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ABSTRACT Accurate detection of characteristic electrocardiogram (ECG) waves is necessary for
ECG analysis and interpretation. In this paper, we distinguish four processing steps of detection algorithms:
noise and artifacts reduction, transformations, fiducial marks selection of wave candidates, and decision rule.
Processing steps combinations from several detection algorithms are used to find QRS, P, and T wave peaks.
In addition, we consider the search window parameter modification based on waveform templates extracted
by heart cycles clustering. The methods are extensively evaluated on two public ECG databases containing
QRS, P, and T wave peaks annotations. We found that the combination of morphological mathematical
filteringwith Elgendi’s algorithmworks best for QRS detection onMIT-BIHArrhythmiaDatabase (detection
error rate (DER= 0.48%, Lead I). The combination of modified Martinez’s PT and wavelet transform (WT)
methods gave the best results for P wave peaks detection on both databases, when both leads are consid-
ered (MIT-BIH arrhythmia database: DER = 32.13%, Lead I, DER = 42.52%, Lead II; QT Database:
DER = 21.23%, Lead I, DER = 26.80%, Lead II). Waveform templates in combination with Martinez’s
WT obtained the best results for T wave peaks detection on QT database (DER = 25.15%, Lead II). This
paper demonstrates that combining some of the best proposed methods in literature leads to improvements
over the original methods for ECG waves detection while maintaining satisfactory computation times.

INDEX TERMS ECG, characteristic waves, automatic detection algorithms, clustering, expert system,
biomedical signal analysis.

I. INTRODUCTION
Electrocardiography has been used as a heart diseases’ diag-
nostic tool for many years. Electrocardiogram (ECG) reflects
electric polarization and depolarization of the heart chambers.
Characteristic waves in ECG are known as Pwave, QRS com-
plex, and T wave. P wave reflects depolarization of the atria,
QRS complex corresponds to ventricular depolarization, and
T wave represents ventricular repolarization, i.e. restoration
of the resting membrane potential [1]. The repolarization of
atria is concealed by depolarization of ventricles.

Cardiologists monitor patients’ health visually, by inspect-
ing signal morphology present in ECG record (usually all
12 leads of standard ECG). This requires a tremendous
amount of time and expert human resources with specialized
education and practice. To deduct the time and amount of

required doctors’ attention per patient, a computer based
expert system for processing and analysis of ECG records and
diagnosis of the cardiovascular diseases can be of great help.

Duration and amplitude of ECG waves (P, QRS, T) and
segments between the waves (ST segment, QT interval,
PR interval) are used to indicate and detect patients’ nor-
mal or abnormal heart rhythm and state of health. Addi-
tional diagnostic characteristics related to ECG morphology
include: P wave absence and presence of fibrillatory waves in
atrial fibrillation; J point amplitude (from baseline), R/S wave
ratio, ST segment slope in acutemyocardial ischemia, etc. [2].
Heart rate variability, a time series extracted from cardiac
interbeat (R-R) intervals, is also an important indicator of
patient’s overall health and may be used to help detect
particular disorders, such as congestive heart failure [3].
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Precise detection of R waves is an essential step in deriving
the heart rate variability time series.

Accurate detection of amplitude and time index of peaks,
onset and offset points of all characteristic ECG waves is
required to extract features for development of an expert sys-
tem for heart condition diagnoses, ECG recognition and other
applications [4]. In this respect, detection of QRS complex
(especially, the R spike peak) is a highly researched topic,
due to attainability of annotated signal databases. Accuracy
in the sense of sensitivity and positive predictive value is
above 99% in most of the related works [5]–[10]. On the
other hand, detection of P and T waves is still unsatisfac-
tory, due to limited availability of annotated datasets [11].
Different approaches have been researched in order to ana-
lyze characteristic waves in ECG signals: algorithms based
on various derivates and threshold decisions, algorithms
based on complex transformations, such as wavelet [12]–[15]
and Hilbert-Huang transforms [16]–[20], or algorithms
that use machine learning methods, like artificial neural
networks [21], [22].

Themajority of proposed algorithms in literature are evalu-
ated on a single major lead (mostlyMLII), as it yields the best
representation of ECG characteristic waves. The reported
accuracy evaluation in literature lacks the information on
how well the algorithms perform on other leads, as they may
be accidentally switched during recording sessions. Also,
the evaluation of the algorithms’ results depends on the exact
determination of the ECG characteristic wave points, which is
performed by comparing with the already given annotations.
This process does not allow comparis the results of the algo-
rithms’ individual processing steps. In this work, we divided
algorithms into processing steps to evaluate improvements
in detection accuracy of characteristic ECG waves, when
specific steps are combined.

We concentrate on five algorithms which are numeri-
cally efficient and do not require training sets. From these
algorithms, we distinguish four processing steps in
ECG characteristic wave detection, namely: 1) noise and
artifact reduction, 2) transforms, 3) fiducial marks selection
of wave candidates, and 4) decision rule (similar to three steps
reported in [5]). Based on these steps, we aim at adapting
the described detection algorithms by combining certain
steps for the optimal waves’ detection capabilities. Moreover,
we explore the search window parameter modification based
on template waveforms extracted by heart cycles clustering.
This work is the continuation of our previous study that
aimed at maximal accuracy of ECG waves detection [23].
Our primary motivation is to provide an efficient online
service to both medical professionals and engineers, related
to the analysis of multiple heterogeneous biomedical time
series [24].

The contributions of this work are, as follows.
1) We show that algorithms’ accuracy can be improved

both for QRS complex and P and T waves peaks detec-
tion, which is achieved by considering combinations of
the processing steps and methods.

2) We introduce parameter modification based on wave-
form templates extracted by heart cycles clustering and
show that particular methods for P and T waves peaks
detection may benefit from this method.

3) We present a modification of Martinez’s algorithm
based on phasor transform (PT).

The paper is structured as follows. Section II describes
the algorithms and their combinations, parameter modifica-
tion based on template waveforms, and the used databases.
Section III summarizes the results obtained for the different
analyzed databases. The outcomes are discussed in section IV.
Finally, section V presents the concluding remarks and
intended future work.

II. METHODS
A. ALGORITHMS’ OVERVIEW
Five ECG characteristic waves’ detection algorithms are con-
sidered in this paper. The purpose of this subsection is to
provide a brief and concise description of the algorithms.
As one of the algorithms also required some modifications,
the modifications are also explained in detail here. For the
more in-depth descriptions of the non-modified algorithms,
we refer the reader to the given references.

The reported detection results in terms of sensitivity (Se)
and positive prediction (PPV) of the algorithms considered
in our work are given in Table 1. The algorithms are selected
based on their different approaches to processing steps (like
Pan Tompkins’ adaptive thresholding, mathematical mor-
phological transform from Sun et al., phasor and wavelet
transforms from Martinez and moving average approach
from Elgendi). A comparative study of ECG segmentation
algorithms (which includes three of the algorithms consid-
ered in this paper) can be found in [25]. We note that
there are other algorithms found in literature that use sim-
ilar processing steps and match our selection rule (numer-
ically efficient and do not require training sets), such as
Vázquez-Seisdedos et al. [26], with the proposed geomet-
ric method, Vítek et al. [27], with the continuous wavelet
transform, Singh and Gupta [28], with the maximum vertical
offset, Di Marco and Chiari [29], with the discrete wavelet
transform and adaptive thresholding. However, in this paper,
we consider only the five algorithms that reported the best
accuracy in detection of the wave peaks.

1) PAN TOMPKINS
Pan Tompkins is a well known algorithm for R spike detec-
tion, described in [5]. The first step of this algorithm is to
filter signal with a desirable bandpass filter to maximize
the QRS energy. The frequency band chosen in the original
paper is 5-15 Hz. The band is realized with a cascade of low
and high-pass filters. In the original paper, the filters were
designed for the sampling frequency of 200 Hz. To provide
the QRS complex slope information, the filtered signal is
differentiated, squared and integrated with a moving average
window of 150 ms width in order to make all data posi-
tive and to obtain relevant waveform feature information.
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TABLE 1. Results of detection accuracy reported by researchers.

Fiducial marks are extracted from the peaks or maximum
slopes of the signal, after which the unique adaptive threshold
decisionmaking on theQRS candidates is applied. Pan Tomp-
kins’ algorithm is a very simple, yet effective, algorithm for
QRS complex detection.

2) ELGENDI’s ALGORITHM BASED ON TWO MOVING
AVERAGE FILTERS
Elgendi’s algorithm is a somewhat novel algorithm for
QRS detection described in 2013 [6]. Similar to Pan Tomp-
kins’ algorithm, the first step is a Butterworth passband filter.
Thereafter, the squaring is applied. To extract the fiducial
marks (or blocks of signals which are containing fiducial
marks, called blocks of interest), two moving averages are
applied. The width of both moving average (MA) windows
are based on a priori knowledge about the average
ECG intervals, chosen to fit the width of QRS complex
(for the first moving average filter), and the width (duration)
of one heartbeat (for the second moving average filter).

Blocks of interest are segments of signal where the output
from the first moving average filter (MA1) exceed the output
from the second one (MA2), with the addition of a threshold
offset. If the block width is greater than or equal to the width
of the first MA window, it is classified as QRS complex. The
absolute maximum value in a block is classified as an R spike.
Elgendi found that the optimal algorithm parameters (tested
on the MIT-BIH Arrhythmia Database) are: passband filter
frequency band set to 8-20 Hz, window width for the first
MA (W1) equal to 97.2ms and for the secondMA (W2) equal
to 611 ms.

Elgendi et al. [30] adapted the described algorithm for the
detection of P and T peakswith thewidth ofW1 andW2 equal
to half of the average P wave duration (55 ms) and average T
wave duration (110 ms), respectively. Blocks of interest are
searched in respect to R peaks.

3) SUN YAN’s ALGORITHMS BASED ON MATHEMATICAL
MORPHOLOGY OPERATIONS
Sun Yan’s algorithm for characteristic ECG waves detection
is described in [32]. It uses multiscale morphological deriva-
tive (MMD) with fixed scale to enhance the slopes in sig-
nal. Preprocessing is done with mathematical morphological

filtering (MMF) for noise reduction and baseline correction,
which is described in [34]. Local minima are considered as
the fiducial marks for R waves, as the slope of the QRS com-
plex produces negative local minimum after the MMD trans-
formation. Thresholding decision is set by the histogram of
the MMD transformed data. Unfortunately, the histogram
method is not adequately described in the paper, so we did
not implement it in our work. After detecting the R wave,
simple peak search loop is applied in order to determine the
peaks, offsets and onsets of P and T waves.

4) MARTINEZ’S ALGORITHMS BASED ON WAVELET
TRANSFORM
Martinez et al. [31] developed an algorithm for
ECGwave delineation based onwavelet transformation (WT)
approach adapted from [35]. The algorithm applies WT
with a quadratic spline [36] for prototype wavelet ψ(t) over
the digitized ECG signal without any prefiltering. Using
the algorithme à trous filter-bank implementation of WT,
the frequency responses of the first five scales (21 – 25) are
computed.

For QRS detections, the algorithm searches across the
scales for ‘‘maximum modulus lines’’ exceeding adaptive
thresholds at scales 21 to 24. The zero crossing of the WT
at scale 21 between a positive maximum - negative minimum
pair, or negative minimum - positive maximum (for negative
waves) is then marked as a QRS.

For Twave detection, the algorithm looks for local maxima
of WT at scale 24 in the search window defined with the
QRS position and RR interval. Twave is present if at least two
local maxima exceed the threshold εT. In that case, the local
maxima ofWT greater than γT are considered as slopes of the
wave and the zero crossing between them as the wave peak.
The strategy to identify the P wave peak is similar, except the
thresholds εP and γP are adjusted for P peak detection.

5) MARTINEZ’S ALGORITHM BASED ON PHASOR
TRANSFORM WITH MODIFICATIONS
Martinez et al. [33] describes a novel ECG delineator based
on phasor transform (PT). PT converts each ECG sample into
a complex number (called phasor), preserving its information
regarding magnitude and phase values. With the application
of PT to the ECG signal, the slight wave variations in the
original signal are maximized.

According to [33], the PT algorithm for QRS detection
has a sensitivity of 99.71% and a positive predictive value
of 99.97% on MIT-BIH Arrhythmia Database. With all our
efforts in changing the baseline removal filter and the nor-
malization method, we have never got the results in the same
range. Therefore, we have usedMartinez’s PT algorithm only
for P and T wave detection, with R peaks vector as an input
parameter. For the input R peaks vector, depending on the
application, referent record’s R peaks annotations or R peaks
detected with some other QRS detection method were used.

During the implementation of theMartinez’s PT algorithm,
we had to introduce some modifications, because the authors
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did not fully explain all steps, especially the necessary prepro-
cessing operations before applying the PT, a fact also noted
in [37]. In continuation, wherever we mention Martinez’s
PT algorithm, we imply our modified version.

The first step of our modified algorithm was forward/
backward filtering using third order Butterworth passband
filter with frequency band 0.5-20 Hz in order to remove
baseline wander and high frequency noise from ECG signal,
as a combination of original Martinez’s and Elgendi’s algo-
rithm preprocessing step. ECG normalization to range [−1 1]
was implemented by dividing the whole ECG signal with its
maximum R-peak amplitude after discarding outliers spikes,
which was implemented by discarding 0.1% of the largest
ECG signal samples.

For identification ofQ and Swaves, themodified algorithm
starts from the input R peaks vector. The algorithm first
detects two boundary points, γQRS− and γQRS+ as the closest
points to the R peak in which the phase variation is lower
than π /8. We have also included a time constraint: an interval
between γ and R peak cannot be longer than 0.1 s. Otherwise,
the threshold, initially set to π /8, is increased by 0.05 rad
and the process of γ point detection is repeated until the time
constraint is satisfied. The algorithm then creates a window
of 55 ms before the boundary point γQRS− in order to search
for the Q wave. For the defined window, increased when
compared to the original algorithm, the algorithm applies PT
to the absolute value of the ECG, subtracting previously the
median of the segment.

According to the original algorithm, if, in the search
window, no point presents a phase higher than 50% of the
maximum variation within the window, the local minimum
is annotated as a Q point. Otherwise, the point with the
highest magnitude among those exceeding threshold is anno-
tated as a Q point. In our modification, we have used a
constraint for which the Q wave is located in the interval
between γQRS− and a positive peak closest to the R peak.
If there are no positive peaks, the point where the elbow in
the ECG signal is the largest is annotated as the Q point.
Similar strategy is used for S wave delineation. The only
difference is that the search window is placed after the
γQRS+ point.

For P and T waves peak detection, the PT algorithm is
modified in a way that introduces a sliding search window
across search segment with fixed boundaries. For P wave
search, the segment is defined as the initial search window
in the original Martinez’s PT algorithm, the length of the
search window is a quarter of the last RR interval with
the Q peak position as a boundary. Initially, the length of
the search window is the same as the search segment and, if
no P peak is detected, the width of the search window is
iteratively reduced until the detection of the P wave peak
using the original PT detection method is obtained [27]. For
T wave detection, the length of the search segment is doubled
to a half of the last RR interval and the S wave is considered
as the boundary point. Furthermore, because the original
PT algorithm presumes that the T wave is always positive,

and cannot detect inverted Twaves, we havemodified the rule
for T peak detection. The local phase maximum is annotated
as a T peak if the point is the peak and if its magnitude is
3 times larger than the magnitude of the local minimum. The
local phase minimum is annotated as a T peak if the point
is the peak and if its magnitude is 2.7 times larger than the
magnitude of the local maximum.

We summarize the list of modifications made to the
Martinez’s PT algorithm below:

1) Forward/backward filtering using third order
Butterworth passband filter with frequency band
0.5-20 Hz

2) ECG normalization after discarding outliers spikes
(discarding 0.1% of the largest ECG signal samples)

3) A time constraint for an interval between γ and R peak
interval

4) Increased Q wave window search
5) A constraint for which the Q wave is located in the

interval between γQRS− and a positive peak closest to
the R peak, similarly for the S wave

6) The point where the elbow in the ECG signal is the
largest is annotated as the Q point

7) Introduction of a sliding search window across for P
and T wave peak detection

8) Modified T wave peak detection rule
In this work, we also try the combination ofMartinez’sWT

and Martinez’s PT algorithm. In this combination, we used
QRS onset and QRS offset obtained by Martinez’s WT algo-
rithm as an input to determine the boundaries for search
segments during the detection of P and T waves with the
modified Martinez’s PT algorithm.

B. DATA
Two databases are used in this work to evaluate the methods:
MIT-BIH Arrhythmia Database [38] and QT database [39],
both freely available from the PhysioNet portal [40]. The
databases were chosen based on the availability of both QRS
and P and T wave annotations. A brief description of the used
databases are given in this subsection.

1) MIT-BIH ARRHYTHMIA DATABASE
The database contains 48 ECG recordings sampled at 360 Hz.
The duration of each recording is 30 minutes. Recordings
102, 104, 107, and 217 were excluded from the analysis
because of the paced beats presence. Recording 207 was
also excluded due to a great number of ventricular flut-
ter waves. MIT-BIH Arrhythmia Database is widely used
for testing the R peak detection algorithms. Accessibility
of P and T wave annotations were limited to the QT database
for public use. Elgendi et al. [41] generously made a publicly
available reannotation of MIT-BIH Arrhythmia Database that
now includes P and T waves annotations. Due to attainability
of only peak annotations for MIT-BIH Arrhythmia Database,
detection of onsets and offsets of each wave (QRS com-
plex, P and T wave) are not considered in the current
paper.
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TABLE 2. The number of analyzed recordings and annotated waves peaks
in the selected databases.

2) QT DATABASE
The database contains 105 ECG records, which are sampled
at (or resampled to) 250 Hz. The duration of each recording
is 15 minutes. Only the last 5 minutes of the records are
annotated. The records inQTDatabasewere taken from seven
different databases. A section of ECG record is selected in
order to avoid significant baseline wander or other artifacts.
Between 30 and 100 representative beats were manually
annotated by cardiologists in each record, who identified
the onset, peak, and offset of P waves, onset, peak, and
offset of QRS complexes, the peak and offset of T waves,
and (if present) the peak and offset of U-waves [39]. Anno-
tations in .atr format, reference beat annotations from the
original database, were recalculated for record sel232 in the
QT database on the basis of the record 232 annotations from
the MIT-BIH Arrhythmia Database. We tested the algorithms
on the whole dataset, wherever the annotations were avail-
able. We used only .atr annotations of R peaks and compared
only P and T waves peaks that are annotated.

The characteristics of the used records from both databases
are given in Table 2. The algorithms were tested on both
available leads for each record. For the record 114 in
MIT-BIH Arrhythmia Database (and sel114 of the QT
database) the leads were switched, as recommended in [38].

C. EXPLORATION OF PROCESSING STEPS COMBINATIONS
Each of the algorithms described in Section II.A. can be
separated into four processing steps:

1) noise and artifact reduction (preprocessing)
2) transformations that enhance the desired property of the

wave (e.g. slope of the QRS complex)
3) fiducial marks selection
4) decision if the selected fiducial marks represent char-

acteristic wave peak.

In this subsection, we elaborate on the procedure for com-
bining various processing steps.

We explored the influence of the selected preprocessing
step on the algorithms, so we combined the preprocess-
ing step of Elgendi’s and Sun Yan’s algorithms (MMF)
with the other algorithms to improve noise and artifact
reduction. Also, MMD transformation step was introduced
into the combinations to test its behavior within Elgendi’s
and Martinez’s WT and PT algorithms. Adaptive thresh-
olding from Pan Tompkins’ algorithm was combined with

Elgendi’s algorithm, to explore possible improvements in the
reduction of false positives detection.

Fig. 1 shows the decomposition of the described algorithms
into four processing steps for R peak detection. We do not
delve into the mathematical details of the specific steps for
the inspected algorithms, as these are given in the corre-
sponding literature. In the upper block diagram of Fig. 1,
the steps of QRS detection algorithms are shown. Below
that, a block diagram describing the combinations of the
processing steps is shown. In the given example, MMF and
MMD are added to Elgendi’s algorithm as an additional
preprocessing step. In Fig. 2, the P and T waves detection
processing steps are presented, along with an additional com-
bination block diagram. Dashed lines in the block diagrams
in Fig. 1 and Fig. 2 indicate signal paths from the original
algorithms.

As the number of all possible combinations is quite large,
not all combinations are presented in the Results section. The
combinations which yielded poor results (such as the com-
binations of MMF, MMD and Martinez’s PT algorithm) are
not presented or discussed. Here follows the list of methods
that we evaluated, and later compared, with the results of the
original algorithms (section IV).

QRS complex detection:

◦ Method 1: Pan Tompkins’ original algorithm
(5 – 15 bandpass filtering)

◦ Method 2: Pan Tompkins’ algorithm with 8 – 20 band-
pass filtering

◦ Method 3: mathematical morphological filtering (MMF)
with Pan Tompkins’ algorithm

◦ Method 4: Elgendi’s algorithm
◦ Method 5: mathematical morphological filtering (MMF)

with Elgendi’s algorithm
◦ Method 6: multiscale morphological derivative (MMD)

with Elgendi’s algorithm
◦ Method 7: MMF with MMD and Elgendi’s algorithm

Method 8: Elgendi’s algorithm with Pan Tompkins’
adaptive thresholding

◦ Method 9: Martinez’s WT algorithm
◦ Method 10: mathematical morphological filtering

(MMF) with Martinez’s WT algorithm
◦ Method 11: multiscale morphological derivative

(MMD) with Martínez’s WT algorithm
◦ Method 12: MMF with MMD and Martinez’s

WT algorithm

P and T wave detection:

◦ Method 1: Martinez’s PT algorithm
◦ Method 2: Martinez’s PT algorithm with templates

(described in Section II.D)
◦ Method 3: Martinez’s WT algorithm
◦ Method 4: Martinez’s WT algorithm with templates

(described in Section II.D)
◦ Method 5: Martinez’s WT with Martinez’s

PT algorithms
◦ Method 6: Elgendi’s algorithm
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FIGURE 1. Processing steps in the detection algorithms of ECG R peaks (above) and block diagram example of processing step combination for R peak
detection (below, the example of QRS complex detection method 7 – combination of MMF with MMD and Elgendi’s QRS detection algorithm).

◦ Method 7: mathematical morphological filtering (MMF)
with Elgendi’s algorithm

◦ Method 8: mathematical morphological filtering (MMF)
with Martinez’s PT algorithm

◦ Method 9: MMF with Martinez’s WT algorithm
◦ Method 10: MMF with MMD and Martinez’s WT

algorithm

D. SEARCH WINDOW PARAMETER MODIFICATION BASED
ON WAVEFORM TEMPLATES EXTRACTED BY HEART
CYCLES CLUSTERING
During the fiducial mark selection step for the detection of
P and T waves, search windows are set relative to R peaks.
The parameters of the search windows are based and defined
according to the standard waveform in RR interval. This
causes problems in detection when there is a large deviation
from this standard. To address this problem, we explore the
search window parameter modification based on waveform
templates. Here, we describe the novel approach of using
waveform templates to improve the detection of P and Twave
peaks.

Parameter modification based on waveform templates is
inspired by [42], where heart cycles are clustered based
on features calculated from time duration and geometry of
the cycles. We have opted for the approach to cluster heart
cycles by the shape of the time series using the k-spectral
centroid algorithm [43], a time series clustering algorithm
which uses a similarity metric that is invariant to scaling and
shifting. This method finds the most representative shape (the
cluster centroid) for each cluster. This is important for our
application, because the most representative shapes are in
fact the most representative heart cycle waveform templates.
By using the k-spectral centroid algorithm, instead of some
clustering method based on features calculated from time
series, the influence of features to the shape of the obtained
template is avoided, as the clusters deal with the time series
directly.

According to [42], the complete heart cycle is defined
physiologically as the ECG segment which begins at the
P wave onset and ends with the T wave offset. However,
because the first step of ECG delineation is QRS com-
plex detection, the sequence of heart cycles is assumed to
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FIGURE 2. Processing steps in the detection algorithms of ECG P and T waves (above) and a block diagram example of processing step combination
for P and T peaks detection (below, the example of P and T peaks detection method 7 – the combination of MMF and Elgendi’s P and T wave peaks
detection algorithm).

be RS-T-P-QR, instead of P-QRS-T. Using this assumption,
the complete heart cycle can be defined as RR interval time
series – the ECG segment located between two successive
R waves.

In this study, the performance of the algorithm
for waveform templates extraction is verified on the
MIT-BIH Arrhythmia Database (without records 102, 104,
107, 207 and 217). For all selected records, we have used
the MLII lead.

To get the most representative clusters, in the first step, we
filtered all the records using third order Butterworth passband
filter with frequency band 0.5-20 Hz to remove baseline
wander and high frequency noise from ECG signal. Then,
we normalized ECG signals to the range [−1 1] by dividing
the whole ECG signal with its maximum R peak amplitude
after discarding 0.1% of the largest ECG signal samples.
The normalization was necessary in order to enable com-
parison of records from different databases, because ECG
signals can be recorded with different amplifications. After
the normalization, R peaks were automatically reannotated
in a way that the closest local peaks were considered to be
better R peak annotations for the selected lead. The reason
for R peak reannotation was that the R peaks were annotated

using the multilead criteria, while during clustering, we use
only a single lead.

Using the described process, we obtained 98 830 RR inter-
vals. Because RR interval shape depends on the interval
duration, we divided the obtained set into 5 subsets with an
equal number of RR intervals. In the first subset, we have the
shortest intervals, and, for all subsequent subsets, all intervals
are longer than in the previous subset, ending with the longest
intervals in the fifth subset.

To cluster the time series with the k-spectral centroid
algorithm, all the time series must have an identical length.
Furthermore, the identical length of the time series is also
necessary for comparison of records with different sampling
frequencies. Therefore, we have resampled every RR time
series to 251 points using the piecewise cubic Hermite
interpolation [44], [45]. The number of points was initially
determined as one second (RR interval duration at 60 bpm),
sampled at 250 Hz (QTDB sampling rate). Afterwards, it was
experimentally determined that this is a sufficient number
for waveform description because the shapes of all RR inter-
vals remained the same after the resampling. We applied the
piecewise cubic Hermite interpolation, because it preserves
monotonicity and the shape of the data. Then, for all 5 subsets,
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FIGURE 3. Example of membership rules assignment to a waveform template and RR intervals from the MIT-BIH Arrhythmia Database that satisfy them.

we clustered the RR interval time series based on their shape
into 20 clusters with the k-spectral centroid algorithm. With
the heart cycles clustering process, we created 100 represen-
tative waveform templates of RS-T-P-QR heart cycles. The
number of subsets, and the number of clusters are determined
using the elbow method.

To determine whether some RR interval belongs to the
waveform template, we implemented the membership rules
strategy. For each cluster, we manually, in collaboration with
cardiologists, assigned a subset of rules that describe it,
together with the waveform template. We implemented the
following set of rules that can be assigned to each ECG seg-
ment of a waveform template:

1) There is a negative peak in the ECG segment.
2) There is a positive peak in the ECG segment.
3) There is no fluctuation in the ECG segment – there

is no negative or positive peak with amplitude larger
than 0.01.

4) There is a dominant negative peak in the ECG seg-
ment – there is a negative peak with amplitude larger
than 60% of waveform template’s amplitude. The abso-
lute difference between the ECG value at the start of
the segment and the local minimum, and the abso-
lute difference between the local minimum and the
ECG value at the end of the segment have to be at
least 30% of those in the template. Furthermore, there
is no positive peak with the amplitude larger than the
amplitude of the negative peak.

5) There is a dominant positive peak in the ECG segment
– there is a positive peak with an amplitude larger
than 60% of waveform template’s amplitude. The abso-
lute difference between the ECG value at the start of the

segment and the local maximum, and the absolute dif-
ference between the local maximum and the ECG value
at the end of the segment have to be at least 30% of
the template’s ones. Furthermore, there is no negative
peak with the amplitude larger than the amplitude of
the negative peak.

6) There is no negative peak in the ECG segment.
7) There is no positive peak in the ECG segment.
8) There is a constantly decreasing ECG signal in the

defined interval.
9) There is a constantly increasing ECG signal in the

defined interval.
10) The maximal absolute difference between the template

and the ECG signal is less than 0.1 in the defined
interval.

11) Themaximal absolute ‘‘detrended difference’’ between
the template and the ECG signal is less than 0.05 in the
defined interval.

12) There is no dominant negative peak in the ECG seg-
ment – there is no negative peak with the amplitude
larger than 0.1.

13) There is no dominant positive peak in the ECG seg-
ment – there is no positive peak with amplitude larger
than 0.1.

14) The amplitude of the negative peak is larger than the
amplitude of the positive peak in the ECG segment.

15) The amplitude of the positive peak is larger than the
amplitude of the negative peak in the ECG segment.

Fig. 3 shows an example of membership rules assign-
ment to a waveform template. In Fig. 3, we can observe
the RR intervals plotted with blue lines, which satisfy all
membership rules assigned to that waveform template, and
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FIGURE 4. P and T wave detection strategy using the waveform templates.

the waveform template plotted with a red-black line. In this
example, assigned membership rules are: the RR interval
must be constantly decreasing in the sample interval [2, 6]
(marked with a black arrow), there is a dominant negative
peak in the sample interval [7, 18] (marked with a red arrow),
there is a positive peak in sample interval [15, 21] (marked
with a green arrow), etc. The list of rules is marked on the
right side of Fig. 3.

The strategy for using waveform templates during P and
T wave detection is illustrated in Fig. 4. For every RR interval
in a record, the algorithm has determined whether it belongs
to some waveform template: in the first step, an RR inter-
val was resampled to 251 points using the piecewise cubic
Hermite interpolation, and afterwards, for all 100 templates,
the algorithm checked whether all the membership rules for
each template are satisfied. If an RR interval did not belong
to any of the templates, P and T waves were detected by the
default detector. In the Martinez’s PT + templates combina-
tion, the default detector is the Martinez’s PT algorithm and,
in the Martinez’s WT + templates combination, the default
detector is the Martinez’s WT algorithm. Otherwise, P and
T waves were detected with Martinez’s PT algorithm with
the modified parameters.

This procedure was possible to apply, because we have,
in cooperation with the cardiologists, annotated the intervals
where fiducial points are located in the ECG for each tem-
plate. Except for the intervals, which served as modification
for the P/T wave search window boundaries in Martinez’s

PT algorithm, sometimes additional information about the
template, like ‘‘no P/T wave is present in the tem-
plate’’ or ‘‘wave is positive/negative/biphasic’’, have also
changed the P/T wave detection algorithm. For example,
a waveform template illustrated in Fig. 3 has the following
annotated intervals:

1) T wave is positive with peak located in sample
interval [55, 100]

2) P wave is positive with peak located in sample
interval [200, 227].

E. EVALUATION PROCEDURE
In order to calculate the performance of the detection algo-
rithms, four parameters were calculated: sensitivity (Se), pos-
itive predictive value (PPV), detection error rate (DER) and
F1 score (F1):

Se =
TP

TP+ FN
(1)

PPV =
TP

TP+ FP
(2)

DER =
FP+ FN
TP+ FN

(3)

F1 =
2TP

2TP+ FP+ FN
(4)

For determination of true positives (TP) in QRS com-
plex peak detection, a sample deviation of 75 ms equiva-
lent is used, based on AAMI ECAR recommendations [46].
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TABLE 3. Average F1 score (%) and sum of DER (%) of both leads for every method and database.

Hence, if the detected peak is in the range of ± 75 ms from
the annotated peak, the value is considered TP. Otherwise, it is
considered false positive (FP). Similarly, if no detection of a
peakwasmade in the range of± 75ms around the annotation,
the detection was considered false negative (FN). The sample
deviation of ± 75 ms is also used in the algorithms for
the detection of P and T wave peaks. During the evaluation
procedure, the detection of P and Twave peaks is independent
of QRS complex peak detection.Whether or not the algorithm
supports detection of QRS complexes, the detection of P and
Twave peaks for evaluation purposes has always started from
the annotated QRS complex peaks. In this way, the possible
deterioration of the P and T wave peaks detection for algo-
rithms that also support detection of QRS complex peak is
eliminated.

To determine the computational cost of each method,
we measured the time required for the methods to analyze
30-minute long ECG recordings from the MIT-BIH
Arrhythmia Database. As each of the RR intervals is checked
individually for the template membership, the template mem-
bership rule assignment computation time is measured for a
single RR interval. Also, the computation times for different
lengths of ECG records are explored. The algorithms were
implemented and executed in Matlab R2017b on a computer
with Windows 10 OS, Intel Core i7 CPU at 2.60 GHz and
8 GB of RAM memory.

Methods 2 and 4 for the P and T wave peaks detections
(templates combinations) were not tested on the MIT-BIH
Arrhythmia database, as the MLII leads from the database’s
records were used to extract waveform templates by heart
cycles clustering.

III. RESULTS
Table 3 is a summary table that shows the average F1 score
and the sum of DER for both leads for every method and
database. On the left side of the table, the R wave peak

detection methods are given, and on the right side, the P and
T wave peaks detection methods are shown. In Tables 4 – 9,
we show detailed results of the proposed algorithms for both
record leads. Tables 4, 5 and 6 show the total results on
the MIT-BIH Arrhythmia Database for R wave, P wave and
T wave peaks detections, respectively. Total results on the
QT database are shown in Tables 7, 8, and 9, for R wave,
P wave, and T wave peaks detections, respectively. The best
obtained methods and their results are emphasized (in bold),
with the best DER results highlighted in grey.

The computational cost of the methods that showed
the best results (in bold and grey in Tables 3 – 9) are
shown in Table 10. The presented results are obtained as
average from all the considered records in the MIT-BIH
Arrhythmia Database. In the second column, the average
computation time and standard deviation are presented for
each method. Fiducial marks that are detected with the cor-
responding method are given in brackets. As the Martinez
WT + PT method depends both on Martinez’s WT and
Martinez’s PT algorithms, we consider their computation
times separately. The template membership rule assignment
computation time is averaged on 10 000 RR intervals, and is
presented in Table 10, as well.

In Fig. 5, the computation time for different lengths of
ECG signals is given for the methods that showed the best
results. As the processing steps are computed sequentially,
the computation time of each method is presented separately.
The methods include: Pan Tompkins (R peak detection),
MMF (filtering), Martinez PT, Martinez WT (P, T and R
peak detection), Elgendi (R peak detection), and Elgendi
(P and T peak detection).

IV. DISCUSSION
We divide this section into several subsections related to
different topics. In subsection A, we discuss the metrics used
in this work and provide a comparison of the obtained results
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TABLE 4. Methods summary performance on MIT-BIH Arrhythmia database (without 102, 104, 107, 207, and 217) for R wave peak detection.

TABLE 5. Methods summary performance on MIT-BIH Arrhythmia database (without 102, 104, 107, 207, and 217) for P wave peak detection.

with related work. In subsection B, a discussion related to
R peak detection is provided. Subsection C focuses on the
issues related to P and T wave peaks detection. Finally,
subsection D is devoted to the discussion on computational
burden of the used approaches.

A. COMPARISON TO SIMILAR WORK
To conclude which of the algorithms gave the best solutions
overall, we take the DER and F1 score metrics, which both
consider the information on the number of TP, FP and FN

detections in a signal and thus can be considered as the
most comprehensive evaluation measures. When DER tends
to decrease, F1 score tends to increase. In Table 3, the best
methods in terms of F1 score coincide with the best methods
in terms of DER. Since there is no clear benefit in discussing
both evaluation metrics that behave in the same way, in fur-
ther text, the results are discussed in terms of DER. Due to the
observed inconsistency in the annotations for P and T wave
peaks (some of the peaks are clearly missed), we also discuss
the algorithms in terms of sensitivity (Se), as Se does not
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TABLE 6. Methods summary performance on MIT-BIH Arrhythmia database (without 102, 104, 107, 207, and 217) for T wave peak detection.

TABLE 7. Methods summary performance on QT database (with reannotated record sel232) for R wave peak detection.

incorporate false positive detections, which aremaybemissed
because of the annotations.

The results of our research differs significantly from
those presented in literature (compare the results shown
in Table 1 with Tables 3–9), especially in the cases of P
and T wave peaks detection. We suspect this is due to the
following reasons:

1) our lower (more strict) sample deviation interval, based
on AAMI ECAR guidelines (e.g. in [25], sample devi-
ation interval of 120 ms was used)

2) inconsistent annotations from multiple annotators can
lead to different interpretations [31],

3) other researchers report only the best lead results,
which may not be representative in a real case sce-
nario where the actual sample of peak occurrence is
unknown [25], and

4) the exact protocol of determining the true positive P and
T wave peak detection is not described in some of the
related work [30], [32], which reduces reproducibility
of the results.
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TABLE 8. Methods summary performance on QT database (with reannotated record sel232) for P wave peak detection.

TABLE 9. Methods summary performance on QT database (with reannotated record sel232) for T wave peak detection.

The problem of different sample deviation intervals for
evaluation is discussed in [11]. In [11], a range of sample
error intervals were tested, with the reported results for P and
T wave peak detections in line with ours (Se is around and
below 90% for P wave peak detection and below 80% for T
wave peak detection with ±80 ms sample deviation interval
on the algorithms tested on QT Database). However, note
that putting aside the absolute values of the results, our work
mainly focuses on discovering whether the combinations of
processing steps increase the detection accuracy compared

to the original methods. In this setting, we emphasize that
the evaluation protocol has been the same for all the tested
methods, so we can compare the increase (or decrease) in
DER and Se.

B. DETECTION OF R PEAKS
For QRS complex (R peak) detection, when comparing the
results on both leads (Table 3), method 3 (Elgendi’s algo-
rithm) gave the best results regarding DER on the MIT-BIH
Arrhythmia Database. However, using MMF with Elgendi’s
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FIGURE 5. Method computation times for different ECG signal lengths.

TABLE 10. The average computation time for each algorithm on
30-minute long ECG recordings.

algorithm improved the results on the QT Database. When
considering only the first lead, the combinations of MMF and
Elgendi’s algorithm (onMIT-BIHArrhythmia Database), and
MMF and Pan Tompkins’ algorithm (on QT Database) show
the best overall results.

It is noted that the MMF noise reduction proposed by [34]
works well only on some of the records, while on some
others, it lowers the expected accuracy. We suspect that the
lower results on some records are caused by the fact that the
structuring elements of MMF are fixed and based on a priori
knowledge. Thus, in some cases, MMF can filter out useful
information about characteristic waves, which can result in
a higher DER than when MMF is not applied. Although the
number of cases like this is small, overall improvement of
QRS detection when MMF is used (Table 3) is lower than
expected. In [47], an algorithm based on adaptive mathemat-
ical morphology is proposed, which gave promising results.

With this approach, the structuring elements of MMF can be
modified for each recording so that no information about the
waves are lost or degraded. Using the adaptive thresholding of
Pan Tompkins’ algorithm with Elgendi’s algorithm improved
the overall PPV, as expected, but the Se and DER degraded,
as there is a high increase in FN detection, due to added
additional thresholding step. Higher Se was achieved when
the first lead (MLII) was used, possibly because of the high
amplitude QRS complexes in that lead.

According to the results on both leads, Elgendi’s algo-
rithm alone, or in the combination with MMF, is the best
R wave peak detector. However, it should be noted that the
Elgendi’s algorithm is optimized for the MIT-BIH Arrhyth-
mia Database. This would mean that, if we disregard the
Elgendi’s algorithm results on the MIT-BIH Arrhythmia
Database due to the optimization bias, the Elgendi + MMF
combination is shown to be the most accurate R wave peak
detector. This finding could mean that the Elgendi’s algo-
rithm should be used in combination with MMF in gen-
eral. Note that this assumption should be verified on other
ECG databases with R wave peak annotations.

C. DETECTION OF P AND T WAVE PEAKS
Martinez’s PT algorithm shows the best results for P wave
peak detection on both databases, with the lowest DER
when using only the first lead. Slight improvement in Se
of the detection may be obtained when the PT algorithm is
combined with Martinez’s WT algorithm. In addition, when
both of the leads are considered, the combination of PT and
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WT algorithms gave the lowest sum of DER on both
databases, which is an important result.

On the MIT-BIH Arrhythmia Database, the combination
of MMF and Elgendi’s algorithm gave the best results for
T wave peak detection (on the first lead and on the sum of
both leads). For the QT database, Martinez’s WT algorithm
in combination with templates shows the best results. From
Table 9, we can see that the second lead is better for the
detection of T wave peaks than the first lead, although in
most of the described algorithms, only the first lead is used.
This suggests that the detection of this characteristic wave
is lead dependent. If more than one ECG lead are available,
automatic lead selection should be incorporated, if possible,
in order to determine the optimal lead for desired characteris-
tic wave detection (for example, based on the first 30 seconds
of the signal [48]).

It is important to mention that P and T wave peaks anno-
tations of the MIT-BIH Arrhythmia Database made publicly
available by Li et al. [35] do not match those in the QT
Database for the same records (sel100, sel102, sel103, sel104,
sel114, sel116, sel117, sel123, sel213, sel221, sel223, sel230,
sel231, sel232 and sel233). In our opinion, the annotations of
P and Twaves in the QTDatabase are the better ones, because
Elgendi et al. [41] often did not annotate the inverted Twaves,
which is visible when inspecting both leads. If the T waves
are approximately biphasic on a single lead, the positive wave
is frequently selected, despite the fact that the negative wave
may have a larger amplitude than the positive one and without
consideration for the T wave on the other lead. Elgendi’s
method selects the highest positive peak in a block of interest.
Therefore, there is a reason to believe that Elgendi’s T wave
annotations are biased in the respect described above.

Generally speaking, our opinion, based on the conducted
work, is that Martinez’s WT algorithm is the best T wave
peak detector. Note that we show that T wave peak detection
accuracy is further enhanced by using the search window
parameter modification for RR intervals that belong to a
particular waveform template (see Table 9).

D. COMPUTATION TIME
As the length of ECG records can be quite long, it is important
to consider the computational cost of the proposed meth-
ods. From Table 10, it can be seen that Martinez’s PT is
considerably more time demanding than Elgendi’s or Mar-
tinez’s WT methods. Also, the average computation time on
30-minute long ECG recordings is considerably longer when
MMF processing step is used. The MMF method has an
approximately linear computational complexity (see Fig. 5)
and for the input ECG signal that is 30 minutes long, it runs
up to 8 seconds. Methods combined with MMF are there-
fore considerably longer in duration, especially when long
ECG records are analyzed. Optimized versions of some of the
algorithms, for example, fast MMF algorithm, may be used
to achieve more efficient MMF computations [49].

The average computation time of template membership
rule assignment for a single RR interval is 0.079 s (Table 10).

On 30-minute long ECG recordings, with an average heart
rate of 60 bpm, this can prolong the calculation for about
142 seconds, which may not be suitable for real-time detec-
tion purposes. However, if the RR interval is assigned to a
current template, P and T wave peaks detection is done by
comparing the membership rules of the assigned template.
The number of RR intervals that gets assigned to current tem-
plates depends on the morphology of the signal. In our case,
about 60% of the RR intervals is assigned to the templates.
In terms of P and T wave peak detections, this can yield a
significant computation time improvement.

Holter ECG recordings are usually up to 48 hours long.
The computations that take more than several minutes can
be impractical in everyday use, and a compromise between
the computational burden and detection accuracy is an impor-
tant factor to consider in such cases. When we examine
the acceptability of the methods for real-time use, Elgendi’s
methods are the most suitable for R peak detections, as most
of the methods have high accuracy. For T and P wave peak
detections, although with a lower accuracy than some of
the other methods, Elgendi’s method may be used if fast
computation time is required. However, we believe that the
importance of accurate detection overcomes the computa-
tional cost, especially in the cases where the computation
time grows approximately linearly with respect to the record
length (see Fig. 5). Hence,MMF preprocessing step as well as
Martinez’s algorithms (including our modified PT algorithm)
may also be considered for real-time uses, when highly accu-
rate detection of peaks is sought.

V. CONCLUSION
In this paper, we combined methods from several known
algorithms for detection of characteristic waves in ECG.
Detection of QRS complexes achieved high sensitivity
and positive predictive value. The proposed modifications
showed some improvement over QRS detection methods
(Elgendi’s method) when additional noise and artefact reduc-
tion step (MMF) was used. The improvement with the use
of MMF suggests that special cases of signal distortion are
causing false detections. Although slight improvements may
be achieved using the samemethod for T wave peak detection
(see the results for method 7 on the MIT-BIH Arrhythmia
Database), we do not advise the same combination for P
wave peak detection. However, in future work, we plan to
incorporate adaptive MMF for each recording to insure the
optimal MMF structuring element that will preserve infor-
mation about all the characteristic waves, which could lead
to further improvements of the results. We consider that the
adaptive approach may improve algorithm detections in the
case of abnormal ECG cycles (such as the presence of PVC
and paced beats or presence of flutter waves), when the
morphology of ECG waves is drastically changed.

We have shown that the modified Martinez’s PT algorithm
proved the best for P wave peak detection and that Martinez’s
WT in combination with waveform templates extracted by
heart cycles clustering reached the best results for T wave
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peak detections. Nevertheless, both sensitivity and positive
predictive value are still around or less than 90% for P and
T wave peaks detection. In an effort to improve P and T
wave detection algorithms, high quality annotated databases
are still lacking. We would like to encourage medical experts
to help annotate the publicly available ECG databases, as the
value of contemporary high accuracy algorithms can only be
established on well-annotated datasets. As acquiring ECGs
from subjects is not an issue nowadays, due to advanced
remote monitoring systems [50], we consider that reserving
some expert time to annotate and publish the acquired signals
is crucial for further advancements in automatic detection
algorithms.

Parameter modification of Martinez’s PT algorithm based
on waveform templates extracted by heart cycles clustering
used in this work is still under development. Perhaps the
membership of the RR intervals to certain templates could
be described better with different or somewhat modified
membership rules. We suppose that the accuracy of P and T
waves detection could be further enhanced by concentrating
the templates, alongwith themembership rules, to the P and T
waves’ onset, peak and offset, respectively. This application
of templates may insure high quality extraction of clinically
relevant ECG features, like QT and PR intervals.

The computational burden of different methods is briefly
explored in this paper. However, it is important to note that
our algorithms are implemented in Matlab, with some parts
implemented in C++, which may not help in clarifying all
the details regarding their comparison. Hence, although we
showed experimentally that most of the methods considered
in this work may be used in real-time applications, further,
more detailed, studies focusing on computational complexity
of the methods may provide a clearer insight.
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