
Received July 28, 2018, accepted September 3, 2018, date of publication September 13, 2018, date of current version November 9, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2869827

Fluctuation-Aware and Predictive Workflow
Scheduling in Cost-Effective
Infrastructure-as-a-Service Clouds
WEILING LI1,2, YUNNI XIA 1,2, (Senior Member, IEEE), MENGCHU ZHOU 3,4, (Fellow, IEEE),
XIAONING SUN1,2, AND QINGSHENG ZHU 1,2
1Software Theory and Technology Chongqing Key Lab, Chongqing University, Chongqing 400030, China
2Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education, Chongqing University, Chongqing 400030, China
3Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
4Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China

Corresponding author: Yunni Xia (xiayunni@hotmail.com)

This work was supported in part by the International Joint Project through the Royal Society of the U.K., in part by the National Natural
Science Foundation of China under Grant 61611130209, in part by the National Science Foundations of China under Grants
61472051/61702060, in part by the Science Foundation of Chongqing under Grant cstc2017jcyjA1276, in part by the China
Postdoctoral Science Foundation under Grant 2015M570770, in part by the Chongqing Postdoctoral Science special
Foundation under Grant Xm2015078, in part by the Universities’ Sci-tech Achievements Transformation Project of
Chongqing under Grant KJZH17104, in part by FDCT (Fundo para o Desenvolvimento das Ciencias e da Tecnologia) under Grant
119/2014/A3, and in part by the Chongqing grand RD Projects cstc2017zdcy-zdyf0120 and cstc2017rgzn-zdyf0118.

ABSTRACT Cloud computing is becoming an increasingly popular platform for the execution of scientific
applications such as scientific workflows. In contrast to grids and other traditional high-performance
computing systems, clouds provide a customizable infrastructure where scientific workflows can provision
desired resources ahead of the execution and set up a required software environment on virtual machines
(VMs). Nevertheless, various challenges, especially its quality-of-service prediction and optimal scheduling,
are yet to be addressed. Existing studies mainly consider workflow tasks to be executed with VMs
having time-invariant, stochastic, or bounded performance and focus on minimizing workflow execution
time or execution cost while meeting the quality-of-service requirements. This work considers time-varying
performance and aims at minimizing the execution cost of workflow deployed on Infrastructure-as-a-Service
clouds while satisfying Service-Level-Agreements with users. We employ time-series-based approaches to
capture dynamic performance fluctuations, feed a genetic algorithm with predicted performance of VMs,
and generate schedules at run-time. A case study based on real-world third-party IaaS clouds and some well-
known scientific workflows show that our proposed approach outperforms traditional approaches, especially
those considering time-invariant or bounded performance only.

INDEX TERMS IaaS cloud, workflow, service-level-agreement, scheduling, quality-of-service (QoS).

LIST OF ABBREVIATIONS

DAG Directed-Acyclic-Graph
GA Genetic algorithm
HPC High-performance computing
IaaS Infrastructure as a Service
PaaS Platform as a Service
PM Physical machine
SaaS Software as a Service
SLA Service-level-agreement
VM Virtual machine

LIST OF SYMBOLS

αi The start time of an available period of VM vi
βi The end time of an available period of VM vi
γi The estimated time that all tasks deployed on the same

VM earlier than ti must take
δ The estimated start time for a scientific

workflow
τ Estimated workflow completion time
ω The number of generations
ψ The number of historical samples
A The set of available VMs

61488
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-9024-732X
https://orcid.org/0000-0002-5408-8752
https://orcid.org/0000-0002-7737-9966


W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

bi The estimated start time of ti
K The set of VM types
C Workflow cost
di The estimated end time of ti
D The user-requested workflow completion time
ei,j The edge connecting ti and tj
f ji The predicted future value of sji
g(j) The function to identify the type of vj
h(k) The function to identify cost-per-unit-time of using a

type rk VM
l(i) The function to identify the index of ti
m The number of tasks
n The number of types of VMs
N+ The set of positive integers
ri The ith type
R+ The set of positive real numbers
sji The historical series of the execution time of ti on any

VM with type rj
ti The ith task of a scientific workflow
•ti The parent sets of ti
t •i The child set of ti
T The set of tasks of a scientific workflow
ui The earliest possible time to execute ti
vi The ith VM
w(i) The function to identify the VM to which task ti is to

be scheduled
xi,k The transfer time between ti and tk
y The size of initial population

I. INTRODUCTION
Workflows [1] are frequently employed to orchestrate data
and computation-intensive scientific and engineering tasks in
large-scale scientific applications, e.g., high energy physics
and molecular biology. Scientific workflows aim at integrat-
ing data and computing steps into configurable, structured
processes that perform semi-automated computational tasks
for scientific applications. They usually present graphical
interfaces to combine different technologies along with effi-
cient methods for using them, and thus increase the effi-
ciency of scientists. They are usually represented as directed
acyclic graphs (DAGs) with their nodes representing dis-
crete computational components and the edges represent-
ing connections along which data and results can com-
municate among components. Their capacity varies with
the type of scientific applications. Their execution needs
computing platforms with high performance, e.g., cluster
and grid.

Recently, cloud computing is recognized as a promising
solution and paradigm for providing a flexible, on-demand
computing infrastructure over the Internet for large-scale
scientific applications [2]. In a cloud computing system,
physical and virtual resources can be allotted to combina-
tions of one or more groups of users, with the owners of
the resources deciding when and to whom they should be

allotted. In this manner, collaborations can integrate pools
of cloud resources to give supercomputer-class capability
for large-scale scientific application to their users. A cloud
management process allows end or tenant users to secure
and release computing resource through a pay-as-you-go
manner. The scientific applications can therefore elastically
scale their resource pools upward or downward at run-time.
A cloud management process only allocates required or esti-
mated computing resources to achieve high utilization rate
of resources and reduce operational cost. Cloud users are
therefore charged using a pay-per-use price model based on
the number of resources actually consumed.

Cloud computing systems are based on sharing of
resources to achieve coherence and economies of scale,
similar to utility (like electricity grid) on a network.
Through the provision of on-demand access to computa-
tional resources, they offer services at three different lev-
els: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), and Software-as-a-Service (SaaS). IaaS clouds offer
users with resources in the form of virtual machine (VM)
instances deployed in a provider’s data center. PaaS clouds
offer platforms for users to design and implement their
applications. SaaS clouds offer web applications/software
over the Internet, running on cloud infrastructure. PaaS and
SaaS clouds are thus less suitable for scientific applications
than IaaS ones because they offer merely an environment to
design, develop and test web based applications. Scientific
workflows can be deployed and scheduled on IaaS clouds
through two steps [3]: 1) a bag of physical resources are
selected from the resource pool to run scientific tasks; and
2) a schedule is produced and then the corresponding task-
resource mapping is performed.

Recently, the performance issues of scientific-workflow-
oriented clouds and their scheduling attract considerable
research attentions [27], [28]. A major difficulty in guar-
anteeing user-perceived performance of IaaS clouds lies in
that VMs are subject to unexpected performance fluctua-
tions. Schad et al. [4] show that the performance of VMs
in Amazon EC2 cloud can vary by 24% under high work-
load. Jakson et al. [5] observe that performance variation
of VMs can be as high as 30 − 65% when data transfer
among cloud nodes is unstable. Such fluctuations and vari-
ations of VMs could potentially impact the overall user-
perceived quality of cloud systems, especially when the
SLA thresholds [29], e.g., workflow execution time, are
breached. Note that performance fluctuations of VMs could
lead to increased operational cost as well since more PMs
need to be turned on and VMs invoked if VMs already in use
fail to accomplish their tasks.

It is therefore clear to see that run-time performance
fluctuations of VMs significantly impact the scheduling of
scientific workflows deployed on IaaS clouds. Instead of
considering constant, stochastic (with derived or assumed
probabilistic distributions), or bounded performance of VMs
by most existing works discussed in the next section, we take
their run-time performance fluctuations into account and

VOLUME 6, 2018 61489



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

employ a time-series-based model to capture their run-time
trends and predict their future performance. We then feed
the predicted performance values into a genetic algorithm
(GA) to deploy each task to an appropriate resource, aiming
at minimizing the cost of running workflow while violating
no SLA. The proposed framework captures other character-
istics of IaaS cloud provisioning, e.g., on-demand resource
encapsulation, elasticity, and pay-per-use pricing as well.
To validate our proposed framework, we test our proposed
algorithm to schedule some well-known scientific work-
flows deployed on real-world third-party IaaS clouds, namely
Huawei, Amazon EC2, and Tencent clouds. It is observed that
our method achieves lower averaged workflow completion
time and workflow cost than traditional approaches at run-
time. It is worth noting that our approach achieves lower
SLA violation rates as well.

II. RELATED STUDIES
It is widely acknowledged that to schedule multi-task work-
flow on distributed platforms is an NP-hard problem [6].
It is therefore extremely time-consuming to yield optimal
schedules through traversal-based algorithms. Fortunately,
heuristic and meta-heuristic algorithms with polynomial
complexity are able to produce approximate or near optimal
solutions of schedules for Grid, Cluster, and cloud computing
at the cost of some optimality loss.

For instance, Mao and Humphrey [10] develop a Scaling-
Consolidation-Scheduling algorithm to schedule workflows
on cloud. Their algorithm aims at finding optimal schedules
to consolidate heterogeneous VMs. They consider a constant
amount (20%) of performance variation. Meena et al. [7]
consider a similar bounded performance variation and use a
genetic algorithm to generate schedules. Malawski et al. [11]
introduce three algorithms, DPDS (Dynamic Provision-
ing Dynamic Scheduling), WA-DPDS (Workflow-Aware
DPDS), and SPSS (Static Provisioning Static Scheduling),
to run multiple workflows in clouds. They aim at maximizing
the number of workflows executed under given constraints of
deadline and cost. However, they consider workflow tasks to
be of constant execution time when executed on VMs.

The studies [12]–[14] propose heuristic algorithms for
scheduling a single workflow instance on IaaS clouds.
Abrishami et al. [12] introduce a static-Partial-Critical-Path
procedure to evaluate the latest completion durations, then
search through each partial critical path, and finally associate
tasks on the partial critical path with the most inexpensive
VM instances. If the algorithm fails to identify any available
VM following the constraint of completion deadlines, it gen-
erates a new cheapest VM instance that executes all the tasks
before its latest completion time. Calheiros and Buyya [13]
consider soft deadlines, i.e., SLA violation rate. They pro-
pose a partial path identification algorithm that leverages idle
periods of provisioned resources to improve the performance.
They assume bounded (up to 10%) performance variation,
in terms of execution time, of VMs. Poola et al. [14] present

a similar framework and consider faulty-tolerance in finding
optimal schedules.

Byun et al. [15] introduce a Balanced-Time-Scheduling
(BST) algorithm for grid-based workflows to calculate min-
imally required numbers of physical resources to fulfill a
completion-time constraint. BTS delays a task as much as
possible on condition that its time constraint is not violated.
However, they consider homogeneous VMs for simplicity.
Later, Byun et al. [16] propose an improved Partitioned-
Balanced-Time-Scheduling (PBTS) algorithm for cloud-
based workflow scheduling. It evaluates the minimum capac-
ity of resources required to execute a workflow by its given
deadline. It assumes homogeneous VMs.

Wu et al. [17] propose an execution-time-reduction pro-
cedure for completion-time-constrainted workflows. They
assume lower and upper bounds for the number of VMs
required to meet the task deadlines. Then they develop
a heuristic algorithm to deploy tasks to the allocated
VM instances and employ an hour-minimization procedure
to minimize the instance time taken by VMs.

Another category of solutions are based on meta-heuristic
algorithms. For instance, Pandey et al. [18] aim at minimizing
the operational cost of a single workflow while balancing
the load on the available resources. They consider a fixed
bag of VMs in the resource pool to support workflow tasks.
Rodriguez et al. [19] propose a Particle-Swarm-Optimization
(PSO) scheduling algorithm. It encodes particles based on
the index of the resources that stand for the position of a
particle. Nevertheless, it is stipulated that particles keep mov-
ing in different dimensions and thus the overall optimality of
solutions is not guaranteed. Chen et al. [20] employ a similar
encoding scheme and introduce a completion-time-constraint
strategy for cost reduction based on the dynamic objectives.
They consider a dynamic objective formulation which aims
at time reduction instead of cost reduction when no feasible
solution exists. Zhu et al. [8] present a similar optimization
formulation but they consider only VMs with invariant and
constant performance.

It can be seen that a major limitation of existing work is
that constant or bounded performance of VMs is assumed.
The limitation is multi-fold: 1) real-world clouds, especially
heterogeneous and distributed cloud data-centers for sci-
entific computing applications, are usually subject to per-
formance and quality fluctuations at run-time. Such fluc-
tuations are caused by, e.g., deteriorating/recovering net-
work connectivity among cloud nodes and dynamic speed
scaling of machines. Assuming constant VM performance,
usually calculated as averaged historical performance, and
using them as algorithm inputs enable a scheduling algo-
rithm to produce fixed schedules that ignore the dynamic
changes of system capability. Such schedules may lead to
high SLA violation rates and bad user-perceived quality
especially when clouds are under high stress; 2) employing
bounded performance of VMs as algorithm inputs intends to
avoid high SLA violation rates. However, such assumption
can lead to the pessimistic estimation of system capability

61490 VOLUME 6, 2018



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

and resource waste. Consider a cheap VM with fluctuat-
ing performance and with averaged/highest execution time
of 10s/13s and another expensive VM with averaged/highest
execution time of 7s/8s. If cloud users tolerate no more
than 12s, the scheduling algorithm taking bounded perfor-
mance as inputs probably choose the expensive one to avoid
SLA violation. However, 13s happens only when the cloud
is under high stress and a smarter algorithm is supposed
to decide the trend (up or down) of performance change,
predict the future performance of VMs, and choose from
candidate VMs accordingly; 3) the work [21], [22] considers
VM execution time to follow an exponential distribution.
Although such assumption leads to Markovian models that
are easy to solve, it is in practice, however, unrealistic in a
real system because it implies future behaviors do not depend
on the past history but the current status only; 4) some recent
work [23] assumes general distributions instead of exponen-
tial ones and employs a Pareto distribution as a corresponding
approximation type. They consider the historical empirical
distribution of task processing time to be a right distribution
to describe its future distribution. Similarly, Dong et al. [24]
consider a novel mechanism that estimates the probability
distribution of subtask execution time based on background
VM load. It also introduces an elastic performance stochastic
scheduling algorithm based on the derived stochastic dis-
tribution. A major limitation of random-distribution-based
approaches lies in that the historical empirical distribution
merely employs the density of samples as their distributional
probabilities but ignores its trend and runtime fluctuations.
As a case discussed in our earlier work [26], a distribution
of task execution time with increasing occurrences of long
delays with time, e.g., a sample distribution of (d = 1
when t = 1s, d = 2 when t = 2s, and d = 3 when t = 3s),
clearly suggests a deteriorating performance. However, its
empirical distribution may be quantitatively identical to that
of another response delay type with the opposite behavior,
i.e., d = 3 when t = 1s, d = 2 when t = 2s, and d = 1
whent = 3s. The above limitations could be well avoided
by using a time-series-based analysis and prediction method
instead. We, therefore, introduce a dynamic prediction
approach by using the Autoregressive-Moving-Average-
Model (ARIMA) series model [25] with special attention to
the run-time trend of performance of VMs. We then feed
a genetic algorithm predicted input performance of individ-
ual VMs, and generate schedules at run-time.

III. SYSTEM MODEL
A scientific workflow is described by a Directed-Acyclic-
Graph (DAG) W = (T ,E) where T = (t1, t2, ...tm) denotes
the set of tasks andE the set of edges.Without loss of general-
ity, t1 and tm are considered to be the entry and exit tasks (note
that a dummy entry/exist task with zero execution time can
be added), respectively. The edge ei,k indicates that tk can be
executed after ti is accomplished. •ti and t •i denote the parent
and child set of ti, respectively. The workflow starts and
concludes by executing the entry and exit tasks, respectively.

D denotes the user-recommended constraint of the comple-
tion time of the workflow, usually expressed in SLA docu-
ments. Note that this constraint can be either hard or soft one.
In this work we consider hard one where the actual workflow
completion time is bounded by D. A sample workflow is
illustrated in Fig. 10.

An IaaS cloud supports scientific workflows through VMs.
These VMs are selected from a VM pool, A = {v1, v2, ...vm}.
At most m VMs are required at runtime if no two tasks
share the same VM. VMs can be different in their CPU
speed, memory, and pricing configurations. We use K =
{r1, r2, ...rn} to denote the set of VM types and a function,
g : A → K , to identify the type of each VM in the
pool. Note that the mapping of VMs to their types can be
dynamically determined at runtime for a performance/energy
tradeoff purpose. VMs are charged based on their types.
We therefore employ a function, h : K → R+, to identify
the cost, in terms of dollars per unit time, of each type.
Each VM has an available period for tasks. We use αi and
βi to denote the start and end time of an available period of
vi. It is assumed that a VM can execute only one task at a
time.

The execution order of a workflow can be expressed by
assigning an index to each task. The index ranges from 1 tom
and the ith item indicates the order of executing ti. The
relationship between each task and its index can be described
by a function l : T → N+ and encoded as a vector containing
a permutation of 1 to m. If i occurs before k in order, it does
not necessarily indicate that the execution of ti is earlier than
tk unless they are deployed on the same VM. The start time of
tasks is decided by their supporting VMs and the completion
time of their preceding tasks.

If task ti connects tk through edge ei,k and they are executed
by different VMs, the transfer time, xi,k , is inevitable because
inter-VM data and control signal transfer is required. Other-
wise, xi,k = 0 if both tasks are on the same VM.

Workflow tasks executed by different types of VMs usually
exhibit varying performance. Moreover, a task executed by
the same VM at different time exhibits fluctuating perfor-
mance as mentioned earlier. In order to capture the trend
of performance variations at run-time and decide a schedule
according to predicted future performance, we need to know
the historical execution time, in terms of time series, of each
task on each VM.

IV. ARIMA MODEL
Time series is a series of observations over one object or phe-
nomenon based on time. It is widely used in economics,
business, engineering, natural sciences, and social sciences.
The salient feature of the time series is the serial dependency,
i.e., the correlation of adjacent observations. The basic idea of
the time-series-based prediction method is that the historical
data of the time series reveals the changing trend with time,
and extends the law to the future so as to predict the future
values. In this paper, we consider an ARIMA model [25] as
the prediction model of time-varying QoS of web services.

VOLUME 6, 2018 61491



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

A time series is considered to be stationary only if its resid-
uals are statistically independent of each other and constant
in mean and variance over time. An ARIMA model is a non-
stationary time series that can be modeled by an ARIMA
model on condition that it can be converted into a stationary
time series through differentiation.

For a non-stationary time series {xt }, its first-order differ-
ence is:

∇xt = xt − xt−1 = xt − Bxt = (1− B)xt . (1)

where B indicates the backshift operator. If the new series of
∇xt is still non-stationary, more differentiations are carried
out until higher-order series of differences, i.e., ∇dxt , is sta-
tionary:

∇
dxt = ∇d−1xt −∇d−1xt−1 = (1− B)dxt . (2)

Then, we feed ∇dxt into an ARIMA model with orders p
and q, denoted by ARIMA(p, q). An ARIMAmodel combines
an autoregressive (AR) model and a moving-average model:

φ(B)xt = θ (B)zt , (3)

{zt } a series of errors, φ(B) the autoregressive polynomial
with order p defined and θ (B) the averagemoving polynomial
with order q, respectively given as below:

φ(B) = (1− φ1B− φ2B2 − · · · − φpBp). (4)

θ (B) = (1+ θ1B+ θ2B2 + · · · + θqBq). (5)

The non-stationary characteristic of an ARIMA series
can thus be described by using a generalized autoregressive
operator ϕ(B):

ϕ(B) = φ(B)(1− B)d . (6)

The predicted future values of an ARIMA series can thus
be obtained as:

ϕ(B)xt = φ(B)(1− B)dxt = θ (B)zt . (7)

So

φ(B)ωt = θ (B)zt , (8)

where

ωt = (1− B)dxt = ∇dxt . (9)

As for predictive service composition, we consider the
ARIMA model described in this section as the underlying
prediction method to process historical QoS data and obtain
predictive QoS values. Such predictive values of candidate
atomic services are fed into genetic algorithms to generate
service composition plans.

As discussed earlier, the time required for a VM to execute
a workflow task can be time-varying. We use sji to denote a
historical series, measured or obtained through system log-
files, of the execution time of task ti on any VM with type
rj. We employ the predicted future value of the execution
time, i.e., f ji , as the inputs of an evaluation model and the
genetic algorithm presented later. As shown in Figs. 1-9,

FIGURE 1. Measured vs. predicted execution time for the Gauss Legendre
algorithm to compute 8 million digits of circumference ratio on Huawei
cloud.

FIGURE 2. Measured vs. predicted execution time for the Gauss Legendre
algorithm to compute 16 million digits of circumference ratio on Huawei
cloud.

FIGURE 3. Measured vs. predicted execution time for the Gauss Legendre
algorithm to compute 32 million digits of circumference ratio on Huawei
cloud.

predicted execution times of different tasks (to be discussed
and explained in the section of case study) on three types of
VMs well converge to measured ones with high accuracy.

V. PROBLEM FORMULATION
High performance and low cost are usually contradicting
goals when scheduling workflows in clouds. Thus, our pro-
posed work tries to reconcile them and identify a cost-
effective schedule to deploy scientific tasks on VMs in order
to minimize the overall cost while satisfying SLA, thus
guaranteeing that the workflow completion time is always
bounded. The resulting problem can therefore be formulated

61492 VOLUME 6, 2018



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

FIGURE 4. Measured vs. predicted execution time for the Gauss Legendre
algorithm to compute 8 million digits of circumference ratio on Tencent
cloud.

FIGURE 5. Measured vs. predicted execution time for the Gauss Legendre
algorithm to compute 16 million digits of circumference ratio on Tencent
cloud.

FIGURE 6. Measured vs. predicted execution time for the Gauss Legendre
algorithm to compute 32 million digits of circumference ratio on Tencent
cloud.

FIGURE 7. Measured vs. predicted execution time for the Gauss Legendre
algorithm to compute 8 million digits of circumference ratio on Amazon
cloud.

as:

Min C
m∑
i=0

h(g(w(i)))× f g(w(i))i

s.t. τ≤D (10)

FIGURE 8. Measured vs. predicted execution time for the Gauss Legendre
algorithm to compute 16 million digits of circumference ratio on Amazon
cloud.

FIGURE 9. Measured vs. predicted execution time for the Gauss Legendre
algorithm to compute 32 million digits of circumference ratio on Amazon
cloud.

where C denotes the cost of running a scientific workflow,
w the function of a schedule, w(i) the VM to which task
ti is scheduled, g(w(i)) the type of VM to which task ti is
scheduled, τ the estimated time required to accomplish the
workflow, h(j) the function to identify cost-per-unit-time of
using a type rj VM, and f g(w(i))i the predicted future value of
the execution time of task ti.

The derivation of τ requires some efforts. τ can be cal-
culated as the estimated end time of the last task in the
workflow:

τ = dm (11)

where di denotes the estimated end time of task ti.
di can be iteratively calculated as:

di = f g(w(i))i + bi (12)

where bi denotes the estimated start time of executing ti and
f g(w(i))i the predicted execution time of ti itself.
bi is decided by various factors, namely the available

period of its supporting VM, the estimated end time of
its immediately preceding tasks, and the time required for
data transfer. Let γi denote the estimated time that all tasks
deployed on the same VM earlier than ti must take. We have:

γi = max
j
{dj|l(j) < l(i) ∧ w(i) = w(j)} (13)

where l(j) < l(i) indicates that tj’s order index is smaller than
that of ti and w(i) = w(j) means that ti and tj are scheduled
into the same VM.

VOLUME 6, 2018 61493



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

Note that the dependency constraint requires that a task be
executed only if its all immediately preceding ones success-
fully terminate and transfer data. We use yi to denote the esti-
mated earliest time that the described condition holds for ti.

yi = max{dk + Xk,i|tk ∈• ti} (14)

where •ti denotes the immediately preceding tasks of ti,
i.e., those which directly connect ti through edges in the
scientific workflow.

The earliest possible time to execute ti can therefore be
calculated as:

ui = max{γi, yi} (15)

Based on the above observations, when i > 1, bi can be
obtained as:

bi =


ui if ui ≥ α(w(i)) ∧ ui+

f g(w(i))i ≤ β(w(i))
∞ else

(16)

The above equation indicates that the earliest possible time to
execute ti should be later than the start time of the available
period of its supporting VM and ti should terminate before
the end time of such period. Otherwise, the corresponding
schedule is considered to be impossible and bi is assigned∞
accordingly.

The entry task of a scientific workflow has no preceding
tasks and therefore its estimated end time is:

d1 =

{
b1 + f

g(w(1))
1 if b1 + f

g(w(1))
1 ≤ β(w(1))

∞ Otherwise
(17)

where b1 can be obtained as:

b1 = max{δ, α(w(1))} (18)

where δ denotes the estimated start time for a scientific
workflow’s initialization and preprocessing.

VI. GENETIC ALGORITHM FOR WORKFLOW SCHEDULING
Since the resulting optimization problem is NP-hard, we have
to rely on meta-heuristic algorithms in solving any sizable
problem. Note that a significant number of studies, e.g., [7],
[8], [20] clearly suggest the advantage of time-efficiency
of genetic algorithms for workflow scheduling over other
heuristics, e.g., Particle Swarm optimization and Ant Colony
optimization. We therefore consider using GA empowered
by time-series-based prediction and novel designs of genetic
operations. GA falls into the class of evolutionary algo-
rithms [36], [37]. It is a metaheuristic procedure similar
to the process of natural selection. It is frequently used to
yield high-quality solutions to optimization and searching
problems by employing bio-inspired operations, e.g., muta-
tion, crossover and selection. In it, a population of candi-
date solutions (called individuals) to an optimization prob-
lem keeps evolving toward better solutions. Every candidate
solution is associated with multiple properties (called chro-
mosomes or genotype) which can be mutated and altered;

FIGURE 10. A sample scientific workflow and its encoding scheme.

traditionally, solutions are represented in binary as strings
of 0s and 1s, but other encodings are also possible. Based on
our problem descriptions, we present definitions of genetic
operations next.

A. ENCODING
A schedule described by l, w, and g functions is expressed
through chromosome described by 3 vectors of positive inte-
gers, namely Task-Index, Task-VM and VM -Type. The length
of vectors ism, i.e., the number of tasks. Task-Index identifies
the order of execution of each task by associating an index
with each task. The initial order of tasks is based on the
structural constraint and topological sort of a workflow itself,
i.e., a task can never be executed before its immediately
preceding ones.

The first step of encoding deals with Task-Index andmakes
a topological sort and then allocates an index number to
every task according to the sorting levels. The index begins
with 1, and ti represents a task whose topological index is i.
The second step deals with Task-VM . An index in it stands
for a task and its value stands for the VM to which this task is
scheduled. Similarly, the third vector VM -Type identifies the
mapping from VMs to their types.

Fig. 10 also shows the encoding scheme for the sample
workflow given earlier. In this schedule, each task is asso-
ciated an execution order of [1, 2, 5, 4, 3, 7, 6, 8] through the
Task-Index vector. The Task-VM vector suggests that only
4 VMs are used to support the workflow tasks. Note that t3
and t4 can be executed in parallel according to the structural
constraint specified by its corresponding DAG even if t4 is
assigned with a higher index. However, t3 and t4 share v1 and
thus are actually sequentially executed.

B. CROSSOVER
A valid scheduling order is supposed to comply with the
structural constraint of a scientific workflow, i.e., a task can
never be executed before its preceding tasks. The crossover
operation should comply with these restrictions. As shown
in Fig. 11, the operator randomly selects a cutting point
to split each parent vector, i.e., Task-Index, into two sub-
vectors. Then, the two first sub-vectors are exchanged to

61494 VOLUME 6, 2018



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

FIGURE 11. The crossover operation on execution order of workflow
tasks.

FIGURE 12. An example of a crossover operation on the order of
workflow execution.

be the offspring, and the second sub-vectors are abandoned.
In the following, each parent order vector is investigated
from the beginning and any task that has not appeared in
the first sub-vector is added to the end of this offspring.
The crossover operator complies with dependency constraints
since the orders of any two tasks already exist in no less
than one parent. An illustration of the crossover applied
to the workflow shown in Fig. 10 is in Fig. 12, where
point 4 is randomly selected as the cutting point. The gray
parts in both parent vectors are exchanged and the missing
tasks caused by the swap operation, i.e., shaded ones in
this figure, are inserted into the remaining vectors following
their original orders. The time complexity of this operation
is O(m).

The crossover operation is also conducted on Task-
VM and VM -TYPE vectors. Similarly, it randomly decides
a cut-off point and swaps the first parts of two parent
Task-VM vectors. However, the crossover operation itself
may erase useful information when the swapped part changes
the relationship between VMs and their corresponding types.
Take Fig. 14 as an example. The cut-off point of 2 is ran-
domly decided and the gray parts of two parents need to be

FIGURE 13. The crossover operation on Task − VM and VM − TYPE .

crossovered. We first consider t1 of the first parent with its
supporting VM v2. v2 has different corresponding types in the
two parents, i.e., r1 in X and r4 in Y . Since v2 appears more
frequently, as shown in shaded parts, in X than in Y , such
conflict can only be solved by reassigning the type of v2 in Y
as that of v2 in X . Consequently, the type of v2 in Y is changed
into r1. Similarly, we consider t1 of Y . The supporting VM of
t1 in Y is v3. v3 has different corresponding types in the
two parents, i.e., r4 in Y and r2 in X . Since v3 appears less
frequently in Y than in X , as shown in shaded parts, such
conflict can only be solved by reassigning the type of v3 in Y
as that of v3 in X . Consequently, the type of v3 in Y is changed
into r2. After the change is made, a swap of the first items
of two parents is conducted. In the next step, we consider t2
of X and its supporting VM is v2. v2 has identical types in
two parents and thus no conflict exists. Similarly, we then
consider t2 of Y . The supporting VM of t2 in Y is v4. v4 has
different types in two parents, i.e., r2 in Y and r3 in X . Since

VOLUME 6, 2018 61495



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

FIGURE 14. An example of crossover operations on Task − VM and
VM − Type vectors.

v3 appears more frequently in Y than inX , as shown in shaded
parts, such conflict can only be solved by reassigning the type
of v4 in X as that of v4 in Y . Consequently, the type of v4
in Y is changed into r2. After the change is made, a swap
of the second items of two parents is conducted. Finally,
X and Y are assigned to two offsprings. The pseudocode of
the crossover operation is given in Fig. 13.

C. MUTATION
The mutation operation on the execution order of a workflow
should comply with its structural constraint. Fig. 15 presents
the pseudocode of this operation. The mutation operator ran-
domly chooses a task ti, randomly selects one of the tasks,
which is not on the same path from the entry task to the exit
task with ti, and swaps the selected task with ti. Since the
mutation operations on Task-VM and VM -Type vectors have
no worries of breaching the structural constraint of the work-
flow, they simply randomly generate a new feasible value for
every position, with a small probability. Their pseudocode is
therefore not shown.

D. INITIAL POPULATION
The search space of solutions usually grows exponentially
with the scale of a scientific workflow. To accelerate the
search speed and convergence of the genetic algorithm,
the initial population are defined and generated in such a
way that each individual of the population complies with
the structural constraint of the scientific workflow and its

FIGURE 15. The mutation operation on Task − Index .

Task-Index, Task-VM , and VM -Type vectors are decided
randomly. The pseudocode of generating an individual is
given in Fig. 16. This procedure starts with deciding the
execution order of the first/entry task and iteratively invokes
an ancillary procedure, calledRandInit(), to decide the execu-
tion orders of the remaining tasks. To decide the correspond-
ing task to be executed at position i, RandInit() randomly
selects one of the unexecuted tasks which is not on the path
from any other unexecuted task to the exit task. When the
execution orders of all tasks are decided, Task-VM and VM -
Type vectors are randomly generated.

The fitness of an individual solution is decided by its min-
imization of estimated workflow cost on condition that SLA
is satisfied. The selection strategy is therefore based on the
fitness estimation and implemented through a tournament-
based method [30]. To be specific, we employ a constraint
handling strategy described below to select chromosomes
for new generations: 1) if the τ values of two solutions are
feasible, then the one with higher cost is discarded, 2) if the τ
value of only one solution is feasible, then the infeasible one
is simply discarded; and 3) if the τ values of both solutions
are infeasible, then the one with higher estimated completion
time is discarded.

61496 VOLUME 6, 2018



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

FIGURE 16. The procedure to generate an individual into the initial
population.

E. COMPLEXITY ANALYSIS
The overall computational complexity of our proposed
framework can be analyzed by examining its initialization,

selection, crossover, mutation and fitness evaluation opera-
tions. The time complexity of initializing an individual is
O(m + n), and thus population initialization requires O(m +
n) × y where y is the size of initial population. The time
complexity for selection, crossover, and mutation opera-
tions are O(y), O(m2), and O(m), respectively. Consequently,
the total time complexity of selection, crossover, and muta-
tion with ω generations is O(ωy) + O(ωm2) + O(ωm). The
fitness evaluation for each individual has the time complexity
of O(m2) and thus fitness evaluation for initial population
of size y with ω generations has the time complexity of
O(yωm2). The total time complexity of selection, crossover,
mutation and fitness evaluation is thus O(m + n) × y +
O(yωm2) + O(ωy) + O(ωm2) + O(ωm) = O(yωm2). Note
that the time complexity for the Box-Jenkins method is
O(ψ) where ψ is the number of historical samples to train
an ARIMA model and ψ is usually bounded. The com-
plexity for generating all predicted performance data for m
tasks supported by n types of VMs is O(mnψ) = O(mn).
The overall time complexity for our proposed framework
is thus O(mn) + O(yωm2). Note that the number of types
of VMs is usually smaller than the number of machines
and thus the overall complexity can further be expressed
as O(yωm2).

VII. CASE STUDY AND COMPARISON
In this section, we present a case study of real-world sci-
entific workflows deployed on commercial IaaS clouds, to
compare traditional scheduling approaches with our pro-
posed framework. We employ three different classical sci-
entific workflow templates, namely Montage, CyberShake,
and Epigenomics, to support tasks of GaussLegendre calcu-
lations with a different number of digits. The GaussLegendre
calculation is a highly-memory-requiring iterative procedure
to compute the digits of circumference ratio to a specific
number of digits. The procedure repeatedly replaces two
numbers by their arithmetic and geometric mean, in order
to approximate their arithmetic-geometric mean. This pro-
cedure is implemented by a benchmark tool, i.e., Super-Pi

FIGURE 17. The scientific workflow templates for the case study.

VOLUME 6, 2018 61497



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

TABLE 1. Tasks of three scientific workflows(million).

FIGURE 18. Measured time for the Gauss Legendre algorithm to calculate
8 million digits of circumference ratio.

FIGURE 19. Measured time for the Gauss Legendre algorithm to calculate
16 million digits of circumference ratio.

(from http://www.superpi.net/). This tool is frequently used
in testing floating-point performance of computing systems.
Tasks of the sample workflows are required to run the Super-
Pi tests with different requirements of the numbers of digits
to generate as given in Table. 1. The maximum number of
required VMs equals that of tasks and VMs are available
from the beginning to the end. We consider 172s, 79s, and
110s as the bounds of completion time of three workflows.

We use three commercial IaaS clouds, namely Huawei,
Tencent and Amazon EC2 to test the workflows and our pro-
posed scheduling algorithm. Each commercial cloud provides
one type of VM (1g RAM/1 core/40G storage for Huawei
cloud, 1g RAM/1 core/60G storage for Tencent cloud, and
2g RAM/1 core/30G storage for Amazon EC2 cloud). Hence
totally, we have three types of VMs available to support
the workflow execution. It takes 0.06 seconds in average to

FIGURE 20. Measured time for the Gauss Legendre algorithm to calculate
32 million digits of circumference ratio.

FIGURE 21. Comparison of completion time of Montage workflow.

transfer data between different clouds. The cost-per-second
of these clouds are 1.5 cent, 1.6 cent, and 1.7 cent, respec-
tively. The three deadlines are decided in a way that deadline
constraints generally comply with the baseline performance
of VMs used. As can be seen from Figs. 1-9, it generally
takes 7, 13, and 30 seconds to execute three types of Gauss
Legendre calculations on three types of VMs. Consequently,
the baseline execution time for Montage, Cybershake, and
Epigenomic workflows should fall into [150, 175], [70, 90],
and [100, 120] based on their longest-path-distribution
estimations in DAGs. The time unit is second. Consequently,
the deadline should not be too low to avoid the case that

61498 VOLUME 6, 2018



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

FIGURE 22. Comparison of cost of Montage workflow.

FIGURE 23. Comparison of completion time of Cybershake workflow.

FIGURE 24. Comparison of cost of Cybershake workflow.

both our proposed method and traditional algorithms fail to
work out. On the other hand, if the deadline is too high, all
algorithms work very well and lead to no SLA violation.

FIGURE 25. Comparison of completion time of Epigenomic workflow.

FIGURE 26. Comparison of cost of Epigenomics workflow.

FIGURE 27. Comparison of cost of Montage in consecutive hours.

We test these VMs by using a Sugon I450 server
(4-CPU Intel Xeon 5506/128G RAM)) in the period between
8:00AM to 10:40AM on May 17th, 2017 and obtain a series
of execution time of different types of VMs to calculate (using
the GaussLegendre algorithm) circumference ratio reaching a

VOLUME 6, 2018 61499



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

FIGURE 28. Comparison of cost of Cybershake in consecutive hours.

FIGURE 29. Comparison of cost of Epigenomics in consecutive hours.

FIGURE 30. Comparison of violation rate of Montage in consecutive
hours.

FIGURE 31. Comparison of violation rate of Cybershake in consecutive
hours.

varying number of decimal digits, e.g., 8, 16 and 32 million,
with a constant interval of 5 minutes, as shown in Figs. 18-20
and earlier in Figs. 1-9. These results suggest that run-time

FIGURE 32. Comparison of violation rate of Epigenomics in consecutive
hours.

performance of commercial clouds is indeed time-varying
and unstable. Note that we consider a constant interval
of 5minutes simply because tests show that it usually takes no
more than 300 seconds to run sample workflows. 5 minutes
is thus considered to be a safe interval to avoid the case that
a new trial of the scheduling algorithm is initiated before
preceding ones are accomplished.

We also use another Sugon I450 server within the
same local-area-network to yield schedules by executing
GA every 5 minutes (since the time interval for ARIMA per-
formance series is 5 minutes and a schedule is thus generated
within the identical time interval). Such generated schedules
are fluctuation-aware and aim at guaranteed performance
and reduced cost. For a comparison purpose, we also apply
a representative non-predictive algorithm proposed in [7]
and [8] to schedule three workflows. Note that we con-
sider these two as the baseline algorithms because: 1) their
physical model formulation is identical to ours; 2) their test
results suggest that they outperform all other earlier meth-
ods; and 3) their proposed algorithms are different in details
but actually equally effective. As shown in Fig. 21-26, our
proposed method achieves less cost (by 1.1231 cents for
Montage, 0.6670 cents for Cybershake, and 1.4002 cents
for Epigenomics) in average and lower SLA violation rates
as well (6.06% vs. 12.90% for Montage, 0 vs. 3.23%
for Cybershake, and 3.23% vs. 9.68% for Epigenomics)).
It can be observed that our proposed method outperforms a
PSO-based approach proposed in [18] and [19] and even
the combination of PSO with ARIMA (although no exist-
ing contribution does so). It is interesting to see that the
non-predictive GA method in [7] and [8] clearly outper-
forms the PSO-based one. Intuitively, the disadvantage of
a non-predictive approach lies in that it ignores up/down
performance trends of VMs. It therefore tends to choose
expensive VMs when inexpensive VMs have satisfactory
and improved future performance, thereby increasing its
cost. It also tends to choose inexpensive VMs with satis-
factory current performance when such VMs have wors-
ened future performance and thus leads to longer workflow
completion time and higher SLA violation rates. To further
show the effectiveness of our proposed method, we illustrate
comparisons of cost and SLA violation rates in consecutive

61500 VOLUME 6, 2018



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

hours after 10:40AM on May 17th, 2017. It can be seen that
the advantage of our proposed method is evident.

VIII. CONCLUSIONS AND FURTHER STUDIES
In this work, we introduce a comprehensive framework
for optimal scientific workflow scheduling on IaaS clouds.
Instead of assuming constant or bounded performance of
VMs as most existing methods do, our proposed method is
capable of modeling time-varying performance and work-
ing out cost-effective schedules to reduce workflow cost
while fulfilling Service-Level-Agreement (SLA). A case
study based on real-world third-party IaaS clouds and some
well-known scientific workflows show that our proposed
approach outperforms traditional approaches that consider
time-invariant or bounded VM performance only.

We plan to consider the following topics for future
work: 1) More quantitative metrics, e.g., fault tolerance and
cloud mobility, are supposed to be analyzed and optimized;
2) Petri nets [31]–[33] can be borrowed as a modeling
formalism, where structural reduction techniques can be
employed to model fine-grained control-flow activities of
scientific workflows deployed on clouds; 3) this work con-
sider hard SLA constraints. We intend to consider soft
ones (where workflow completion time is allowed to
exceed a threshold value with a bounded given rate) and
introduce corresponding algorithms to generate run-time
schedules; 4) our proposed method relies on knowledge of
time-series data of all tasks and candidate cloud servers.
However, in some cases it is not feasible to collect such data
at run-time. We thus intend to introduce large-scale-sparse-
matrices-analysis models [34] [35] for performance predic-
tion when historical data is missing; 5) We intend to intro-
duce updated designs of encoding, mutation, crossover of the
genetic algorithm to further improve its performance [36];
and 6) We intend to consider mobile opportunistic networks
as the supporting platforms for scientific workflows and
introduce corresponding predictive scheduling algorithms.

REFERENCES
[1] W. Tan andM. C. Zhou, Business and ScientificWorkflows: AWeb Service-

Oriented Approach. Hoboken, NJ, USA: Wiley, 2013.
[2] M. H. Ghahramani, M. C. Zhou, and C. T. Hon, ‘‘Toward cloud com-

puting QoS architecture: Analysis of cloud systems and cloud services,’’
IEEE/CAA J. Automatica Sinica, vol. 4, no. 1, pp. 6–18, Jan. 2017.

[3] M. A. Rodriguez and R. Buyya, ‘‘A taxonomy and survey on scheduling
algorithms for scientific workflows in IaaS cloud computing environ-
ments,’’ Concurrency Comput., Pract. Exper., vol. 29, no. 8, p. e4041,
2017.

[4] J. Schad, J. Dittrich, and J. A. Quiané-Ruiz, ‘‘Runtime measurements in
the cloud: Observing, analyzing, and reducing variance,’’ Proc. VLDB
Endowment, vol. 3, nos. 1–2, pp. 460–471, Sep. 2010.

[5] K. R. Jackson et al., ‘‘Performance analysis of high performance comput-
ing applications on the Amazon Web services cloud,’’ in Proc. 2nd IEEE
Int. Conf. Cloud Comput. Technol. Sci., Nov./Dec. 2010, pp. 159–168.

[6] O. H. Ibarra and C. E. Kim, ‘‘Heuristic algorithms for scheduling indepen-
dent tasks on nonidentical processors,’’ J. ACM, vol. 24, no. 2, pp. 280–289,
Apr. 1977.

[7] J. Meena, M. Kumar, and M. Vardhan, ‘‘Cost effective genetic algorithm
for workflow scheduling in cloud under deadline constraint,’’ IEEE Access,
vol. 4, pp. 5065–5082, 2016.

[8] Z. Zhu, G. Zhang, M. Li, and X. Liu, ‘‘Evolutionary multi-objective
workflow scheduling in cloud,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27,
no. 5, pp. 1344–1357, May 2016.

[9] L. Liu, M. Zhang, R. Buyya, and Q. Fan, ‘‘Deadline-constrained coevo-
lutionary genetic algorithm for scientific workflow scheduling in cloud
computing,’’ Concurrency Comput., Pract. Exper., vol. 29, no. 5, p. e3942,
Mar. 2017.

[10] M.Mao andM.Humphrey, ‘‘Auto-scaling tominimize cost andmeet appli-
cation deadlines in cloud workflows,’’ in Proc. Int. Conf. High Perform.
Comput. Netw., Storage Anal., Nov. 2011, Art. no. 49.

[11] N. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, ‘‘Cost- and
deadline-constrained provisioning for scientific workflow ensembles in
IaaS clouds,’’ in Proc. Int. Conf. High Perform. Comput. Netw., Storage
Anal., May 2012, Art. no. 22.

[12] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, ‘‘Deadline-
constrained workflow scheduling algorithms for infrastructure as a ser-
vice clouds,’’ Future Gener. Comput. Syst., vol. 29, no. 1, pp. 158–169,
Jan. 2013.

[13] R. N. Calheiros and R. Buyya, ‘‘Meeting deadlines of scientific workflows
in public clouds with tasks replication,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 7, pp. 1787–1796, Jul. 2014.

[14] D. Poola, S. K. Garg, R. Buyya, Y. Yang, and K. Ramamohanarao, ‘‘Robust
scheduling of scientific workflows with deadline and budget constraints in
clouds,’’ in Proc. 28th Int. Conf. Adv. Inf. Netw. Appl. (AINA), May 2014,
pp. 858–865.

[15] E.-K. Byun, Y.-S. Kee, J.-S. Kim, E. Deelman, and S. Maeng, ‘‘BTS:
Resource capacity estimate for time-targeted science workflows,’’ J. Par-
allel Distrib. Comput., vol. 71, no. 6, pp. 848–862, Jun. 2011.

[16] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng, ‘‘Cost optimized pro-
visioning of elastic resources for application workflows,’’ Future Gener.
Comput. Syst., vol. 27, no. 8, pp. 1011–1026, Oct. 2011.

[17] H. Wu, X. Hua, Z. Li, and S. Ren, ‘‘Resource and instance hour minimiza-
tion for deadline constrained DAG applications using computer clouds,’’
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 3, pp. 885–899, Mar. 2016.

[18] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, ‘‘A particle swarm
optimization-based heuristic for schedulingworkflow applications in cloud
computing environments,’’ in Proc. 24th IEEE Int. Conf. Adv. Inf. Netw.
Appl., Apr. 2010, pp. 400–407.

[19] M. A. Rodriguez and R. Buyya, ‘‘Deadline based resource provisioningand
scheduling algorithm for scientific workflows on clouds,’’ IEEE Trans.
Cloud Comput., vol. 2, no. 2, pp. 222–235, Apr./Jun. 2014.

[20] Z.-G. Chen, K.-J. Du, Z.-H. Zhan, and J. Zhang, ‘‘Deadline constrained
cloud computing resources scheduling for cost optimization based on
dynamic objective genetic algorithm,’’ in Proc. IEEE Congr. Evol. Com-
put., May 2015, pp. 708–714.

[21] X. Yin, X. Ma, and K. S. Trivedi, ‘‘An interacting stochastic models
approach for the performance evaluation of DSRC vehicular safety com-
munication,’’ IEEE Trans. Comput., vol. 62, no. 5, pp. 873–885,May 2013.

[22] R. Ghosh, F. Longo, F. Frattini, S. Russo, and K. S. Trivedi, ‘‘Scalable
analytics for IaaS cloud availability,’’ IEEE Trans. Cloud Comput., vol. 2,
no. 1, pp. 57–70, Jan. 2014.

[23] W. Zheng et al., ‘‘Percentile performance estimation of unreliable IaaS
clouds and their cost-optimal capacity decision,’’ IEEE Access, vol. 5,
pp. 2808–2818, Feb. 2017.

[24] F. Dong, J. Luo, and B. Liu, ‘‘A performance fluctuation-aware stochastic
scheduling mechanism for workflow applications in cloud environment,’’
IEICE Trans. Inf. Syst., vol. E97.D, no. 10, pp. 2641–2651, May 2014.

[25] H. Ma, H. Zhu, Z. Hu, W. Tang, and P. Dong, ‘‘Multi-valued collaborative
QoS prediction for cloud service via time series analysis,’’ Future Gener.
Comput. Syst., vol. 68, pp. 275–288, Mar. 2017.

[26] J. Li, X. Luo, Y. Xia, Y. Han, and Q. Zhu, ‘‘A time series and reduction-
based model for modeling and QoS prediction of service composi-
tions,’’ Concurrency Comput., Pract. Exper., vol. 27, no. 1, pp. 146–163,
Jan. 2015.

[27] Y. Xia, M. Zhou, X. Luo, S. Pang, and Q. Zhu, ‘‘Stochastic modeling and
performance analysis of migration-enabled and error-prone clouds,’’ IEEE
Trans. Ind. Informat., vol. 11, no. 2, pp. 495–504, Apr. 2015.

[28] Y. Xia, M. Zhou, X. Luo, Q. Zhu, J. Li, and Y. Huang, ‘‘Stochastic
modeling and quality evaluation of infrastructure-as-a-service clouds,’’
IEEE Trans. Autom. Sci. Eng., vol. 12, no. 1, pp. 162–170, Jan. 2015.

[29] Q. Wu, Q. Zhu, X. Jian, and F. Ishikawa, ‘‘Broker-based SLA-aware
composite service provisioning,’’ J. Syst. Softw., vol. 96, pp. 194–201,
Oct. 2014.

[30] D. Whitley, ‘‘A genetic algorithm tutorial,’’ Statist. Comput., vol. 4, no. 2,
pp. 65–85, Jun. 1994.

[31] Z. Ding, C. Jiang, and M. Zhou, ‘‘Design, analysis and verification of real-
time systems based on time Petri net refinement,’’ ACM Trans. Embedded
Comput. Syst., vol. 12, no. 1, pp. 4:1–4:18, Jan. 2013.

VOLUME 6, 2018 61501



W. Li et al.: Fluctuation-Aware and Predictive Workflow Scheduling in Cost-Effective IaaS Clouds

[32] N. Ran, H. Su, and S. Wang, ‘‘An improved approach to test diagnos-
ability of bounded Petri nets,’’ IEEE/CAA J. Autom. Sinica, vol. 4, no. 2,
pp. 297–303, Apr. 2017.

[33] Y. Chen, Z. Li, and M. Zhou, ‘‘Optimal supervisory control of flexible
manufacturing systems by Petri nets: A set classification approach,’’ IEEE
Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 549–563, Apr. 2014.

[34] X. Luo, M. Zhou, M. Shang, S. Li, and Y. Xia, ‘‘A novel approach to
extracting non-negative latent factors from non-negative big sparse matri-
ces,’’ IEEE Access, vol. 4, pp. 2649–2655, 2016.

[35] X. Luo, M. C. Zhou, S. Li, Z. You, Y. Xia, and Q. Zhu, ‘‘A nonnegative
latent factor model for large-scale sparse matrices in recommender systems
via alternating direction method,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 3, pp. 579–592, Mar. 2016.

[36] T. Mareda, L. Gaudard, and F. Romerio, ‘‘A parametric genetic algorithm
approach to assess complementary options of large scale wind-solar cou-
pling,’’ IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 260–272, 2017.

[37] Y. Hou, N.Wu,M. C. Zhou, and Z. Li, ‘‘Pareto-optimization for scheduling
of crude oil operations in refinery via genetic algorithm,’’ IEEE Trans.
Syst., Man, Cybern. Syst., vol. 47, no. 3, pp. 517–530, Mar. 2017.

WEILING LI received the B.S. and M.S. degrees
in software engineering from Chongqing Univer-
sity in 2010 and 2014, respectively, where he is
currently pursuing the Ph.D. degree in software
engineering with the Key Laboratory of Software
Theory and Technology. His research interests
are in Cloud computing, workflows, and software
quality.

YUNNI XIA (SM’14) received the B.S. degree
in computer science from Chongqing Univer-
sity, China, in 2003, and the Ph.D. degrees in
computer science from Peking University, China,
in 2008. Since 2008, he has been a Professor
with the School of Computer Science, Chongqing
University. He has authored or co-authored over
50 research publications. His research interests are
in Petri nets, software quality, performance evalu-
ation, and cloud computing system dependability.

MENGCHU ZHOU (S’88–M’90–SM’93–F’03)
received the B.S. degree from the Nanjing Uni-
versity of Science and Technology, Nanjing, China
in 1983, the M.S. degree from the Beijing Institute
of Technology, Beijing, China, in 1986, and the
Ph.D. degree from Rensselaer Polytechnic Insti-
tute, Troy, NY, USA, in 1990. He joined New
Jersey Institute of Technology (NJIT), Newark,
NJ, USA, in 1990, where he is a Distinguished
Professor of Electrical and Computer Engineering

and the Director of the Discrete-Event Systems Laboratory. He has over
700 publications, including 12 books, 400 journal papers (over 300 in IEEE
transactions), and 28 book-chapters. He has 11 patents and several pending
ones. His research interests are in intelligent automation, Petri nets, Inter-
net of Things, Web service, workflow, big data, transportation and energy
systems.

He was invited to lecture in Australia, Canada, China, France, Germany,
Hong Kong, Italy, Japan, Korea, Mexico, Qatar, Saudi Arabia, Singapore,
Taiwan, and USA, and served as a Plenary/Keynote Speaker for many
conferences. He is a Life Member of the Chinese Association for Science
and Technology-USA and served as its President in 1999. He is fellow of the
International Federation of Automatic Control, American Association for the
Advancement of Science, and Chinese Association of Automation. He is also
the VP for Conferences and Meetings of IEEE SMC Society. He has been
among most highly cited scholars for years and ranked top one in the field
of engineering worldwide in 2012 by Web of Science/Thomson Reuters and

now Clarivate Analytics. He was a recipient of the NSF’s Research Initiation
Award, the CIM University-LEAD Award from Society of Manufacturing
Engineers, the Perlis Research Award and Fenster Innovation in Engineering
Education Award from NJIT, the Humboldt Research Award for US Senior
Scientists from Alexander von Humboldt Foundation, the Leadership Award
and Academic Achievement Award from Chinese Association for Science
and Technology-USA, the Asian American Achievement Award from Asian
American Heritage Council of New Jersey, and Outstanding Contributions
Award, Distinguished Lecturership, the Franklin V. Taylor Memorial Award
and the Norbert Wiener Award from the IEEE SMC Society, and the Dis-
tinguished Service Award from the IEEE Robotics and Automation Soci-
ety. He is the founding Co-Chair of the Enterprise Information Systems
Technical Committee (TC) and Environmental Sensing, Networking, and
Decision-making TC of IEEE SMC Society. He was the General Chair of
the IEEE Conference on Automation Science and Engineering, Washington
D.C., USA, in 2008, the General Co-Chair of the 2003 IEEE International
Conference on System,Man and Cybernetics (SMC),Washington DC, USA,
in 2003, the Founding General Co-Chair of the 2004 IEEE international
conference on Networking, Sensing and Control, Taipei, in 2004, and the
General Chair of the 2006 IEEE international conference on Networking,
Sensing and Control, Ft. Lauderdale, FL, USA, in 2006. He was the Pro-
gram Chair of the 2010 IEEE International Conference on Mechatronics
and Automation, in 2010, Xi’an, China, the 1998 and 2001 IEEE Inter-
national Conference on SMC and 1997 IEEE International Conference on
Emerging Technologies and Factory Automation. He organized and chaired
over 100 technical sessions and served on program committees for many
conferences. He has led or participated in over 50 research and education
projects with total budget over 12M , funded byNational Science Foundation,
Department of Defense, NIST, New Jersey Science and Technology Com-
mission, and industry. He is the founding Editor of the IEEE Press Book
Series on Systems Science and Engineering and the Editor-in-Chief of the
IEEE/CAA JOURNAL OF AUTOMATICA SINICA. He served as an Associate Editor
of IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, the IEEE TRANSACTIONS

ONAUTOMATION SCIENCEAND ENGINEERING, the IEEE TRANSACTIONSON SYSTEMS,
MAN AND CYBERNETICS: SYSTEMS, and the IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, and the Editor of the IEEETRANSACTIONSONAUTOMATION SCIENCE

AND ENGINEERING. He is also an Associate Editor of the IEEE TRANSACTIONSON

INTELLIGENT TRANSPORTATION SYSTEMS, the IEEE INTERNET OF THINGS JOURNAL,
and Frontiers of Information Technology & Electronic Engineering.

XIAONING SUN received the B.S. degree in com-
puter science from Chongqing University, China,
in 2015, where she is currently pursuing the Ph.D.
degree with the College of Computer Science.
Her current research interests include performance
evaluation, heterogeneous cloud services, and sci-
entific workflows.

QINGSHENG ZHU received the B.S., M.S.,
and Ph.D. degrees in computer science from
ChongqingUniversity, Chongqing, China, in 1982,
1985, and 2000, respectively. He was a Visiting
Scholar with the University of London, London,
U.K., from 1993 to 1994, and also a Visiting
Professor with the University of Illinois, Chicago,
IL, USA, from 2001 to 2002. He is currently a Pro-
fessor with the Computer College, and the Director
of the Key Laboratory of Software Theory and

Technology, Chongqing University. His research interests include services
computing and data mining.

61502 VOLUME 6, 2018


	INTRODUCTION
	RELATED STUDIES
	SYSTEM MODEL
	ARIMA MODEL
	PROBLEM FORMULATION
	GENETIC ALGORITHM FOR WORKFLOW SCHEDULING
	ENCODING
	CROSSOVER
	MUTATION
	INITIAL POPULATION
	COMPLEXITY ANALYSIS

	CASE STUDY AND COMPARISON
	CONCLUSIONS AND FURTHER STUDIES
	REFERENCES
	Biographies
	WEILING LI
	YUNNI XIA
	MENGCHU ZHOU
	now
	XIAONING SUN
	QINGSHENG ZHU


