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ABSTRACT Network intrusion detection systems (NIDSs) provide a better solution to network security
than other traditional network defense technologies, such as firewall systems. The success of NIDS is highly
dependent on the performance of the algorithms and improvement methods used to increase the classification
accuracy and decrease the training and testing times of the algorithms. We propose an effective deep learning
approach, self-taught learning (STL)-IDS, based on the STL framework. The proposed approach is used
for feature learning and dimensionality reduction. It reduces training and testing time considerably and
effectively improves the prediction accuracy of support vector machines (SVM) with regard to attacks. The
proposedmodel is built using the sparse autoencoder mechanism, which is an effective learning algorithm for
reconstructing a new feature representation in an unsupervised manner. After the pre-training stage, the new
features are fed into the SVM algorithm to improve its detection capability for intrusion and classification
accuracy. Moreover, the efficiency of the approach in binary and multiclass classification is studied and
compared with that of shallow classification methods, such as J48, naive Bayesian, random forest, and SVM.
Results show that our approach has accelerated SVM training and testing times and performed better than
most of the previous approaches in terms of performance metrics in binary and multiclass classification. The
proposed STL-IDS approach improves network intrusion detection and provides a new research method for
intrusion detection.

INDEX TERMS Network security, network intrusion detection system, deep learning, sparse autoencoder,
SVM, self-taught learning, NSL-KDD.

I. INTRODUCTION
Approximately 50 billion devices are expected to be con-
nected to the Internet by 2020 due to the wide range of
communication and network technologies that have changed
our daily lives. These technologies have been used world-
wide in nearly all organizational operations, such as online
shopping, banking, industrial applications, and email sys-
tems. Although the benefits provided by these technologies
have improved our lives and changed the world, informa-
tion security remains a crucial issue. Organizations need to
provide secure communication channels to Internet users,
including the organizations’ customers and employees, and
detect unauthorized activities. Currently, network intrusion
detection systems (NIDS) offer a better solution to the secu-
rity problem compared with other traditional network defense
technologies, such as firewall systems. NIDS helps network

administrators detect attacks, vulnerabilities, and breaches
inside an organization’s network. The two forms of NIDS are
signature-basedNIDS (SNIDS) and anomaly detection-based
NIDS (ADNIDS). In SNIDS, the system detects attacks on
the basis of rules that are pre-installed for attacks in NIDS.
Network traffic is compared with an updated database of
attack signatures to detect intrusion in the network traffic
dataset.

In ADNIDS, the system classifies unknown or unusual
behavior in network traffic by studying the structures of nor-
mal behavior in network traffic. Network traffic that deviates
from a normal traffic pattern is classified as an intrusion.
The advantage of ADNIDS is that unknown/new attacks can
be predicted. Therefore, we focus on this type of intrusion
detection systems. Anomaly detection methods can be used
in various areas, such as network security, fraud detection in
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credit cards, military applications, andmanymedical applica-
tions [1]. The following can be performed to develop an effec-
tive anomaly-based intrusion detection system. First, proper
feature selection based on feature extraction and dimensional-
ity reduction must be implemented when extracting a subset
of a correlated features from the network traffic dataset to
enhance classification results [2]. Second, the best techniques
must be used to help enhance the classification results and
increase the classification speed.

Various supervised and unsupervised machine learning
techniques can be used or integrated with other algorithms
in ADNIDS to enhance intrusion detection performance and
increase the classification rate of machine learning algo-
rithms, such as decision tree, random forest, self-organization
maps (SOM), and support vector machine (SVM), which
have been utilized to detect and classify intrusions. Many
researchers that investigated NIDS focused on using unsu-
pervised learning techniques followed by shallow machine
learning, such as SVM, random forest, and naïve Bayesian
[3], [4], because using unsupervised learning techniques
before shallow machine learning offers improvements in
detection rate. Unsupervised learning algorithms and dimen-
sion reduction methods are frequently used in feature extrac-
tion and feature representation to improve data quality [5] and
achieve an improvement in the classification results of shal-
low and traditional supervised machine learning algorithms.
Recently, remarkable achievements in unsupervised deep
learning-based methods were successfully applied in vision
computing applications. In addition, deep learning techniques
[6]–[10] can be adopted as unsupervised feature learning
methods that help supervised machine learning improve its
performance and identification of network traffic anomalies
by reducing the testing and training times.

Deep learning approaches have a good potential to
achieve effective data representation for building improved
approaches. Therefore, on the basis of a self-taught learning
framework and inspired by the combination of the sparse
autoencoder (SAE) with SVM, we propose using self-taught
learning (STL) for good data representation and SVM for the
classification task. STL is a deep learning approach that is
based on the SAE algorithm. It helps rebuild input represen-
tation and converts it to feature representation of data related
to the input data, thereby improving the performance of the
classification task considerably. The main contributions of
this work are as follows:
(1) We develop a novel deep learning approach STL-

IDS (a self-taught learning based intrusion detection
system) based on the STL framework by combin-
ing SAE and SVM for network intrusion detection.
We study the potential of our approach to achieve effec-
tive representation and dimensionality reduction for the
improvement of the classification results of shallow and
traditional supervised machine learning algorithms,
such as SVM, in binary and multiclass classification.

(2) We combine deep and shallow learning techniques
in our novel approach and exploit their respective

strengths. Better or at least competitive results
are achieved compared with the results of similar
approaches. Moreover, our approach considerably
reduces training and testing times of SVM.

(3) We use theNSL-KDDdataset to compare the efficiency
of our approach with single SVM and that of differ-
ent classification algorithms, such as naïve Bayesian,
random forest, multi-layer perceptron, and many other
classification algorithms in related work on binary and
multiclass classification.

Experimental results show that our approach is suitable
for intrusion detection. Its performance is superior to that
of traditional classification algorithms using the NSL-KDD
dataset and most previous approaches in terms of binary and
multiclass classification.

The rest of this paper is structured as follows. We briefly
describe related studies, particularly those that examined
unsupervised machine learning techniques and SVM-based
deep learning approaches, in Section II. In Section III, we pro-
vide an overview of our proposed methodology for NIDS
implementation, SVM, the NSL-KDD dataset, data process-
ing, and evaluation metrics. In Section IV, the performance of
our approach is evaluated based on the experimental results
and compared with that of related approaches for NIDS. Our
conclusions and directions for future research are presented
in Section V.

II. RELATED WORK
Network intrusion detection has become the most important
part of the infrastructure of defense networking systems
in information security. Various machine learning algo-
rithms or approaches are applied in NIDS to detect and
distinguish between normal traffic and anomalies or attacks
in network traffic; these approaches include decision
tree [11], k-nearest neighbor (K-NN) [12], naïve Bayes net-
work [13], [14], SOM [15], [16], SVM, and artificial neural
network (ANN) [17]. SVM demonstrates better performance
than other traditional machine learning classification tech-
niques [18].

A work proposed by Mukkamala et al. [19] compared the
performance of SVM and ANN on the KDD CUP 99 dataset.
The results showed that the detection results of SVM are
better than those of ANN. In [20], SVM, naïve Bayes, logistic
regression, decision tree (DT), and classification and regres-
sion tree (CART) approaches were compared in terms of
intrusion detection classification by using the KDD CUP
99 dataset. The results showed that SVMhas distinct features.
Ashfaq et al. [21] developed a new method by using the
fuzziness approach based on semi-supervised learning for
intrusion detection. This method uses a neural network with
random weights and plays an important role in the detec-
tion rate of NIDS because it decreases the computational
cost. The model was evaluated on the NSL-KDD dataset
but the performance of the model was studied on only the
binary classification task. In [22], a deep learning model
based on a recurrent neural network with a soft-max classifier

52844 VOLUME 6, 2018



M. Al-Qatf et al.: Deep Learning Approach Combining SAE With SVM

was presented. The model was evaluated on the NSL-KDD
dataset, and the performance of the model in binary and
multiclass classification was studied. The model showed a
deep learning capability to model high-dimensional features,
and an improved accuracy rate of intrusion detection was
achieved. However, the training time was large. SVM is one
of themost important traditional machine learning algorithms
that depend on statistical learning theory, and it uses struc-
tural risk minimization to achieve a strong generalization
capability. In addition, SVM presents a constrained quadratic
programming problem that requires a large memory and con-
siderable training time. In addition, the training complexity
of SVM is highly dependent on the size of the dataset. There-
fore, the performance of SVM based on IDS needs to be
enhanced, and the training and testing times must be reduced.
To address these limitations, many studies have improved
SVM-based IDS by combining SVM with other methods.
In [23], efficient machine learning based on SVM with fea-
ture augmentation was presented to increase the quality of the
SVM classifier. The method improved the intrusion detection
rate of SVM and reduced the required training time. The
weakness of this approach is that its detection accuracy is
insufficient, and the time factor are not considered.

Many researchers have combined supervised and unsuper-
vised learning algorithms to create a model that can increase
the detection rate of supervised machine learning classifiers,
such as an SVM and random forest. In [24], many unsuper-
vised learning algorithms were combined with SVM and a
neural network (NN) to improve the performance of the intru-
sion detection system. The authors designed, implemented,
and evaluated many hybrid models that use principal com-
ponent analysis (PCA) or Gradual Feature Reduction (GFR)
for feature selection and SVM or NN for classification. The
results showed that hybrid models can effectively detect
known and unknown attacks, and PCA and GFR feature
selection techniques are computationally expensive in terms
of training and testing times. Unsupervised learning based
on deep learning has been used recently in feature extrac-
tion and dimensionality reduction, leading to an increase
in the detection rate and a decrease in the processing time
of supervised machine learning algorithms, such as SVM
and soft-max. Alom et al. [8] proposed a deep learning
approach based on stack restricted Boltzmann machine for
feature extraction and dimensionality reduction and based on
SVM for the classification of network intrusion detection.
The approach was implemented on merely 40% of the NSL-
KDD training dataset. The approach performed better than
single SVM or single deep belief networks (DBN) and many
other approaches. In [10], a feature learning model based on
AE was presented to achieve a good representation of differ-
ent feature sets. This feature learning model was applied to
malware classification and anomaly-based network intrusion
detection by using the NSL-KDD dataset. The topology of
the used AE was different from the common topology, and
the extracted feature by the AE was applied to many tra-
ditional machine learning algorithms, such as SVM, K-NN,

and Gaussian naïve Bayes. The experimental results showed
that the model is an improvement of traditional machine
learning. However, the model is computationally expensive
because it comprises many hidden layers and entails two
training stages. Diro and Chilamkurti [25] presented IOT/fog
network attack detection system. Their system was based on
distributed deep learning. The performance of their model
was compared against shallow and traditional machine learn-
ing approaches. They used deep learning model with three
hidden layers for feature learning and soft-max regression
(SMR) for the classification task. However, their model is
computationally expensive compared to our approach. Their
model was evaluated on NSL-KDD dataset in both binary
and multiclass classification. Their method has demonstrated
that the distributed attack detection can better detect attacks
than centralized detection system because of the parameter
sharing that can avoid local minima in training. Our approach
has a significant difference since we aimed at adopting a
new approach to enable the detection of attacks through
centralized detection system. By contrast, their model aimed
at adopting new approach to enable the detection of the
attacks through distributed detection system in social internet
of things.

Wang et al. [26] proposed novel intrusion detection
system called hierarchical spatial-temporal feature-based
intrusion detection system (HAST-IDS); their system used
the deep convolutional neural network for learning the
low-level spatial features of network traffic, LSTM networks
(long short-term memory networks) for learning high-level
temporal features. They used the standard DRAPA and
ISCX2012 dataset to evaluate the performance of their pro-
posed system. Their model is computationally expensive
compared to our approach because they used two stages for
feature learning. Farahnakian and Heikkonen [27] proposed
deep learning approach for intrusion detection. The model
was built using deep autoencoder and trained in a greedy layer
wise fashion in order to avoid overfitting. The performance of
their approach was evaluated on KDDCup 99 (old version of
NSL-KDD); their approach performance was studied on both
binary and multiclass classification. Although high accuracy
was achieved for intrusion detection task, their approach is
computationally expensive compared to our approach.

Madani and Vlajic [28] have studied the viability of using
the deep autoencoder in anomalies detection in adaptive
intrusion detection system under adversarial contamination.
They used the reconstruction error of the autoencoder as a
measure for anomaly detection and the NSL-KDD dataset
for performance evaluation. Our approach is significantly
different since we used the autoencoder for feature learning
and dimensionality reduction. Moreover, we used the perfor-
mance metrics, training time, and testing time to evaluate the
performance of our model for anomaly detection.

In [2], NIDS based on unsupervised deep learning tech-
niques was developed using SAE for feature learning and
soft-max regression (SMR) for classification. Evaluation
was based on all performance metrics on the NSL-KDD
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dataset using the two evaluation approaches in Section IV:
KDDTrain+ using 10-fold cross-validations for two-category
(normal traffic and attacks) and five-category (normal and
five types of attacks) classification. Furthermore, evaluations
were performed separately for training and testing based on
KDDTrain+ and KDDTest+. The evaluation results showed
that the approach shows better performance in terms of
accuracy rate for two-category classification compared with
SMR and many other approaches. The weakness of this
approach is that the dimensionality reduction mechanism,
which significantly reduces the training and testing times for
intrusion detection, is not considered. In addition, both eval-
uation approaches obtained low accuracy in the five-category
classification. Although many unsupervised learning-based
network intrusion detection methods have been presented in
recent years, several of them still suffer from limitations and
issues, such as the following:
• Shallow learning is inappropriate for intelligent analysis,
and the predicting requirements of high-dimensional
learning have redundant features. Hence, a raw dataset
leads to reduced classifier accuracy. By contrast, deep
learners can achieve an effective representation, thus
improving the classification results of shallow and tradi-
tional supervised machine learning algorithms, such as
SVM and RF.

• Although several approaches that depend on deep learn-
ing techniques are effective, they continue to suffer from
time complexity.

On the basis of this analysis, we propose a combination of
SAE and SVM based on STL. First, we use SAE for effective
representation of our raw dataset (NSL-KDD), followed by
the use of SVM for classification. The accuracy rate of SVM
and training and testing times are optimized simultaneously.

III. PROPOSED METHODOLOGY: SAE–SVM AND
NSL-KDD DATASET OVERVIEW
A. PROBLEM FORMULATION
In our self-taught learning approach (SAE–SVM ),
we are given a labeled training set of m records{(
x(1)l , y(1)

)
,
(
x(2)l , y(2)

)
, . . . ,

(
x(m)l , y(m)

)}
, where input

feature vector x(i)l ∈ Rn (The subscript ‘‘l’’ indi-
cates that it is a labeled record), y(i) ∈ {+1,−1} are
the corresponding labels for binary classification, y(i) ∈
{1, 2, . . . .,C} are corresponding labels for multiclass clas-
sification. Additionally, we assume there are m unlabeled
samples x(1)u , x(2)u , . . . ., x(m)u ∈ Rn produced by remov-
ing the labels from the labeled training set. For a better
representation and less dimensionality of the input train-
ing set x(1)l , x(2)l , . . . , x(m)l ∈ Rn, as in Figure 1-STEP1,
we feed the unlabeled sample x(1)u , x(2)u , . . . ., x(m)u ∈ Rn

(KDDTrain+) to the sparse autoencoder algorithm. It can
be used to reconstruct and learn the input training dataset
x(1)l , x(2)l , . . . , x(m)l ∈ Rn. After learning the optimal val-
ues for W and b1 (Trained parameter set in Figure 1) by
applying SAE on unlabeled data xu(KDDTrain+), as in

FIGURE 1. Block diagram of the proposed STL-IDS.

Figure 1-STEP2, we feed x(1)l , x(2)l , . . . , x(m)l (KDDTrain+
and KDDTest+ dataset) as an input to a sparse autoen-
coder which attempts to reconstruct and learn its output
values (x̂l (1), x̂l (2), x̂l (3), . . . ., x̂l (m)) to be equal to its inputs
(x(1)l , x(2)l , . . . ., x(m)l ), getting a new and good representa-

tion
{(
h(1)l , y

(1)
)
,
(
h(2)l , y

(2)
)
, . . . . . . ,

(
h(m)l , y(m)

)}
where

the original input data is replaced with corresponding vec-
tor of activations h as in Figure 2. Thus, our training set
becomes

{(
h(1)l , y

(1)
)
,
(
h(2)l , y

(2)
)
, . . . . . . ,

(
h(m)l , y(m)

)}
,.

Finally, we train SVM using the new training set to obtain
a function that performs predictions of the intrusion on the
y values. For the given testing set xtest , we follow the same
scenario for the training set: feeding it to sparse autoencoder
to get htest . Then, we feed htest to the trained SVM classifier
to get a prediction. Our goal is to improved SVM classi-
fication accuracy and accelerating the training and testing
and to develop a network intrusion detection model that
can accurately and quickly predict the intrusions in both
binary andmulticlass classification onNSL-KDD dataset and
the pre-learned sparse autoencoder with SVM. The detailed
steps of the proposed approach will be presented in the
next subsections. Our STL model based on SAE and SVM
involves many steps (Figure 1). The basic methodology is as
follows.

B. STL: SAE–SVM
STL [29] is a new deep learning framework that involves
two stages. In the first stage, new effective representation
is obtained from our NSL-KDD dataset without label, xu,
and is called unsupervised feature learning (UFL). The new
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representation is related to unlabeled data. In the second
stage, the new representation is combined with labeled data,
xl , then any supervised algorithm, such as SVM, can be used
for the classification task.

Different methods can used for UFL [30]; for our model,
we adopt SAE which is an unsupervised learning algorithm
that consists only of a single hidden layer. It can be used
for feature learning and dimensionality reduction instead of
PCA to achieve a significantly nonlinear generalization. Its
input and output layers have the same number of units. The
input and output layers contain N units, and the hidden layer
contains K units. As shown in Figure 2(a), the output values
x̂i in the output layer is similar to the input values xi in the
input layer.

FIGURE 2. Self-taught learning stages.

In the recent years, there is increasing attention to the
study of single-layer SAE as a feature learning and dimen-
sionality reduction method. The SAE can learn effective
low-dimensional features from the raw data andmake it easier
to extract efficient and appropriate low-dimensional features
automatically for the classification process.

Feature extraction and dimensionality reduction process
in SAE involves two steps: encoding and decoding. The
encoding step maps the input data xi into the hidden units’
representations, as shown in (1a):

h = f (X ) = g(WX + b1) (1a)

The encoding stepmaps the hidden units’ representations into
the reconstructed data, as shown in (1b):

Z = g (Vh+ b2) (1b)

In the above equations, X = (x1, x2, x3, x4, . . . ., xi) is the
high-dimensional input data vector,Z = (x̂1, x̂2, x̂3,......, x̂m)
is the reconstruction vector of the input data and h =
(h1, h1, h1, . . . ., hk ) is the low-dimensional vector output
from the hidden layer.

SAE applies backpropagation algorithm to obtain the opti-
mal values for its weightmatricesW∈ RK×N andV∈ RN×K

and bias vectors b1 ∈ RK×1 and b2 ∈ RN×1, which attempt
to learn and reconstruct its output values x̂i to be equal to its
inputs xi. In other words, an approximation to the identity
function is learned to make the output values similar to the
input values; that is, it uses y(i) = x(i) [3], [31]. The activation
function is chosen to be the sigmoid function, g (z) = 1

1+e−z ,
and its output range is [0,1]. It is used for the activation
(hW , b) of the nodes in the hidden and output layers are
shown in (1a).

T =
1
2m

m∑
i=1

‖ xi − x̂i ‖2

+
λ

2

∑
k,n

W 2
+

∑
n,k

V 2
+

∑
k

b21 +
∑
n

Wb22


+β

k∑
j=1

KL(ρ ‖ p̂j) (2)

SAE also applies backpropagation to minimize the cost func-
tion, which is represented by Eq.2 [2]. The first term is
the average sum-of-square errors for all m input data. The
second term is a weight decay parameter (λ) used for tuning
the weights between the hidden and output units to improve
performance and prediction while helping check and avoid
overfitting. The last term in the equation is the sparsity
penalty term that places a constraint on the hidden layer to
maintain low average activation values; it is expressed as
Kullback–Leibler (KL) divergence shown in Eq. 3 [31].

KL
(
ρ ‖ p̂j

)
= ρ log

ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− p̂j

, (3)

where ρ is a sparsity constraint parameter that ranges from
0 to 1 and β controls the sparsity penalty term. KL

(
ρ ‖ p̂j

)
attains a minimum value when ρ = p̂j, where denotes p̂j
the average activation value of hidden unit j over all training
inputs x. After learning the optimal values for W and b1 by
applying SAE on unlabeled data xu, we evaluate the feature
representation a = h for labeled data (xl, y). We use this new
feature representation, h, with the label vector, y, in SVM for
the classification task in the second stage of STL, as shown
in Figure 2(b). Figure 2 shows an architectural diagram of
the proposed STL. We apply STL based on SAE for good
data representation because of its simple and straightforward
implementation and its capability to learn the original expres-
sions and structures of data. The wide application of STL
extends particularly to image identification [32], [33], SVM
for classification tasks, and distinguishing different types
of intrusions because combining robust classifiers, such as
SVM, with SAE leads to enhanced performance in intrusion
detection. Furthermore, the features extracted from the SAE
algorithm are passed to the SVM classifier for intrusion
detection. The performance accuracy rate of our method is
better than that of SVM alone, and the training and testing
times of SVM are reduced.
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C. SVM
The SVM classifier relies on statistical learning theory (SLT)
and produces a hyperplane to isolate a class of positive
instances from a class of negative instances by using struc-
tural risk minimization rules. SVM aims to split data points
with a hyperplane and determine which class each data point
belongs to. SVM maximizes the margin between support
vectors because separating all classes is necessary [34]. SVM
is a popular learning technique due to its high classifica-
tion accuracy and performance in solving regression and
classification tasks. SVM was initially designed for binary
classification. Later, it was extended to multi-class scenarios.
Themany basic functions of SVM include linear, polynomial,
sigmoid, and RBF kernels. We use the RBF kernel, which is
also known as the Gaussian kernel, in our research. RBF has
two parameters: C and σ . Both can be artificially adjusted,
and different parameter values correspond to the nature of
classifiers. The performance of SVM depends on selecting
suitable kernel function types and proper parameters of the
kernel function for our problem. In our proposed approach,
we use the automatic parameter selection method by applying
k-fold cross-validation (CV) to search for the best parameter
of the RBF kernel. Many strategies, such as one versus the
rest (OvsR) and one versus one (OvsO), can be used to
build a multi-class SVM classifier. We use the OvsR strategy
in our method. Given that SVM consumes much time for
training, numerous approaches are implemented in SVM to
reduce the required processing time for classification and
prediction tasks. The storage requirements and computational
complexity of the SVM with RBF kernel depend on both
input dimensionality (d) and the number of support vectors
(nSV). Generally, the storage requirements and computa-
tional complexity is bound by O(d nSV).

D. NSL-KDD DATASET OVERVIEW
The NSL-KDD dataset was recommended in 2009 by Traval-
laee et al. [35] because of the inherent drawbacks of KDD
CUP99 [35]. Subsequently, many researchers in intrusion
detection used

NSL-KDD to evaluate their approaches, similar to what
was done in [21] and [36]. NSL-KDD was built based
on the KDD CUP 99 dataset, but the redundant instances
were removed and the structure of the dataset was recon-
stituted [35]. The NSL-KDD dataset is normally used to
evaluate the effectiveness of proposed approaches for intru-
sion detection, especially anomaly-based network intrusion
detection. NSL-KDD has a reasonable number of records
in training and testing sets. The total number of records in
the training set (KDDTrain+) is 127,973, and the testing
set (KDDTest+) has 22,544 records. Each traffic record in
the NSL-KDD dataset contains 41 features (6 symbolic and
35 continuous), as shown in Table 1, and 1 class label.
The features can be categorized into three types: basic, con-
tent, and traffic (Table 1). According to feature characteris-
tics, the attacks in the NSL-KDD dataset can be classified

TABLE 1. Attack types and categories.

into four types: user-to-remote attacks (U2R), denial of ser-
vice attacks (DOS), root-to-local attacks (R2L), and probing
attacks (Probe). These types and categories are summarized
in Table 2. Several attacks exist in the testing set (KDDTest+)
but not in the training set (KDDTrain+). The difference
between training and testing sets provides a highly realistic
theoretical basis for intrusion detection.

E. DATA PREPROCESSING
1) 1-TO-N NUMERICAL ENCODING
The SAE–SVM algorithm used in our approach cannot
directly process the NSL-KDD dataset in its original for-
mat. However, we use a 1-n encoding system to convert
non-numeric features into numeric features before applying
STL, as shown in Figure 1. The NSL-KDD dataset has
three non-numeric features and 38 numeric features. Hence,
we apply a 1-n encoding system to the non-numeric features,
such as ‘‘protocol-type’’ ‘‘service,’’ and ‘‘flag,’’ as follows:

(1) We convert the ‘‘protocol-type’’ feature into a numeric
feature. The ‘‘protocol-type’’ feature has three distinct
attributes, namely, tcp, udp, and icmp, and these can
be encoded as (1,0,0), (0,1,0), (0,0,1) in binary vectors,
respectively.

(2) We convert the ‘‘service’’ and ‘‘flag’’ features into
numeric features. The ‘‘service’’ feature has 70 distinct
attributes, and the ‘‘flag’’ feature has 11 distinct attributes.
By using the same method in the first step, each distinct
attribute of ‘‘service’’ is mapped into 70-dimensional binary
attributes, and each distinct attribute of ‘‘flag’’ is mapped into
11-dimensional binary attributes. After all the transforma-
tions, the 41-dimensional features of the NSL-KDD dataset
are mapped into 122-dimensional features.

2) NORMALIZATION
Several of the features of the NSL-KDD dataset have very
large ranges between the maximum and minimum values,
such as the difference between the maximum and minimum
values in ‘‘duration [0, 58329],’’ where the maximum value
is 58,329 and the minimum is 0. A large difference also exists
in other feature values, such as ‘‘src-bytes’’ and ‘‘dst-bytes,’’
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TABLE 2. Feature details of the NSL-KDD dataset.

thereby making the feature values incomparable and unsuit-
able for processing. Hence, these features are normalized by
using max–min normalization for mapping all feature values
to the range [0, 1] according to Eq. (4).

xi =
xi−Min

Max−Min
, (4)

Where xi denotes each data point,Min denotes the minimum
value from all data points, and Max denotes the maximum
value from all data points for each feature.

F. EVALUATION METRICS
We use NSL-KDD (KDDTrain+ and KDDTest+) to verify
the superiority of our approach in improving the SVM clas-
sification results for network intrusion detection. All perfor-
mance metrics are used to measure the performance of our

proposed approach. The attribute values that resulted from
the training and testing processes of the NSL-KDD dataset
are used to calculate these performance metrics. The values
can be defined as follows:
• True positive (TP): anomaly instances correctly classi-
fied as an anomaly.

• False positive (FP): normal instances wrongly classified
as an anomaly.

• True negative (TN): normal instances correctly classi-
fied as normal.

• False negative (FN): anomaly instances wrongly classi-
fied as normal.

Then, we compute the performance metrics from the follow-
ing notations.
• Accuracy (AC): indicates the proportion of correct clas-
sifications of the total records in the testing set, as shown
in (5).

AC =
TP+ TN

TP+ TN + FP+ FN
(5)

• Precision (P): indicates the proportion of correct pre-
dictions of intrusions divided by the total of predicted
intrusions in the testing process, as shown in (6).

p =
TP

TP+ FP
(6)

• Recall (R): indicates the proportion of correct predic-
tions of intrusions divided by the total of actual intrusion
instances in the testing set, as shown in (7).

R =
TP

TP+ FN
(7)

• F-measure (F): is considered the most important metric
of network intrusion detection that represents both pre-
cision (P) and recall (R), as shown in (8).

F =
2 ∗ P ∗ R
P+ R

(8)

IV. PERFORMANCE EVALUATION: IMPACT OF THE
LOW-DIMENSIONAL FEATURES AND DIFFERENT HIDDEN
UNITS AND SPARSITY PARAMETER ON SVM CLASSIFIER
Experiments are performed on a PC with Intel(R) Core(TM)
i5-6400 CPU at 2.71GHZ with 8 GB of RAM and running on
Windows 10. Our approach was implemented in MATLAB,
and the SVM classifier is applied with the LIBSVM pack-
age [37] (MATLAB version 3.22). Our dataset is processed
in python language. The RBF kernel is used as the SVM
classifier, and k-fold cross-validation is applied to search
for the best parameter of the RBF kernel. The performance
evaluation of our approach based on the NSL-KDD dataset is
performed in two ways as follows:
• Training (KDDTrain+) and testing (KDDTest+) data
are used separately for training and testing.

• Ten-fold cross-validation is performed on KDDTrain+
for training and testing.
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Our experiments are conducted to study the performance
efficiency and verify the effectiveness of the low-dimensional
features extracted by our approach for binary (normal,
anomaly) and multiclass (normal, DoS, R2L, U2R, and
Probe) classification based on the NSL-KDD dataset. Fur-
thermore, the training and testing times are calculated to
evaluate the efficiency of our model. In addition, we also
focused on addressing intrusion detection system require-
ments that have faster and lower computational costs by
reducing computational complexity and storage require-
ments of SVM classier. To achieve these requirements,
we focused on the extraction of the good data representa-
tion and low-dimensional features from raw data, feeding
it into SVM classifier for reducing the number of support
vectors(nSVs) of SVM because non-linear kernels require
memory and computation that grow linearly proportional to
the SVs [38]. Generally, the storage requirements and com-
putational complexity of SVM grows linearly proportional to
the number of SVs they have [39].

Thus, because the storage requirements and computational
complexity of SVM with RBF kernel depend on both input
dimensionality (d) and the number of support vectors (nSV),
as discussed in Section III-C, our model has reduced the
storage requirements and computational complexity of SVM
compared to SVMalone because its capability to achieve low-
dimensional representation from raw data and less support
vector number of SVM need to be stored as shown in the
Table 3-Column nSV, Table 3-Column nSV, Table 4-Column
nSV, Table 5-Column nSV, Table 6-Column nSV.

TABLE 3. Training and testing time and number of support vectors (NSV)
comparison for STL-IDS and single SVM for binary classification based on
testing data.

TABLE 4. training and testing time and number of support vectors (NSV)
comparison for STL-IDS and single SVM for binary classification based on
training data.

TABLE 5. Training and testing time and number of support vectors (NSV)
comparison for STL-IDS and single SVM for five-category classification
based on testing data.

Finally, we compare the performance of our approach
with that of existing methods, such as naive Bayesian, RF,
multi-layer perceptron, SVM, and shallow machine learning,
as mentioned in [22] and [35] and several recent approaches.

A. EVALUATION THE IMPACT OF THE LOW-DIMENSIONAL
FEATURES ON THE BINARY CLASSIFICATION
1) EVALUATION BASED ON TESTING DATA
Training and testing data are used separately for training and
testing when we evaluate the effectiveness of the low-dimen-
sional features extracted by our approach for two-category
classification. Figure 3 shows the experimental results. Our
STL-IDS performs better than single SVM. The accuracy,
pre-cision, recall, and f-measure values for single SVM are
79.42%, 92.59%, 69.40%, and 79.42%, respectively. The
cor-responding values for STL-IDS are 84.96%, 96.23%,
76.57%, and 85.28%, respectively. However, STL-IDS per-
forms better in all performance metrics compared with single
SVM. The experimental results also show that the proposed
approach STL-IDS reduces training and testing times of
SVM, as shown in Table 3.

FIGURE 3. Accuracy, precision, recall, and F-measure values for STL-IDS
and single SVM for binary classification based on test data.

2) EVALUATION BASED ON TRAINING DATA
In this section, we use 10-fold cross validation to evaluate the
superiority of our proposedmodel through a comparison of its
performance metrics and training and testing times with those
of single SVM. Figure 4 shows that the performance of our
STL-IDS in binary classification is higher than that of single
SVM. The accuracy, precision, recall, and f-measure values
are 99.416%, 99.45%, 99.291%, and 99.373%, respectively,
whereas single SVM achieves 99.35%, 98.98%, 99.62%, and
99.30%, respectively. STL-IDS performs better than single
SVM in all performance metrics, except for recall. The recall
values for STL-IDS and single SVM are 99.29% and 99.62%,
respectively. Moreover, TABLE 4 shows that our approach
can reduce the training and testing times (Table 4) of SVM,
which is crucial for measuring the efficiency of network
security applications.
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FIGURE 4. Accuracy, precision, recall, and F-measure values for STL-IDS
and single SVM for binary classification based on training data.

B. EVALUATION THE IMPACT OF THE LOW-DIMENSIONAL
FEATURES ON THE MULTICLASS CLASSIFICATION
1) EVALUATION BASED ON TESTING DATA
To verify the superiority of our proposed approach for net-
work intrusion detection, we measure the performance of
our model in five-category classification using testing data
and compare it with that of single SVM in terms of perfor-
mance metrics and training and testing times. Figure 5 shows
a comparison between STL-IDS and single SVM. All the
performance metric values of STL-IDS are higher than
those of single SVM. The accuracy, precision, recall, and
f-measure values for STL-IDS are 80.48%, 93.92%, 68.28%,
and 79.078%, respectively, whereas those for single SVM
are only 76.76%, 92.98%, 61.85%, and 74.28%, respectively.
Moreover, Table 5 shows that the training and testing times
of our proposed model are less than those of single SVM,
indicating that our model is more concise and efficient than
single SVM.

FIGURE 5. Accuracy, precision, recall, and F-measure values for STL-IDS
and single SVM for five-category classification based on test data.

2) EVALUATION BASED ON TRAINING DATA
Similarly, we apply 10-fold cross-validation KDDTrain+ to
evaluate the performance of our model for five-category
classification. We also compare it with single SVM without

feature learning and dimensionality reduction mechanisms of
the raw dataset. Figure 6 provides a comparison of the perfor-
mance metrics of our model and single SVM. The accuracy,
precision, and f-measure values for STL-IDS are 99.396%,
99.56%, and 99.34%, respectively, whereas those for sin-
gle SVM are 99.346%, 99.061%, and 99.288, respectively.
STL-IDS has a lower recall value than single SVM. The
recall values are 99.122% and 99.518% for STL-IDS and sin-
gle SVM, respectively. However, STL-IDS for five-category
classification is better than single SVMwith regard to perfor-
mance metrics and processing time. Table 6 shows that the
training and testing times of STL-IDS are less than those of
single SVM, indicating that our model is more efficient than
single SVM in all situations.

FIGURE 6. Accuracy, precision, recall, and F-measure values for STL-IDS
and single SVM for five-category classification based on training data.

TABLE 6. Training and testing time and number of support vectors (NSV)
comparison for STL-IDS and single SVM for five-category classification
based on training data.

C. THE EFFECT OF HYPER-PARAMETERS AND HIDDEN
UNITS NUMBER SETTING IN OUR MODEL EFFICIENCY
Based on the theoretical analysis of the SAE and STL,
it shows that the hidden unit number and the sparse param-
eter are the main parameters influencing the classification
accuracy and training time speed. Thus, the hyper-parameters
optimization is a crucial challenge for developing and design-
ing an effective deep learning model for network intrusion
detection. In addition, how to investigate the effect of hidden
units number and the sparse parameter on the performance
of our model and decrease the training and testing time is
another challenge.

We were able to increase the performance of the Sin-
gle SVM with k-fold cross-validation strategy to search for
the best parameters of the RBF kernel (C = 5.6569 and
Gamma= 1.0667). Also, for the hyper-parameters tuning for

VOLUME 6, 2018 52851



M. Al-Qatf et al.: Deep Learning Approach Combining SAE With SVM

sparse autoencoder, we use cross-validation folds strategy on
KDDTrain+ part of NSL-KDD dataset. After the best value
of hyper-parameters is selected, our model is trained and
tested again 10-cross validation on KDDTrain+with the best
values. Also, it was trained and tested with KDDTrain+ and
KDDTest+, respectively. Optimization process of our model
was performed over key hyper-parameters and their values are
given in Table 7 and Table 8. In our experiments, our model
gets a higher accuracy for binary classification, when p =
0.50, λ= 0.000001, β = 3, and epochs number= 1000. Our
model gets a higher accuracy for multiclass classification,
when p is 0.77, λ is 0.000005, β is 3, and epochs number
is 500.

TABLE 7. The tested values of hyper-parameters for our model for
five-category classification.

TABLE 8. The tested values of hyper-parameters for our model for binary
classification.

In other experiments, we show how we investigate the
sparse autoencoder ability for feature learning and dimen-
sionality reduction of our data for enhancing the accuracy
and decreasing the training and testing times of SVM. Thus,
we restrict the number of hidden layer units to be less than
the original input units and we can get a compressed repre-
sentation, which actually achieves the desired dimensionality
reduction effect. In our experiments, our model gets a higher
accuracy, when the number of hidden units is 30 and epochs
number is 1000. Less training and testing times of SVM
compared with Single SVM, which we discussed in above
subsections, almost when the number of hidden units are
less than half of the number of the original input units (less
of 60 hidden units). Figure 7, Figure 8, and Figure 9 show the
test classification accuracy of our model, training and testing
times of SVM with different numbers of hidden units.

Finally, to test the effect of the sparse parameter on
the classification accuracy and training time speed. We use
KDDTrain+ as our train data and KDDTest+ for testing for

FIGURE 7. The accuracy and testing time on KDDTEST+ dataset in the
binary classification with different number of hidden units.

FIGURE 8. The accuracy and testing time on KDDTEST+ dataset in the
multiclass classification with different number of hidden units.

FIGURE 9. The training time on KDDTRAIN+ dataset in the binary and
multiclass classification with different number of hidden units.

our experiments. We use the best values in TABLE 7 and
TABLE 8 to other hyper-parameters in our model. The num-
ber of hidden units are 30 and 13 for binary and multiclass
classification, respectively. As shown in Figure 10 and

Figure 11, the optimal classification accuracy is obtained
when the sparse parameter equals to 0.77 and 0.50 for the
binary and multiclass classification, respectively.

In this section, we explored how to exploit the impact of the
sparse parameter and the hidden unit number on our model to
obtain a higher classification accuracy and a lower training
times.

D. DISCUSSION AND ADDITIONAL COMPARISONS
We also verify our model’s superiority by comparing its
detection accuracy with that obtained from other classifica-
tion algorithms in related studies. Yin et al. [22] claimed that
their model, which was constructed with recurrent neural net-
work and soft-max classifier and applied on KDDTest+ for
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TABLE 9. Additional performance comparisons with several related approaches in the binary classification.

FIGURE 10. Accuracy on KDDTEST+ dataset in the binary and multiclass
classification with different sparse parameer.

evaluation, obtained 83.28% and 81.29% detection accuracy
for two-category and five-category classification, respec-
tively. The authors compared the results of their model with
those of many classification algorithms discussed in [22]
and [35], as demonstrated in Table 9 and Table 10. Table 9 and
Table 10 show that our model is a competitor of [22] in

FIGURE 11. The training time on KDDTRAIN+ dataset in the binary and
multiclass classification with different sparse parameter.

terms of accuracy in two-category classification since we
improved SVM with a suitable learning algorithm (SAE) in
the STL approach. Moreover, our model is a competitor in
terms of time complexity since we used the SAE technique
for dimensionality reduction and data representation.
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TABLE 10. Additional performance comparisons with several related approaches in the multiclass classification.

Wang et al. [23] also claimed that their model achieved
an accuracy of 99.31% for binary classification on the basis
of 10-fold cross validation for KDDTrain+ (training data part
of the NSL-KDD dataset).

Table 9 demonstrates that our model achieves better accu-
racy compared with [23] model. However, their model per-
forms better in terms of training time. Wang et al. [23] used
logarithm marginal density ratio transformation (LMDRT) to
verify their model’s efficiency in enhancing the accuracy and
reducing the training time of SVM. The weakness of their
method is that the reduction in testing time is not considered,
unlike in our proposed method. Yousefi-Azar et al. [10]
evaluated their feature learning model based on deep AE, and
they applied their model with many shallowmachine learning
algorithms, such as SVM.

However, the highest accuracy they achieved was 83.30%.
As demonstrated in Table 9, our model is superior to their
model. Moreover, their model is computationally expensive
because it contains many hidden layers and involves two
training stages.

Javaid et al. [2] claimed that their deep learning approach
for network intrusion detection, which depends on STL
that combines SAE with soft-max, obtains an accuracy
of 88.39% and 79.10% for two-category and five-category
classification, respectively. Their approach was evaluated
on KDDTest+ (the testing data of NSL-KDD dataset).
Their model obtained an accuracy of less than 99%
for two-category and five-category classification based on
KDDTrain+, which was evaluated using 10-fold cross-
validation. The experimental results show that our method
outperforms the model in [2] by 1.38% in terms of detection
accuracy rate when applied on KDDTrain+ and KDDTest+
separately for training and testing for five-category classi-
fication. For the KDDTrain+ dataset, our method achieves
better results than [2]. Its accuracy for two-category and
five-category classification is 99.423% and 99.414%, respec-
tively. This experimental evidence and the comparison of our
method and with that of [2] demonstrate that our method
achieves better results than [2] in terms of detection accu-
racy rate and time complexity because we used good feature
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learning algorithm (SAE) with strong classifier (SVM)
instead of weak classifier (soft-max). We used SAE not only
for feature learning that produces a new good representa-
tion of our dataset that leads to a good performance but
also for the dimensionality reduction that leads to obtain the
low-dimensional features that improve SVM classification
accuracy and decrease the training and testing times of the
algorithm. In order to compare the performance of STL-IDS
with some recent related works which evaluated with KDD-
CUP’99 dataset, we evaluated our proposed model on the
KDD-CUP’99 dataset. We used The 10%KDDCup dataset
contains 494,021 samples for training phase and corrected
labels KDDCup 99 dataset contains 311029 samples for
testing phase. After we removed all duplicate samples in
both dataset to avoid the bias towards more frequent sam-
ples, the training and testing datasets consist of 145,586 and
77,291 instances, respectively. The results of this experiment
show that our model has achieved higher accuracy rate than
most of the existing methods on the same dataset.

The accuracy of our model is lower than that of DAE-
IDS [27], and the gap remains within 0.7% and 1.4% for
multiclass and binary classification, respectively. This indi-
cates that our model has reached or exceeded the average
overall accuracy level of other state-of-the-art approaches and
methods.Moreover, Table 9 and Table 10 demonstrate that the
performance of our proposed method is very close to or more
than other state-of-the-art approaches in terms of accuracy
rate.

V. CONCLUSION AND FUTURE WORK
The proposed approach is another means of utilizing the STL
framework based on SAE for feature learning and dimension-
ality reduction and using SVM instead of soft-max

for classification. The experimental results of the proposed
approach show that our model demonstrates improved SVM
classification accuracy and accelerated training and testing
times. It also exhibits good performance in two-category and
five-category classification. Compared with other previous
models and shallow classificationmethods, such as J48, naive
Bayesian, RF, and SVM, our approach achieved a higher
accuracy rate particularly under five-category classification,
on the NSL-KDD dataset. The future expansion of our pro-
posed approach will focus on further improvement by using
multiple stages of STL and a hybrid feature learning model
for good representation features and dimensionality reduction
mechanisms. Additionally, the model’s training and

testing times can be further reduced by the implementation
of the system in parallel platforms or GPU acceleration.
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