustering patterns. The survival model categorizes the clustering
patterns into sustaining, fading, and emerging types. Experiments were conducted on both synthetic datasets
and real-world load profile dataset collected from different factories at Guangdong province in China.
Experimental results show that the cluster survival model is able to identify the clustering patterns effectively
from load profile data stream. The I-niceStream algorithm significantly outperformed three state-of-the-art
algorithms in clustering accuracy on synthetic stream datasets.

INDEX TERMS Concept drift, clustering pattern, data stream clustering, load profile data, survival model.

I. INTRODUCTION
Survival model focuses the survival analysis of evolving
events where events describe the length of time from a starting
to end point. The survival analysis is an analysis of data
including some sequential events of interest over time [1]. It is
assigned as time-to-event analysis, which is based on analogy
to the statistical model of lifetime data such as breast cancer
data [2], and gene expression data [3]. For example, an origin
time of a cancer patient can be assigned to be the time point
of diagnosis and end point can be assigned to be death time.
Then the length of time can be calculated and predicted for
further cases. Survival analysis has many applications such
as fatigue failure of aircraft structures [4], depression and
anxiety [5], and risk assessment of traffic congestion [6].

A data stream can be divided into several time windows.
Objects in each window are distributed into different clusters
which are represented as concepts. As new data elements
arrive over time, the structure of the clusters changes, which
is known as concept drift. Survival of clusters is represented
as the status of concepts over time, which studies the time
between initial structure of concepts and a subsequent chang-
ing event of concepts. The detection of concept drift identifies
the dynamic behaviors of the clustering patterns.

A load profile is a set of electrical power consumption of a
consumer within a range of time. Generally, power providers
use the data to make a plan how much electricity they will
need to make available at any given time for the consumer.

The collection of electricity consumption from factories
in different industrial areas in a specific study period is
represented as the load profile data. In this paper, we use
power consumption of manufacturing factories as load profile
data. We collected the load profile data from smart meters
sampled at 15 minutes interval at Guanagdong province in
China in 2012.

A multidimensional load profile data is represented as a
matrix, whereN is the number of rows andD is the number of
columns, in Fig. 1. Row N represents the number of factories
and column D represents the number of time attributes. The
factory i with j time slot generates xi,j power consumption
as data object. D time attributes in load profile data are
divided into W monthly time windows. Each load profile
window data X is also represented as a matrix with N rows
and d columns. Load profile window data X contains N
time series X1,X2, . . . ,XN data with d dimensional attributes
F1,F2, . . . ,Fd . Let Fj be a vertical vector of N elements rep-
resenting the measurements of N factories at the jth time slot.
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FIGURE 1. Load profile data is represented with a matrix where rows are
the manufacturing factories and columns are the measurement time of
power consumption.

Each column of the matrix represents the distribution of the
total electricity consumption ofN factories at a timemeasure-
ment.

These consecutive windows of load profile data represent
power consumption behaviors which may change during the
study time. For example, the consumption patterns during
public vacation may differ from regular time. In Fig. 2,
we observe that an industry sector can consume different
power consumption over time. The electricity consumption
of an industry sector represents the production figure. The
production figure mainly depends on production demand,
weather condition and public vacation. The identification of
dynamic behaviors of load profile in different factories is
important for analysis the production capacity.

Each window load data is investigated to obtain the clus-
tering solution. We use the concept drift detection to estimate
the clustering patterns and survival analysis to categorize the
clustering patterns among consecutive windows.

Several traditional clustering algorithms are addressed
in [7]. The cluster ensembles are developed to improve
the performance of the standard clustering algorithms [8].
Themultitask clustering algorithm performs robustness of the
clustering partition by using the relationship of multiple tasks
simultaneously [9]. The unsupervised dimensionality reduc-
tion methods are used to enhance the performance of clus-
tering results. The multilayer bootstrap network is a recently
proposedmethod [10], which reduces the non-linear variation
of data by an unsupervised deep ensemble architecture on
data domain. These algorithms are effectively used to perform
unsupervised learning on static data.

Data streams are considered as continuously flow of data
and the underlying distribution of data stream may change
to the next event of time. Data streams deserve the learn-
ing algorithms that are capable of continuous learning and
forgetting the obsolete objects, can also adapt models over
time. To address these criteria, several data stream clustering
algorithms have been proposed [11]–[17].

The stable segmentation of load profile data is essential
to support marketing strategy for distribution companies and

retailers. Some of the significant contributions in clustering
on load profile data are [18]–[24]. In addition, the clustering
problem with concept drift is addressed to understand the
dynamic behaviors of patterns in many real-world applica-
tions [13], [14], [25]–[28]. In literature, most of the data
stream clustering algorithms need a given number of clus-
ters as input parameter and these existing methods do not
address the survival analysis of concept drifting patterns in
data stream.

In this paper, we propose a cluster survival model of
concept drift in load profile data stream. The cluster sur-
vival model detects the changing behaviors of clusters and
performs the survival analysis of clustering patterns over
time. For discovering the structure of clusters, we introduce a
new data stream clustering algorithm named as I-niceStream,
the abbreviation of Identifying number of clusters and initial
cluster centers for clustering on data Stream. We use a mod-
ified Kullback-Leibler (KL) divergence to compute the con-
cept drift scores from the clustering results. These concept
drift scores are used to estimate related clusters which are
used to form clustering patterns. We use survival model to
categorize the clustering patterns into sustaining, fading, and
emerging types. The survival model is also used to estimate
the survival level and survival probability of clustering pat-
terns.

We conducted a series of experiments on both synthetic
stream datasets, and real-world load profile dataset. Exper-
imental results show that the proposed method is able to
identify the clustering patterns from load profile data and
categorize the clustering patterns according to their dynamic
behaviors. Furthermore, the I-niceStream algorithm signifi-
cantly outperformed other data stream clustering algorithms
in terms of clustering accuracy.

The remainder of this paper is organized as follows: First,
we present a brief overview of related work in Section 2.
We describe the problem formulation in Section 3. We intro-
duce the cluster survival model of concept drift in load profile
data in Section 4. We present the experimental results of the
proposedmethod in Section 5. Finally, we discuss the survival
model of concept drift in load profile data and the conclusion
of this research in Section 6.

II. RELATED WORK
Research community in data mining has paid much attention
for clustering on data stream. Several state-of-the-art algo-
rithms [11], [12], [29]–[32] have been proposed to extract the
intrinsic structure from non-stationary data.

The clustering feature vector is introduced for estimating
the statistical summary from large volume of data stream
in BIRCH algorithm [29]. This feature vector has several
components, such as the number of objects in data, the lin-
ear sum of objects, and the sum of squared objects. These
components are used to compute cluster means, radius and
diameter. A clustering feature tree is built from the contin-
uous objects of data stream. An user-given radius parameter
defines whether a new object may be absorbed by a clustering
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FIGURE 2. Power consumption behaviors of different industries in load profile data. (a)-(c) Non-metallic mineral products industry.
(d)-(f) Paper and paper products industry. (g)-(i) Textile industry.

feature vector. Then, the objects are clustered with k-means
into a user-given number of clusters.

The concept of clustering feature vector is extended with
a concept of micro-cluster in CluStream algorithm [11].
This algorithm performs the clustering on continuous data
into two steps, including online, and offline. In online step,
the statistical summary is periodically stored into the given
number of micro-clusters. The statistical summary of micro-
clusters is used to generate the high level clusters with a
given number of macro-clusters and time horizon at off-line
step.

DenStream is a density-based clustering algorithm on data
stream, which also uses clustering feature vector [12]. This
algorithm has two structures for estimating statistical sum-
mary from data, such as potential-micro-clusters, and outlier-
micro-clusters. A new object is inserted into the nearest
potential-micro-cluster by updating the statistical summary

of the cluster. The set of parameters are also adapted in
manually in the algorithm.

In [31], the ClusTree algorithm is developed based on the
concept of micro-clusters as compact representation of data
distribution. This algorithm maintains the clustering features
by extending index structure from R-tree family and automat-
ically adapts the size of clustering model.

In online-offline steps based algorithms, the off-line step
suffers high computational cost for clustering data. The
derivation of the statistical summary from data stream at
online step and the utilization of them for generating cluster
at offline step are time consuming process. In addition, when
data records are comingwith real-time streaming fashion, due
to the unavailability of whole training data, the prediction of
the structure of clusters is far from the original structure of
clusters. The major drawback of these types of algorithms is
that it is needed to assign the number of clusters in advance.
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FIGURE 3. Selection process of initial cluster centers on a synthetic dataset (a) Multiple observation points observe the clusters on data
(b) Estimation of the candidate initial centers from data (c) Estimation of initial cluster centers from the candidate initial centers.

Silva and Hruschka have formulated a method based on
ordered multiple runs of k-means (OMRk) and bisecting
k-means (BkM) for estimating the number of clusters on
evolving data stream [33]. The OMRk method uses k-means
repeatedly for an increasing number of clusters, then, uses the
simplified Silhouette to assess the best number of clusters.
Validation-index-based solutions are not likely to provide
consistent results across different clustering algorithms and
data structures [34], [35]. The OMRk method assigns

√
N

(N is the number of objects) as the maximum number of
increasing clusters, which is really an inefficient initialization
to deal with large volume of records on data stream.

The exploration of patterns over time windows can pro-
vide a great understanding of the evolving behaviors of the
estimated clusters. Some works [28], [36]–[38] have been
developed to focus on the changing behaviors of data stream.
Khan et al. [38] have discussed the changes of patterns from
load profiles along with time windows. This method uses a
hierarchical binary k-means algorithm for generating base
clusterings and an ensemble method to obtain final clustering
solution. In pattern tracking, this work addresses the distribu-
tions of fading and emerging patterns only from load profiles.

A very simple and effective data stream clustering algo-
rithm, I-niceStream, is developed for resolving the challenges
of existing algorithms. Then, an innovative cluster survival
model of concept drift is formulated for addressing the details
study of all clustering patterns among time windows.

III. PROBLEM FORMULATION
This paper is formulated into two consecutive steps: cluster-
ing solution and survival analysis of clustering results based
on concept drifting behaviors.

Several works focus the clustering problem on load profile
data as data stream [18]–[24], [36].

In [18], household electricity consumption data is collected
from the real-time meters at the clients during the period
in study. A set of representative consumption patterns is
discovered with several clustering algorithms where k-means
outperformed others. In order to form similar customer clus-
ters and exhibit similar patterns, a comparative clustering
analysis has been performed with unsupervised clustering

algorithms and self-organization maps (SOM) on electricity
consumption data [20]. Similarly, the best performing tech-
nique is evaluated from k-means, k-medoid and SOM in order
to segment individual households into clusters based on the
patterns of electricity used across the day [39].

Another household energy consumption data is investi-
gated with an adaptive k-means algorithm to find theK repre-
sentative load shapes as clusters. The hierarchical clustering
technique is used to summarize the clusters, which have
close centers, as final clusters [21]. An incremental density
based ensemble clustering method aggregates the obtained
clusterings of subsequent time windows incrementally on
load profile data [36]. A clustering framework is discussed
for the automatic classification of electricity customers loads
in [24]. Here the number of clusters is again an issue, which
is needed to assign in advance, to run most of the data stream
clustering methods.

In the first part of the proposed work, we introduce a new
data stream clustering algorithm, I-niceStream, to cluster the
load profile data stream. The algorithm can also identify the
number of clusters and initial cluster centers automatically.
Fig. 3 shows the selection process of initial cluster centers
on a synthetic two-dimensional dataset, which contains eight
clusters. First, we allocate several observation points in the
data domain in Fig. 3(a). We transform one-dimensional
data by computing the distances between each observation
point and all objects in the high-dimensional data. Different
locations of observation points result in different distance
distributions, which represent the dense and sparse regions
of objects in the original dataset.

The distance data is used to build multiple models with
Gamma mixture model (GMM) and the multiple models
are fitted with expectation-maximization(EM) algorithm.
We obtain a set of best-fitted models for a set of observation
points. Objects in each component of best-fitted models are
analyzed to estimate candidate initial centers in Fig. 3(b).
These candidate initial centers are abstract representation of
original data.

A distance matrix is computed among the candidate initial
centers. We build a tree structure from the distance matrix.
An estimated height value is used to separate the tree into
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FIGURE 4. Cluster structures of different load profile windows where
some clusters are continued from initial to last window, some old clusters
are disappeared at intermediate window, and some new clusters are
appeared at the different time windows.

different branches where candidate initial centers in a branch
are close to each other. The number of branches is considered
as the number of clusters. Then, we select one candidate
initial center, which has the smallest distance to others in a
branch, as an initial cluster center in Fig. 3(c). We use the
initial cluster centers to cluster the load profile data.

After the segmentation of load profile data, the distribution
of objects in clusters may change over time. Several methods
have been developed to address the concept drift problem on
data stream [13], [14], [25]–[28].

In [13], a PCA based change detection framework detects
the abrupt changes in multidimensional data stream. The
framework is based on projecting data with principle com-
ponents. The change score is computed with a divergence
metric on the densities in reference and test windows for
each projection. Similarly, the margin density drift detection
algorithm tracks the number of objects in the uncertainty
region of a classifier as a metric to detect drift in [26].
A three-layer concept drift detection approach detects the text
data by dividing into three categories: label space, feature
space, andmapping relationship of labels and features in [27].
In the method [28], the data stream is divided into a set of
time windows and a concept change method is applied to
analyze the trend on categorical data stream. A data labeling
algorithm is used to determine the clusters of current windows
from the clusters of previous window. The cluster emerging
and fading scenarios are presented on only two kinds of
clusters.

In the second part of the proposed work, we develop a
cluster survival model which analyzes the clustering patterns
from different concept drifting scenarios on load profile data
stream. We can explain the cluster survival analysis of pat-
terns and define them as follows. In the Fig. 4, each window
data is partitioned into several clusters. A cluster contains a
set of factories which have similar power consumptions. The
continuation of clusters, which have maximum number of
common factories, in consecutive windows is referred as a
clustering pattern. Unique number and similar color of two

FIGURE 5. Cluster survival model of concept drift in load profile data. This
model estimates the clustering patterns from load profile data.

clusters in consecutive windows indicate the continuation of
clusters. We define three types of clustering patterns in the
cluster structure of load profile data:

Sustaining pattern: The sustaining pattern is a complete
one, which starts from a cluster at initial window and reaches
to a cluster at the end window. The sustaining pattern P11

starts from cluster C1w1 and reaches to the cluster C1wW at
last window.

Fading pattern: The fading pattern is an incomplete one,
which starts from a cluster at any window but cannot continue
to final window. The fading pattern P21 starts form cluster
C2w1 and disappears at w3 window.
Emerging pattern:The emerging pattern is also an incom-

plete one, which appears from a cluster at the intermediate
window and continues to next window. The emerging pattern
P43 appears from a new cluster C4w3 and continues to last
window.

IV. CLUSTER SURVIVAL MODEL OF CONCEPT DRIFT
In this section, we propose a cluster survival model of concept
drift. This model estimates the interesting changing behaviors
of the clustering results on load profile data. Each window
load data is investigated to produce the clustering results.
The concept drift scores are computed from clustering results
among windows. The clustering patterns are estimated from
the concept drift scores. The clustering patterns are analyzed
for categorizing into three types, including sustaining, fading,
and emerging. Fig. 5 shows a block diagram of the cluster
survival model of concept drift in load profile data.

A. CLUSTERING WITH A NEW I-niceStream ALGORITHM
I-niceStream is a data stream clustering algorithm, which
estimates the number of clusters and initial cluster centers
for clustering process to generate the clustering results. The
I-niceStream algorithm performs a data abstraction by esti-
mating a set of candidate initial centers from input data. A tree
is built from the distance matrix of candidate initial centers.
We cut the tree with a threshold height, then tree is divided
into several compact branches. The number of branches of
tree is considered as the number of clusters. Objects in each
branch are analyzed to identify an initial cluster center. The
number of clusters and the initial cluster centers are applied
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as input parameters to the k-means for partitioning the data
stream.

The I-niceStream algorithm uses the following steps:

1) SELECT THE BEST-FITTED GMM MODEL
Let Rd be a load profile window data domain of d dimensions
and X ⊂ Rd a set of N objects in Rd . Assume p ∈ Rd

be a randomly generated point with a uniform distribution,
we allocate p as an observation point to X . We compute all
distances between observation point p and N objects of X
and obtain a set of distances Xp = {x1, x2, . . . , xN }. Given
a different observation point, we can compute a different
distance distribution from X .

GMM is used instead of Gaussian mixture models because
computed distance values are non-negative [40]–[42].

Let Xp = (x1, x2, . . . , xN ) be a set of normalized distance
values calculated from X with respect to observation point p.
The GMM of Xp is defined as:

p(x|θ ) =
M∑
j=1

πjg(x|αj, βj), x ≥ 0 (1)

where θ is the vector of parameters of the GMM. M is the
number of the Gamma components and πj, αj and βj are the
mixing proportion, shape and scale parameters of component
j, respectively.

The parameters of the GMM are solved by maximizing
the log-likelihood function. The log-likelihood function is
defined as

L(θ |Xp) =
N∑
i=1

log

 M∑
j=1

πjg(xi|αj, βj)

 (2)

The EM algorithm is used to solve Eq. (2) [43]. Given Xp,
latent discrete random variables Z = {zi} are introduced to
identify the elements of Xp in the components of the GMM.
zi = j indicates that element xi in Xp is assigned to component
j of the GMM. However, the values of Z = {zi} are unknown
in advance [41].

After doing some mathematical manipulations of Eq. (2),
the mixing proportion, shape and scale parameters are esti-
mated as follows:

π̂j =
1
N

N∑
i=1

p(Zi = j|xi, θn) (3)

log(α̂j)− ψ(α̂j) = log


N∑
i=1

xjp(Zi = j|xi, θn)

N∑
i=1

p(Zi = j|xi, θn)



−


N∑
i=1

p(Zi = j|xi, θn) log xi

N∑
i=1

p(Zi = j|xi, θn)

 (4)

where ψ(x) = ∂ log(0(x))
∂x =

0′(x)
0(x) is called the Digamma

function. Since Eq. (4) has no closed solution, we can use a
Newton-type algorithm [44] to calculate α̂j. This algorithm is
fast in getting the results in few iterations to converge.

β̂j =
1
αj

N∑
i=1

xip(Zi = j|xi, θn)

N∑
i=1

p(Zi = j|xi, θn)

(5)

With Eq. (5) and the estimated value of α̂j from Eq. (4),
we can obtain the estimates of β̂j.
Multiple fitted models are obtained with respect to each

observation point. The minimum value of the second order
Akaike information criterion (AICc) [45], [46] is used to
select the best-fitted model. The second order Akaike infor-
mation criterion is calculated as below.

AICc = −2 log (L(θ∗))+ 2q
(

N
N − q− 1

)
(6)

whereL(θ∗) is the maximum log-likelihood, N is the number
of objects, and q is the number of parameters. With AICc,
we select the best-fitted GMM model for each observation
point.

2) ESTIMATE THE CANDIDATE INITIAL CENTERS
The best-fitted GMM model for each observation point
belongswith certain number of components. Each component
extracts a group of objects as clustering information. When
the number of objects in different clusters are imbalance,
many objects are extracted from a cluster with majority
objects whereas few objects are extracted from a cluster with
minority objects. To consider all representative clustering
information, we choose an object, which has the smallest
distance to other objects in a component, as the first candidate
initial center, and select another object, which has the largest
distance to other objects in the component, as second candi-
date initial center. In this way, we estimate candidate initial
centers from all components of the best-fitted models related
to all observation points. These candidate initial centers are
representative objects, therefore, they can carry the clustering
information from the original data.

3) DETERMINE THE NUMBER OF CLUSTERS AND INITIAL
CLUSTER CENTERS
We compute Euclidean distance matrix [47] among candi-
date initial centers and build a tree structure from distances.
We estimate a threshold height value th for dividing the tree
into different branches. The number of branches is considered
as the number of clusters. The candidate initial centers in each
branch are close to each other. The candidate initial center
which has the smallest distance from others in a branch is
selected as an initial cluster center. A set of initial cluster
centers is selected from all of the estimated branches of the
tree structure.
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4) CLUSTERING
The number of clusters and the initial cluster centers are used
to cluster the window load data. We use k-means algorithm
for its efficiency and simplicity. The estimation of initial
cluster centers and the clustering process are presented in
Algorithm 1.

Algorithm 1 I-niceStream: A New Data Stream Clus-
tering Algorithm

1 Input: Window load profile data X
2 Output: Clustering result
3 Initialization: P observation points and Mmax as the
maximum number of GMMs

4 Select best-fitted models:
5 for p := 1 to P do
6 Compute distance vector Xp between X and p ;
7 for M := 2 to Mmax do
8 Select best-fitted model GMM(p) using

minimum AICc ;

9 Keep all selected models GMMs(p) with different
number of components c for all p ;

10 Estimate candidate initial centers:
11 for p := 1 to P do
12 for c := 1 to c-max do
13 Select first candidate initial center with the

smallest distance to others in c ;
14 Select second candidate initial center with the

largest distance to others in c ;

15 Keep candidate initial centers for model GMM(p) ;

16 Determine initial cluster centers:
17 Compute distance matrix d(k) among candidate initial

centers k ;
18 Make T tree from d(k) and cut T with threshold th for

generating K branches ;
19 K branches is considered as K number of clusters ;
20 for b := 1 to K do
21 Select dense candidate initial center as initial cluster

centers from branch b ;

22 Clustering:
23 Assign K initial cluster centers to k-means to cluster

window load profile data X ;

B. COMPUTE CONCEPT DRIFT SCORE
The concept drift score represents the distributional differ-
ence between two groups of objects. The estimation of related
clusters is the first step for generating cluster chain in con-
secutive time windows. We identify the related clusters based
on the concept drift scores. Divergence metrics are used for
measuring the difference between two groups of objects.
These objects are belonged in two different clusters of two
consecutive timewindows.We assume that objects of all clus-
ters are drawn from Gamma distribution. The most popular

distribution divergence metric is the Kullback-Leibler (KL)
divergence [48]. The KL divergence is an asymmetric non-
negative metric that is affected by the type of change in data
variance (from large to small or vice versa).

If the distribution P has larger variance value than the dis-
tribution Q, then DKL(P||Q) is much larger than DKL(Q||P).
As a result, general KL divergence fails to detect some
changes with decreasing variance, or it can detect changes
with a large delay. Amodified divergencemeasure is essential
to overcome this problem ofKL divergence. The change score
is crucial step in the change detection process of clustering
results among time windows.

Let two probability densities p and qwhich are drawn from
Cp and Cq clusters, respectively. We compute the change
score between p and q using a divergence metric. For this
purpose, we adopt the KL divergence with fully defined
model parameters of cluster data. The KL divergence of two
probability density functions (PDFs) p(x; θp) and q(x; θq) is
defined as:

DKL(p(x; θp)||q(x; θq)) =
∫
x
p(x; θp) log

p(x; θp)
q(x; θq)

dx (7)

The PDF p(x, θp) can be definedwith pGamma component
as

p(x; θp) = p(x;αp, βp) =
xαp−1e−(x/βp)

β
αp
p 0(αp)

(8)

By inserting Eq. (8) in Eq. (7), we deriveDKL between two
Gamma PDFs:

DKL(p(.;αp, βp)||q(.;αq, βq))

= ln
β
αp
p 0(αq)

β
αq
q 0(αp)

+ [ψ(αp)

+ ln
1
βp

](αp − αq)+ αp(
βp − βq

βp
) (9)

The KL divergence is a nonnegative and non-symmetric
measure. It is 0 when the two distributions are completely
identical, and becomes larger as the two distributions deviate
from each other. The non-symmetric property makes unfair
grade for detecting the degree of change of two distribu-
tions (clusters). To overcome this problem of KL divergence,
Liu et al. [49] used modified symmetric KL divergence for
evaluating the correlation between two matching scores in
optimal feature selection. In this paper, we use the averaged
symmetric KL divergence which is computed as follows:

D = [DKL(p||q)+DKL(q||p)]/2 (10)

Using Eq. (10), we compute concept drift scores D from
clustering results among consecutive windows. Based on
this concept drift score, we identify the related clusters in
consecutive window. Suppose, windows w and w+ 1 have
clusters {C1w ,C2w ,C3w} and clusters {C1w+1 ,C2w+1 ,C3w+1},
respectively. We want to identify the related cluster at win-
dow w+ 1 from cluster C1w at window w. We compare the
concept drift scores between cluster C1w at window w and
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clusters {C1w+1 ,C2w+1 ,C3w+1} at window w+ 1. Let the con-
cept drift score DC1w ,C3w+1

between clusters C1w and C3w+1

is smaller than other combinations, and both concept drift
scores DC2w ,C3w+1

and DC3w ,C3w+1
are larger than concept

drift scoreDC1w ,C3w+1
. Thenwe obtain that the pair of clusters

C1w and C3w+1 is related between windows w and w+ 1.
We estimate the chain from pairs of related clusters as clus-
tering pattern over time windows.

C. CLUSTER SURVIVAL MODEL
Survival model is related with the studying time between
entry to a study and a subsequent event. We perform survival
analysis on clusters at different windows and clustering pat-
terns among windows. We categorize the clustering patterns
based on similar changing behaviors and estimate the statis-
tical proportion of each kind of patterns.

1) CATEGORIZE THE CLUSTERING PATTERNS
From the previous section, we have computed the concept
drift scores among windows load profile data. The concept
drift scores are used to categorize three kinds of clustering
patterns, including sustaining, fading and emerging.

Let two consecutive time windowsw andw+ 1 contain the
number of clusters kw and kw+1, respectively. We compare
the concept drift score D between one cluster of w and all
clusters Ckw+1 of w+ 1 for assigning the status of clusters.
We detect three kinds of clustering patterns based on the
concept drift score D of clusters among windows.

a: SUSTAINING PATTERN
In this case the concept drift scoreDsw,sw+1 between a specific
cluster Csw at window w and cluster Csw+1 at window w+ 1
is smaller than concept drift scores from other combinations,
and the concept drift scoreDsw,sw+1 between a specific cluster
Csw+1 at window w+ 1 and cluster Csw at window w is
smaller than concept drift scores from other combinations.
For observing the value of concept drift scores, one cluster is
fixed from the current window and another cluster is chosen
sequentially from all of the clusters at the next window and
vice versa. We represent it as:

If ∃(minD(Csw ,Cjw+1 )3minD(Ciw ,Csw+1 )) then cluster
Csw is sustaining to next window, where 1 ≤ i ≤ kw,
1 ≤ j ≤ kw+1, sw ⊂ kw and sw+1 ⊂ kw+1. The collection
of sustaining clusters among windows make a sustaining
pattern.

b: FADING PATTERN
The concept drift score Df w,gw+1 between a specific cluster
Cf w and cluster Cgw+1 is smaller than concept drift scores
from other combinations but the concept drift score Df w,gw+1

between a specific clusterCgw+1 and clusterCf w is not smaller
than concept drift scores from other combinations. We repre-
sent it as: If ∃(minD(Cf w ,Cjw+1 )3¬minD(Ciw ,Cgw+1 )) then
cluster Cf w is faded at window w, where 1 ≤ i ≤ kw,
1 ≤ j ≤ kw+1, f w ⊂ kw and gw+1 ⊂ kw+1. The cluster
chain of cluster Cf w until current window w is considered as

fading pattern and the cluster Cf w will be disappeared at the
next window.

c: EMERGING PATTERN
There is no smallest concept drift score between any clusters
at window w and a specific cluster Ce at window w+ 1.
We represent it as: If ¬min(Diw ,Dew+1 ) then cluster Cew+1
is emerged at window w+ 1, where 1 ≤ i ≤ kw, and
ew+1 ⊂ kw+1. The cluster chain is started from cluster Cew+1 ,
which is represented as emerging pattern.

2) SURVIVAL ANALYSIS OF CLUSTERING PATTERNS
AMONG WINDOWS
To analyze the survival of the clusters at window and the
clustering pattern among windows, we need to consider sev-
eral timing factors such as starting time, lifetime, end time
of pattern, and time-event based function. A pattern is a col-
lection of related clusters among time periods. We compute
the survival factor from each pair of related clusters. Survival
factor is a ratio of the number of common objects and average
objects between two clusters. Survival factor is calculated as
follows.

S.F =
Ciw ∩ Cjw+1

(Ciw ∪ Cjw+1 )/2
(11)

whereCiw is the cluster at windoww andCjw+1 is the cluster
at window w+ 1.
Using Eq. (11), we compute the survival factors of all

pairs of related clusters from clustering patterns. Then we
estimate the survival level of all clustering patterns among
time windows. Survival and hazard functions are used for
estimating the survival probability of clusters among different
windows. The survival and hazard functions are described
below.

a: SURVIVAL FUNCTION
The survival function is the probability of survival as a func-
tion of time. It gives the probability that the survival time of
an individual exceeds a certain value.

Let T ≥ 0 have a pdf f (t) and cdf F(t). The survival
function takes on the form, S(t) = P{T > t}. The survival
function for a continuous distribution, S(t), is the complement
of the cumulative distribution function:

S(t) = P{T ≥ t} = 1− F(t) =

∞∫
t

f (x)dx (12)

S(t) is positive and rages from 0 to 1. It is defined as
S(0) = 1 and as t approaches∞, S(t) approaches 0. Survival
curve describes the relationship between the probability of
survival and time.

b: HAZARD FUNCTION
The hazard function gives the instantaneous failure rate of an
individual conditioned on the fact that the individual survived
until a given time. A characterization of the distribution of
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T is given by the hazard function, this rate of occurrence of
the event, defined as:

h(t) = lim
dt→0

P{t ≤ T < t + dt|T ≥ t}
dt

(13)

where a cluster has survived for a time t and we desire the
probability that it will not survive for an additional time dt .
The hazard function is also defined as follows:

h(t) =
f (t)
S(t)
=

f (t)
1− F(t)

(14)

The hazard function estimates the survival probability of
clusters among time windows.

The cluster survival model of concept drift in load profile
data is presented in Algorithm 2.

V. EXPERIMENTS
In this section, we present the experimental results of the
cluster survival model of concept drift in load profile data.
Experimental results demonstrate that the proposed model
retrieves different kinds of clustering patterns and their
dynamic behaviors among windows.

A. EXPERIMENT SETUP
1) DATASETS
In the experiments, we used two kinds of datasets: synthetic
stream datasets and load profile dataset.

a: SYNTHETIC STREAM DATASETS
We generated eight synthetic stream datasets to evaluate the
clustering performance of the I-niceStream algorithm and
existing state-of-the-art data stream clustering algorithms.
The synthetic stream dataset was generated with given num-
ber of objects, number of classes, dimensions and percentage
of noise objects. Each class was formed by multivariate nor-
mal distribution with randomly selected mean and covariance
matrix. A new object was added to a class which was chosen
with the probability weight. Then, the object was drawn
from the multivariate normal distribution with the mean and
covariance matrix of the class. Noise objects were generated
in a bounding box from uniform distribution. The details of
these synthetic stream datasets are summarized in Table 1.

b: LOAD PROFILE DATASET
We collected the load profile data of different manufac-
turing factories at Guangdong province from January to
August 2012. The load profile data contains the power con-
sumption of 21330 manufacturing factories. The power con-
sumption was measured every 15 minute with a smart meter.
There are 96 measurements in the load profile data in a day.
The volume of load profile data from 21330 manufacturing
factories is about 80 GB.

2) PREPROCESSING OF LOAD PROFILE DATA
A large volume of continuous power consumption data is
generated with smart meters. We aggregated data from all

Algorithm 2 CSCD: Cluster Survival Model of Con-
cept Drift in Load Profile Data

1 Input: W load profile data windows, {X }Ww=1
2 Output: Sustaining, fading and emerging patterns and
survival level and probability

3 Initialization: W is the number of windows, D concept
drift score, kw is number of clusters at w.

4 Generate clustering results:
5 Call Algorithm 1 to generate the clustering results on
{X }Ww=1 ;

6 Compute concept drift score:
7 for w := 1 to (W − 1) do
8 for i := 1 to kw do
9 temp1 = X [[w]][[i]] ;

10 Compute probability density pd1 on temp1 with
Eq. (8) ;

11 for j := 1 to kw+1 do
12 temp2 = X [[w+1]][[j]] ;
13 Compute probability density pd2 on

temp2 with Eq. (8) ;
14 Compute KL[i, j] between pd1 and pd2

using Eq. (10) ;

15 D[[w]] = KL ;

16 Estimate related clusters:
17 If DCaw ,Cbw+1

is smaller than other combinations
between w and w+ 1, where aw ⊂ kw and
bw+1 ⊂ kw+1. Caw and Cbw+1 are related clusters
between windows w and w+ 1

18 Categorize the clustering patterns:
19 for w := 1 to (W − 1) do
20 D[[w]] = D[[w]][1 : kw, 1 : kw+1] ;
21 if(∃(minD[[w]][sw, j = 1 : kw+1])3minD[[w]][i =

1 : kw, sw+1])) ;
22 Csw is a sustaining cluster and estimate sustaining

pattern with related clusters of Csw ;
23 else if(∃(minD[[w]][f w, j = 1 :

kw+1])3¬minD[[w]][i : 1kw, gw+1])) ;
24 Cf w is a fading cluster and estimate fading pattern

with related clusters of cluster of Cf w ;
25 else(¬min(D[[w]][i = 1 : kw, ew+1])) ;
26 Cew+1 is an emerging cluster and estimate emerging

pattern with related clusters of cluster Cew+1 ;

27 Survival analysis of clustering patterns:
28 Compute S.F of all pairs of related clusters from

Eq. (11) and estimate survival level of patterns ;
29 Estimate the survival probability with (14) ;

individual smart meters into a raw load profile data. The
raw load profile data contains missing values, noise and
anomalies due to data transmission error and incorrect read-
ings of smart meters. Anomaly can be identified with the
visualization of raw load profile data. We removed missing
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TABLE 1. Characteristics of the synthetic stream datasets.

TABLE 2. Comparison of clustering results with I-niceStream and other data stream clustering algorithms on synthetic stream datasets.

values, noise and anomalies from raw load profile data and
obtained load profile data. In the experiments, load profile
data from January to August were used as consecutive eight
windows. We chose power consumption for fist seven days
from each month as a window load profile data. One window
load profile data contains 672 measurements.

3) EXPERIMENT SETTINGS
The objective of load profile data partition is the observation
of evolving behaviors among consecutive months.

In I-niceStream algorithm, the number of observation
points, P, is set as 6. The threshold th is computed as follows.
We compute the distance matrix among candidate initial cen-
ters and use the distance matrix to build a tree. The threshold
th is estimated from height of tree. The height, which makes
the tree into two branches, is assigned as the top height of
the tree. We choose a set of height values with repeatedly
decreasing the top height for assigning a set of numbers of
branches from tree. The number of branches for each height
is assigned as the number of clusters. Using the number
of clusters for each height, we cluster the candidate initial
centers and estimate the total within-sum-of-squares from
clustering result. One height value is chosen as threshold
th so that the next height value does not improve the total
within-sum-of-squares. The number of branches, which is
obtained with the threshold height value th, is considered as
the number of clusters. The most densest candidate initial
center in each branch is selected as the initial cluster center.
The estimated initial cluster centers are used to cluster the
window load profile data. The clustering results are used for
further analysis.

To evaluate the clustering accuracy, we compared the clus-
tering results of the I-niceStream algorithm with the clus-
tering results of three state-of-the-art data stream clustering
algorithms, including CluStream [11], DenStream [12], and
ClusTree [31], on synthetic stream datasets. The clustering
results of these algorithms were measured with purity [50]
and rand index [51].

B. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we present the experimental results of the
proposed method on synthetic stream datasets and real-world
load profile dataset. First, we present the clustering accuracy
of I-niceStream and other data stream clustering algorithms.
Then, we present the experimental results on load profile
data into two phases. The first phase is the identification of
clustering patterns among windows. The demonstration of
changing behaviors in power consumption patterns is another
phase.

1) PERFORMANCE IN TERMS OF IMPROVEMENT OF
CLUSTERING WITH THE I-niceStream ALGORITHM
Table 2 presents the comparison of the proposed I-niceStream
algorithm with three state-of-the-art data stream clustering
algorithms in terms of clustering accuracy. Purity and rand
index are used to measure the clustering accuracy. The results
show that the I-niceStream algorithm generated clustering
accuracy in purity is better than other algorithms generated
the clustering accuracy in purity.We see that the I-niceStream
algorithm significantly outperformed other existing algo-
rithms in terms of rand index in all cases. From this results,
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TABLE 3. Clustering results on eight window load profile datasets. The value of each window refers the number of factories in the corresponding cluster.

FIGURE 6. Relationship between the concept drift scores and two density curves which generated from two concepts with the different
number of common objects from January load profile data. (a) Concept drift score is zero when all objects between two concepts are
common. (b) Concept drift score increases when the number of common objects between two concepts decreases. (c) Concept drift
score is maximum when two concepts from different sets of objects.

it is observed that the I-niceStream algorithm found clusters
aremore compact than existing algorithms generated clusters.

2) IDENTIFICATION OF CLUSTERING PATTERNS
AMONG WINDOWS
Load profile data streams are divided into eight windows
where each window data is segmented into several clusters.
A collection of related clusters is represented as a clustering
pattern. Patterns are identified and categorized into sustain-
ing, fading and emerging types.

Table 3 shows the clustering results on eight load pro-
file data windows from January to August. A load profile

data window is segmented into certain number of clusters
where each cluster contains a set of factories. The value
4902 in January window refers that the number of factories
in the first cluster on load profile data in January is 4902.
It is observed that the clustering results of different monthly
load profile data windows are different. From this clustering
results, we compute the concept drift score between consec-
utive windows.

Fig. 6 shows the relationship between the concept drift
scores and different number of common objects from two
concepts in January load profile data. We compute the con-
cept drift scores (CDS) from three combinations of common
objects between two concepts. Fig. 6(a) shows the unique
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TABLE 4. Identification of the related clusters based on the smallest concept drift score among windows.

TABLE 5. Different types of clustering patterns among monthly time windows.

and overlapping density of two distributions where all objects
(200) are common between two concepts and the concept drift
score is 0.00. Fig. 6(b) shows an amount of density deviation
between two distributions where 100 objects are common
between two concepts and the concept drift score is 0.050.
The Fig. 6(c) shows a large amount of density deviation
between two distributions where all objects are drawn from
completely two different concepts and the concept drift score
is 0.263. Therefore, we are able to estimate the similarity of
objects between two clusters by observing the concept drift
score of them.

Different number of common objects are contained
between a specific cluster at one window and some clusters
of next window. Therefore, there is a one-to-many relation
based on the concept drift scores of corresponding clus-
ters in consecutive windows. We use smaller concept drift
score from clusters combination in consecutive windows to
identify the related clusters. Table 4 shows the identifica-
tion of related clusters among windows. The concept drift
score between cluster C91 in January and cluster C32 in

February is smaller than other combinations. So, the clus-
ter C91 in January and cluster C32 in February are related.
Then, the cluster C32 in February is related to cluster C43 in
March. Similarly, we can identify the related clusters until
the last window. A continuation of related clusters makes a
cluster chain which is assigned as a clustering pattern. As a
result, we obtain a complete cluster chain as clustering pat-
tern, from cluster C91 in January to clusters C128 in August,
P91 = (C91 ,C32 ), (C32 ,C43 ), . . . , (C47 ,C128 ).
Table 5 presents different clustering patterns among

windows. Each pattern is constructed with the related
clusters among windows. The first part of the table
presents the sustaining patterns where all patterns are
started from January and ended to August. The sec-
ond part presents the fading patterns where patterns are
disappeared in any intermediate window. The third part
presents the emerging patterns where patterns are appeared
in any intermediate window. These patterns are used to
demonstrate the changing behavior of load profile over
time.
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FIGURE 7. Clustering patterns and their survival levels among windows. (a) Sustaining patterns of clusters from January to August.
(b) Fading patterns which are ended before the ultimate window. (c) Emerging patterns which are appeared at any intermediate window.

FIGURE 8. Survival probability of clusters among windows. (a) Survival probability of clusters from January to August. (b) Survival
probability of clusters from February to August. (c) Survival probability of clusters from March to August.

3) CHANGING BEHAVIORS OF POWER
CONSUMPTION PATTERNS
We present the dynamic behaviors of clusters and clustering
patterns and their statistical distribution over time windows.

Fig. 7 shows the survival levels of different clustering
patterns among windows. The sustaining patterns present
the consistent proportion of survival levels in the whole
time period. An interesting trend of patterns in Fig. 7(a)
is observed that most of the patterns are going to increase
their survival levels from January to March and decrease
them from March to April. The load profile data was col-
lected from Gaungdong province in China in 2012. The
22th January was the Chinese new year and from the 23th
January to the 06th February were the vacation for spring
festival in 2012. A large number of factories decreased their
production rate in the vacation and these factories are merged
into existing clusters in this time. In March, several new
patterns are emerged and the existing factories are distributed
into different kinds of new clusters according to their pro-
duction. So, survival level going down from March to April.
The survival level rises from April to May then it contin-
ues a steady level. Fig. 7(b) shows the fading clustering

patterns which are short length patterns and some of them
are appeared in a window and disappeared to next win-
dow. The survival levels of these patterns are comparatively
small. We can assume that the load profiles belong to fading
patterns consume low level of energy. Fig. 7(c) shows the
emerging patterns which are appeared in any intermediate
window and reached to the last window. Most of the pat-
terns in this category are maintaining the raising survival
levels.

Fig. 8 shows the survival probability of clusters from
February toMarchwindows. The survival curve demonstrates
the trend of cluster dropping over time. Fig. 8(a) shows
the survival probability of clusters which are generated in
January. We see that the survival probability is approximately
75% (drop out 25%) in February and continues the same
value in March, 60% in April andMay, and 50%with slightly
goes down in August. The survival probability of clusters
which are generated in February in Fig. 8(b) maintains the
similar rate of Fig. 8(a). The survival probability of clusters
which are generated in March is decreasing sharply until
May and maintains the survival proportion 50% for next win-
dows in Fig. 8(c). We can observe that the cluster dropping
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TABLE 6. Representative factories for different lengths of patterns among windows.

FIGURE 9. A comparison for measuring the percentage among three
clustering patterns (sustaining, fading and emerging ) in consecutive
windows from January to August.

rate from January to February, March to April, and April to
May are higher than any other consecutive months.

Table 6 describes the representative factories of different
patterns over time. These patterns are distinguished with sev-
eral lengths such as 8 months, 6 months, and 3 months among
windows. We explore the representative load profiles of each
kind of patterns. The representative factories of long length,
8 months, patterns are electrical equipments, communication
and electronics equipments, plastic product, fabricated metal
products and textiles whereas the representatives factories of
short length patterns are paper product, rubber products, fab-
ricated metal products, and culture and sports goods. Clusters
appeared only at one window are not treated as a complete
pattern but they have important contribution for measuring
rate of the new concepts.

Fig. 9 shows a comparison of three kinds of clustering
patterns over time windows. In the period from January to
February (JanFeb), the percentage of fading patterns is
smaller than the old sustaining patterns. Several new pat-
terns are emerged and the percentage of sustaining pat-
terns is remained fixed in the period between February and
March. The reason of this changing behavior of patterns is the
long vacation of Chinese new year and spring festival from
January to February. A lot of production factories is closed

during the vacation and a set of new production activities is
started after vacation. In the period betweenMarch and April,
the percentage of sustaining patterns is decreased due to the
faded of the existing patterns and the percentage of emerging
patterns is also decreased. In period April toMay, the percent-
age of sustaining patterns is bit decreased and the percentage
of fading patterns is sharply declined whereas the percentage
of emerging patterns is rapidly developed because of high
temperature in summer and more orders from local and over-
seas. In the period between May and June, the percentage of
new emerging patterns is decreased and old sustaining and
fading patterns are improved. The percentage of sustaining
patterns is reached maximum and the percentage of emerging
patterns is declined between June and July due to the summer
vacation. The last time period maintains approximately same
rate of previous time period.

Fig. 10 shows the percentage of power consumption among
different representative factories from three clustering pat-
terns over time.We explore five representative manufacturing
factories, including electrical equipments, communication
and electronics equipments, plastic product, fabricated metal
products, and textiles, in different proportions from sustain-
ing clustering patterns in Fig. 10(a). Fig. 10(b) shows the
energy consumption ratio of individual factories from fading
clustering patterns. Some of the significant factories for fad-
ing patterns are fabricated metal products, rubber products,
paper products and food manufacturing products. We see that
plastic products, textiles, and culture and sports goods are
representative factories for emerging patterns in Fig. 10(c).

Finally, we present the power consumption behaviors of
the three representative factories from the three clustering
patterns in Fig. 11. We see that the communication and
electronics equipments based factory is the most stable one
from sustaining patterns in Fig. 10(a). Similarly, we observe
that the fabricatedmetal products and plastic products are two
major contributing factories from fading pattern in Fig. 10(b)
and emerging pattern in Fig. 10(c), respectively. FromFig. 11,
we observe the three scenarios of the mentioned representa-
tive factories from February to April: (i) Communication and
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FIGURE 10. Power consumption ratio among representative factories of three clustering patterns from January to August. (a) Sustaining
patterns. (b) Fading patterns. (c) Emerging patterns.

FIGURE 11. A comparison of power consumption behaviors among the three representative factories from the three clustering patterns.

electronics equipments based factory consumes a stable level
of energy as a representative load profile in sustaining pattern.
(ii) Fabricated metal products based factory consumes an
inconsistent energy level as a representative load profile in
fading pattern. (iii) Plastic product based factory consumes
a significantly increasing level of energy as a representa-
tive load profile in emerging pattern. Nowadays, plastic is
increasingly used as a substitute material of steel, aluminum,
wood, and other materials in building and home appliances.
The dynamic power consumption behavior from individual
load profile is also important for understanding the power
consumption demand in different industrial sectors.

Plastic products, fabricated metal products, and textiles
based industries are contributed significantly for changing
patterns due to weather, temperature, labor-intensive and
public vacation. In addition, small factories belonged some
clustering patterns are faded due to insufficient production
orders and other production disturbances.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we propose the cluster survivalmodel of concept
drift for identifying the clustering patterns and retrieving the
dynamic behaviors of clustering patterns from load profile
data. The window load profile data is investigated with the

new data stream clustering algorithm I-niceStream for gen-
erating clustering results. We use a modified KL divergence
to perform concept drift detection by estimating clustering
patterns from clustering results. These clustering patterns are
categorized into three kinds, including sustaining, fading and
emerging. The survival probability and survival level of clus-
ters and clustering patterns, respectively, are analyzed among
time windows. The statistical distribution of representative
load profiles from clustering patterns is also estimated.

Experimental results on load profile data have shown that
the new method is able to estimate different types of clus-
tering patterns and explore some representative manufactur-
ing factories with interesting characteristics. Moreover, the
I-niceStream algorithm outperformed other data stream clus-
tering algorithms in terms of clustering accuracy.

The current method will be extended with semi-supervised
clustering ensemble framework for estimating the dynamic
patterns of load profile data in details.
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