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ABSTRACT A mobile ad hoc network (MANET) can be constructed when a group of mobile users need
to communicate temporarily in an ad hoc manner. It allows mobile services to be shared through device-
to-device links and composed by combining a set of services together to create a complex, value-added,
and cross-organizational business application. Nevertheless, various challenges, especially the reliability
and quality-of-service of such a MANET-based mobile service composition, are yet to be properly tackled.
Most studies and related composition strategies assume that mobile users are fully stable and constantly
available. However, this is not realistic in most real-world scenarios where mobile users are mobile. The
mobility of mobile users impact the reliability of corresponding mobile services and consequently impact
the success rate of mobile service compositions. In this paper, we propose a reliability-aware mobile service
composition approach based on prediction of mobile users’ positions. We model the composition problem
as a multi-objective optimization problem and develop an evolutionary multi-objective optimization-based
algorithm to solve it. Extensive case studies are performed based on a real-world mobile users’ trajectory data
set and show that our proposed approach significantly outperforms traditional ones in terms of composition
success rate.

INDEX TERMS Mobile service, service composition, quality-of-service, reliability.

LIST OF ABBREVIATIONS
D2D Device-to-Device communications
EMO Evolutionary Multi-objective Optimization
HV Hyper-Volume
MANET Mobile Ad Hoc Network
MDEMS Multi-objective Differential Evolution for

Mobile Service composition
MOO Multi-Objective Optimization
MODE Multi Objective Differential Evolution
MSSC Mobile Service Sharing Community
QoS Quality-of-Service
SLA Service-Level-Agreement

LIST OF SYMBOLS
ξ (x) Estimated reliability of service composition x
ρ Operational probability of edge in a MANET
τ (x) Estimated response time of service

composition x
φ(p, r) Function for identifying if there are

available paths between node p and r
in a MANET

ω Number of max iteration generations of an
MDEMS algorithm

2 Decision space in a composition problem
y Population size of MDEMS
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n Task count in a composition plan
p A mobile service composition plan
Ci Dynamic crossover rate of MDEMS in the i-th

iteration
D User-recommended constraint of the response time

of a service composition
E Set of edges for every communication path
F Scale factor of MDEMS
G Mobile users’ history trajectories
M Number of all trajectory patterns in GMM
N Set of mobile users and sink nodes in MSSC
P Resource pool of available mobile services
R Set of precedence relations among tasks in a mobile

service composition plan
S(t) State of MSSC at time t
T Task set of a mobile service composition plan

I. INTRODUCTION
In recent years, the world has witnessed the rapid growth
and advances of mobile devices, e.g., smart phones, tablet
computers, and wearable devices, as well as mobile services.
Mobile devices are changing the way people access infor-
mation in their daily lives. In the mobile service computing
environment, mobile users can exploit nearby resources [1],
e.g., computing nodes and network connectivity, through
utilizing mobile services shared in a mobile ad hoc network
(MANET). MANET is a self-organized local mobile network
created by nodes within each other’s communication fields.

As illustrated in Fig. 1, the core idea ofmobile service com-
puting in MANET is sharing. In this paradigm, mobile users
are allowed to utilize resources and services shared by other
users nearby, and thus the provisioning capability of involved
services is expanded through exploiting direct physical con-
tacts among users. These available resources and services can
be shared directly among users in an elastic and on-demand
way without time-consuming and energy-requiring com-
munications with pre-existing infrastructure, for example,
cellular networks and traditional centralized cloud datacen-
ters. Note that, mobile tasks over MANET (e.g., TensorFlow
Lite, Photo editing on mobile, and Online video sharing)
usually require huge computational resources or data trans-
fer. Nearby mobile service providers are thus more adept,
in terms of timeliness and energy-efficiency, at executing
these tasks than the remote services with the help of device-
to-device (D2D) communications such as Bluetooth, Wi-Fi
and NFC. D2D communications are featured by extensively-
reduced inter-device delays and energy consumption than
traditional cellular networks [2]. It is widely believed to have
potential to improve Quality-of-Service (QoS) of mobile ser-
vices over MANET by providing increased user throughput,
reduced cellular traffic, and extended network coverage [3].

However, users in aMANET often have highmobility, thus
resulting in topological changes in the MANET over time.
Under such circumstances, it has become a great challenge
how to compose and schedule reliable mobile services over a

FIGURE 1. Mobile computing.

versatile MANET and fulfill users’ QoS requirements in the
meantime.

To address the aforementioned challenges and concerns,
in this study, we propose a predictive reliability-aware mobile
service composition approach over MANET. We first present
the concept of mobile service sharing communities (MSSC)
and a probability-based method to evaluate mobile service
reliability. Then a Gaussian mixture model (GMM) for user
position prediction is used to capture the dynamic trend
of service reliability during service provisioning. Finally,
we develop an improved multi-objective differential evo-
lution algorithm for mobile service composition. Predicted
service reliability values are fed into this algorithm to yield
composition schedules. The results of experiments con-
ducted on a real-world user movement dataset show that our
approach is capable of dynamically capturing the mobility of
mobile users and achieving higher success rates of mobile
service compositions than traditional ones.

II. RELATED WORK
Mobile service composition allows users to compose mobile
services over MANETs to fulfill their various needs. Recent
technological advances made in the hardware and software
of mobile devices, especially wireless networking, facili-
tate a mobile environment where the mobile devices all
around a user, either carried by nearby users, or embedded
as part of a smart space, can provision mobile services to
be shared over MANETs. Users sometimes demand new
services that cannot be found on any devices. With mobile
service composition techniques, they can build new services
by dynamically composing existing services over a MANET.
Extensive studies have been carried out in this direction. For
example, Deng et al. [1] classify mobile service composi-
tion methods into three categories: Cloud to Mobile (C2M),
Mobile to Mobile (M2M) and Hybrid. They also discuss
related challenges, e.g., performance guarantee, energy effi-
ciency, and security. Later, they propose an MSSCmodel and
extend the random way point model to describe users’ mobil-
ity. They employ a meta-heuristic algorithm to decide the
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near-optimal service composition [4]. Sadiq et al. [5] use a
Levy walk model and Self-similar Least-Action-Walk model
to generate user traces, where each node is equally likely to
meet any other one and the connectivity among devices is
implemented by using multi-hop paths. Groba and Clarke [6]
present a protocol for mobile service composition, which
allocates service providers opportunistically to serve con-
sumers with the aim to minimize the impact of changes on
topology. Yang et al. [7] propose a QoS model for mobile
service selection. They consider not only the characteristics
of mobile wireless networks but also user-perceived factors.
Wang [8] employ a probability-free model and a probabilis-
tic model to characterize uncertainty during mobile service
invoking. They assume that mobile services can tolerate the
mobility of service providers to a certain level.

However, it can be observed that the above studies fail
to exploit users’ historical trajectory information for their
potential use in service composition. Although some of them
consider Brownian motion or probabilistic motion mod-
els, the knowledge behind mobile users’ historical trajec-
tory information is underexploited, which can be applied to
avoid the invocations of unavailable services. This limita-
tion potentially leads to low success rates and high Service-
Level-Agreement (SLA) violation rates of mobile service
compositions. Fortunately, the recent progress in human
mobility predictionmodels enlightens mobile service compo-
sition techniques. It is shown in later sections that, with the
help of user mobility prediction models, our mobile service
composition algorithm clearly outperforms traditional ones in
terms of their success rates.

III. PRELIMINARIES
A. MOBILE SERVICE SHARING COMMUNITIES
An MSSC is a mobile ad hoc network for mobile service
sharing [4]. It is usually constructed by nearby mobile users
and sink nodes. It can be formally described as a 2-tuple
MSSC = (N ,E), where N is the set of mobile users and sink
nodes in an MSSC, E the set of edges for every communi-
cation path. Fig. 2 shows an example MSSC established in a
coffee shop, where mobile users are within each other’s D2D
transmission ranges.

An MSSC has three characteristics: (1) locality: A mobile
user can perceive and invoke mobile services exposed by
other users in the same MSSC, and locality of services can
thus be exploited and utilized; (2) mobility: In an MSSC, it is
not uncommon that service requesters and providers are con-
stantly moving during service provisioning time; (3) dynam-
icity: Mobile users may join or leave an MSSC automatically
when they enter or leave a participating user’s transmission
range.

B. MOBILE SERVICE RELIABILITY
It can be seen that services composed and executed over
a MANET is unreliable due to the high mobility of ser-
vice requesters and providers. In this paper, the reliability

FIGURE 2. An MSSC example in a cafe.

of D2D links between two nodes in MANET is considered
when evaluating the reliability of mobile services provi-
sioned over these links. Suppose that there are |N | nodes
and |E| edges in an MSSC at time t , the reliability of a
mobile service provided by provider p for requester r can
be calculated as the reliability between nodes p and r . In an
MSSC, each edge has its operational probability ρ, which
is calculated based on a received signal strength indica-
tor (RSSI) value [9]. The state of MSSC at time t can thus
be represented as S(t) = [S1(t), S2(t), . . . , S|E|(t)], where the
i-th element Si(t) is assigned to 1 if the i-th edge is working at
time t , otherwise 0. Thus, the probability of an MSSC being
in a given state can be calculated as follows:

P(S(t)) =
|E|∏
i=1

ρ
Si(t)
i (1− ρi)1−Si(t) (1)

Then the reliability of a D2D link between p and r can be
expressed as:

RL(p,r)[G(t)] =
∑
all S(t)

φ(S(t), p, r)P(S(t)) (2)

where φ(S(t), p, r) is the function for identifying whether
there are available paths between node p and r . If in state
S(t), there is at least one path between p and r , then
φ(S(t), p, r) = 1, otherwise 0.
It can be seen that the reliability of a mobile service in a

MANET varies over time and is closely related to the commu-
nication distance between a service requester and provider.
A service currently observed to be available may become
unavailable in the near future due to this distance’s change.
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C. GMM FOR USER POSITION PREDICTION
A recent study [10] reports that there is a potential 93% aver-
age predictability in user mobility. For example, Fig. 3 shows
pedestrians’ trajectories on a campus. We can see that most
trajectories share similarity and regularity patterns. Such
similarity, periodicity, and regularity can be formally and
properly described with novel methods [11]–[13].

FIGURE 3. Trajectories of pedestrians in a campus.

Human trajectories usually follow multiple mobility pat-
terns, depending on the subjective destination, the limit of
objective environment, other people’s movement and so on.
Each pattern within a trajectory can be effectively described
by a Gaussian process and the entire trajectories can thus
abstracted into a Gaussian Mixture model (GMM).

In GMM, users’ history trajectory data can be described as
follows:

G = {01, 02, . . . , 0n}

= {(−→x1 ,
−→y1 ), (

−→x2 ,
−→y2 ), . . . , (

−→xn ,
−→yn )}

= {
−→
X ,
−→
Y } (3)

where 0i denotes the i-th user’s trajectories,
−→
X and

−→
Y the

mapping vector of these trajectories in X and Y directions,
respectively. A trajectory 0i = (−→xi ,

−→yi ) can be expressed as

a multiple different Gaussian processes as follows:

p(−→xn |λ) =
M∑
i=1

ωiGP(
−→xn |µ(x,i), σ(x,i))

p(−→yn |λ) =
M∑
i=1

ωiGP(
−→yn |µ(y,i), σ(y,i)) (4)

where GP(−→xn |µ(x,i), σ(x,i)) denotes the probability function
of trajectory 0n’s X direction in the i-th trajectory pattern,
M the number of all trajectory patterns, ωi the weight of the
i-th trajectory pattern with

∑M
i=1 ωi = 1, µ(x,i) and µ(y,i) the

means of the i-th trajectory pattern in directions X and Y ,
σ(x,i) and σ(y,i) the covariance of the i-th trajectory pattern in
directions X and Y , respectively. We use λ to denote the set
of {ωi, µi, σi}, i ∈ {1, 2, . . . ,M}. The likelihood function of
GMM for a training set G = {

−→
X ,
−→
Y } is:

P(
−→
X |λ) =

M∏
n=1

p(−→xn |λ)

P(
−→
Y |λ) =

M∏
n=1

p(−→yn |λ) (5)

The forecasting process consists of three steps: (1) applying
a Gaussian Mixture clustering method [14] to trajectory
dataset G to obtain M clusters, which correspond to M
different trajectory patterns; (2) an expectation-maximization
algorithm is applied to estimate parameter λ; (3) forecast
a mobile user’s future position based on his/her recent
trajectory. The prediction process is employed in Section IV
to obtain the prediction results of service providers’ position.
Then the service reliability evaluated based on its predicted
position is further fed into the optimization formulation to
facilitate mobile service composition schedules.

IV. PROBLEM FORMULATION AND SOLUTIONS
A. PREDICTIVE MOBILE SERVICE COMPOSITION
As shown in Fig. 4, the process for predictive mobile service
composition consists of three typical steps: (1) a service
composition plan is constructed when a service requester
wants to create a composite service. A service composition
plan usually has multiple tasks that are arranged via some
control statements, e.g., parallel, choice or loop. Each task
in a service composition plan represents a function point and
it can be implemented by one of the candidate services that
have similar functions and interfaces; (2) then, it begins to
discover potential service providers and their exposed ser-
vices in the same MSSC. At the same time, the reliability of
services is evaluated according to the predicted user positions.
A resource pool containing available candidate services able
to complete all needed tasks is built in this step; (3) it decides
which services to select for each task to realize the mobile
service composition with satisfactory response time and reli-
ability. Decision making is transformed into a multi-objective
optimization (MOO) problem. Then an evolutionary-based
algorithm named MDEMS is employed to yield a set of
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FIGURE 4. The process of mobile service composition.

solutions, which are equally optimal from the view of Pareto
fronts [15] and can be selected based on user preferences.

B. PROBLEM FORMULATION
A mobile service composition plan can be described as
p = {T ,R} where T = {t1, t2, . . . , tn} is the task set and
R = {r(ti, tj)|ti ∈ T , tj ∈ T } the precedence set between
tasks. r(ti, tj) = 1 indicates that tj can only start after ti
is finished due to the dependency constraint. A mobile user
can perceive services exposed by other mobile users in the
same MSSC. These available services constitute a service
pool P = {si1, s

j
2, . . . , s

k
n}, where skn indicates that there

are k mobile services available for task tn in MSSC. Then,
the problem of service composition in MSSC over MANET
can be formulated as follows:

Min : y = f (x) = (1− ξ (x), τ (x))T

s.t : τ (x) ≤ D

x = [x1, x2, . . . , xn]T ∈ 2

xmini ≤ xi ≤ xmaxi (i = 1, 2, . . . , n) (6)

where ξ (x) and τ (x) are the estimated reliability and response
time of service composition x, respectively. They can be
calculated by a reduction method, as presented in [16] and
[17]. The details of such method are omitted here. D is a
user-defined deadline and2 stands for a decision space (i.e.,
resource pool). Since reliability and response time tend to
conflict each other, we consider Pareto domination as the

measure of the optimality of candidate solutions. Conse-
quently, for solution u, v ∈ 2, u dominates v when:

∀ i ∈ [1, n] : fi(u) ≤ fi(v)

∃ j ∈ [1, n] : fj(u) < fj(v) (7)

A solution x∗ is Pareto-optimal if it is not dominated by
any other solution. The set of all Pareto-optimal solutions in
the objective space is called a Pareto front. For the mobile
service composition problem, solution u dominates solution v
if ξ (u) ≤ ξ (v) ∧ τ (u) < τ (v) or ξ (u) < ξ (v) ∧ τ (u) ≤ τ (v).

C. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION FOR
MOBILE SERVICE COMPOSITION
For the problem formulated in the previous subsection, meth-
ods such as multiple-objective-integer-linear-programming
and multi-objective-branch-and-bound can be used for solu-
tions. However, such methods are usually considered to be
with high time-complexity and thus could be impractical
due to the fact that the problem space could be very large
(the number of candidate service providers for one task
can be 100+ for some typical cases, e.g., shopping mall
and subway station. The number of tasks could be 50+ for
some typical complex business processes, e.g., airline-ticket-
booking and new-customer-registration). In contrast, Multi-
objective differential evolution (MODE) has been shown to
be a simple yet efficient evolutionary algorithm for MOO
problems in diverse domains. It is featured by its strong
parallelizability of genetic operators and good convergence
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properties than other traditional evolutionary MOO algo-
rithms. For the above problem formulated, we propose
an improved MODE algorithm, named MDEMS, short for
Multi-objective Differential Evolution for Mobile Services to
find solutions.

MDEMS developed in this work is a kind of meta-heuristic
procedure similar to the process of natural selection. It is used
to yield high-quality solutions for optimization and searching
problems by employing bio-inspired operations, e.g., muta-
tion and crossover. A population of its candidate solutions
to an optimization problem keeps evolving toward better
solutions. The initial population with n individuals consists
of three parts: (1) one individual i1 with the highest ξ (i1)
regardless of its response time; (2) one individual i2 with
the shortest τ (i2) regardless of its reliability; and (3) n − 2
individuals are randomly generated according to the current
resource pool.

The mutation operator simulates an evolutionary activity
that an individual directionally learns from other individuals.
To speed up convergence and optimize exploration ability,
we consider an improved mutation strategy as follows:

Vi = Xi + F(X∗ − Xi)+ F(X#
− Xi)+ Fi(X1

r − X
2
r ) (8)

where F is a scale factor, Vi an offspring individual, Xi muta-
tion target, X1

r and X2
r two random individuals chosen from

the current population, X∗ and X# the individuals randomly
chosen from top k best individuals in the population ordered
by their estimated reliability and response time, respectively,
k is set to 15% in this paper. This top-k strategy can accelerate
the convergence speed and in the meantime avoid trapping
into local optima. The pseudo code of the proposed mutation
operator is shown in Algorithm 1.

The crossover operator simulates a genetic activity that
an individual obtains characteristics from other individuals
controlled by a crossover rate. We employ dynamic changing
crossover rates in order to avoid useless crossover operations.
The crossover rate in the i-th generation, Ci, is randomly
generated from a Gaussian distribution as:

Ci = G(Cm, 0.1) (9)

where Cm is calculated from the historical value of Ci, Cm
in its first generation is 0.6. We use C to indicate the set
of crossover rates used in previous generations. Cm can be
calculated as follows:

Cm = wC × Cm + (1− wC )× meanPow(C) (10)

where

meanPow(C) =
|C|∑
i=1

[
(Ci)n

|C|
]
1
n (11)

wherewC is a real value randomly generated from [0.9, 1] and
n = 1.5. The pseudo code of the proposed crossover operator
is shown in Algorithm 2.

Suppose that there are k available mobile users in MSSC,
the time complexity of forecasting users’ future position

Algorithm 1 Mutation Operator
Input: Population X ; Task count n; Scale factor F ; Resource

pool P
Output: Mutated population V ;
1: estimate reliability and response time of each individuals

in population X
2: TopRel ← get top 15% best individuals according to

estimated reliability
3: TopMs ← get top 15% best individuals according to

estimated response time
4: for each individual Xi in population X do
5: X1

r ← choose one individual from X randomly
6: X2

r ← choose one individual from X randomly
7: X∗← choose one individual from TopRel randomly
8: X#

← choose one individual from TopMs randomly
9: Vi← Xi + Fi(X∗ − Xi) + F(X#

− Xi)+ Fi(X1
r − X

2
r )

10: for j = 1 to n do
11: if Vi[j] < P.LowBounds[j] or Vi[j] >

P.UpperBounds[j] then
12: Vi[j] ← choose one executor between low

bounds and upper bounds of executors randomly
13: end if
14: end for
15: add Vi into mutated population V
16: end for
17: return V

Algorithm 2 Crossover Operator
Input: Population X ; Mutated population V ; History

crossover rate C; Task count n;
Output: Population after crossover operation X ′;
1: calculate meanPow according to history crossover rate C

by (11)
2: calculate Cm by (10)
3: calculate crossover rate Ci by (9)
4: for each individual Xi in population X do
5: for j = 1 to n do
6: if rand() < C then
7: Cv[j]← 1
8: else
9: Cv[j]← 0
10: end if
11: end for
12: for j = 1 to n do
13: X ′i [j]← Xi ∧ (1− Cv[j])+ Vi ∧ Cv[i]
14: end for
15: add X ′i into X

′

16: end for
17: return X ′

is O(k2). The time complexity of initializing an individual
is O(n), and thus population initialization requires O(ny),
where y is the size of initial population. The reliability
and response time evaluation for each individual has the
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FIGURE 5. Service composition plans for experiment.

time complexity of O(nlog|R|) and thus reliability and
response time evaluation for initial population of size y with
ω generations has the time complexity of O(yωnlog|R|).
The time complexity for mutation, crossover, and domi-
nance selection operations are O(ny), O(ny), and O(y2),
respectively. Consequently, the total time complexity of
mutation, crossover and dominance selection with ω gen-
erations is O(ωny) + O(ωny) + O(ωy2). Finally, the total
time complexity of the proposed approach is thus O(k2) +
O(yωnlog|R|) + O(ωny) + O(ωny) + O(ωy2). Generally,

nlog|R| is large than y, and thus the total time complexity of
our approach is O(k2 + yωnlog|R|), thereby suggesting high
scalability.

V. EXPERIMENTS AND ANALYSIS
To evaluate the effectiveness of our approach, we con-
duct experiments on a real-world user trajectory dataset,
a service QoS dataset, and multiple composition plans in a
wide range of application scenes.
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TABLE 1. HV and runtime comparison between MDEMS and traditional MOO algorithms.

TABLE 2. Success rate comparison between MDEMS and non-prediction-based approaches.

The Stanford Drone dataset [18] is a user trajectory dataset
collected from Stanford campus. In this dataset, all pedestri-
ans’ movement trajectories in a certain scene are recorded for

consecutive periods. We choose bookstore, gates, deathcicle,
and hyang these four scenes with varying crowd density
in the experiments. There are four scenes, with 189, 85,
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56 and 31 pedestrians, respectively. Pedestrians within the
same scene establish an MSSC. The quality of candidate
services are randomly selected from the widely used QWS
dataset [19]. As shown in Fig. 5, the service composition
plans used to evaluate our proposed method are randomly
generated with the number of tasks ranging from 8 to 16.

Table 1 shows the differences between MDEMS and
it peers, i.e, NSGA-II, MOPSO, MOEA\D and SPEA2,
in terms of HV value (a comprehensive evaluation index used
to judge a multi-objective optimization method, the higher
the better) and runtime with varying task counts. The ratios
are used to offer a clearer comparison, for example, the HV
improvement ratios can be calculated as follow:

HV (MDEMS)
HV (Peer)

− 1 (12)

Similarly, the runtime comparison ratios between our method
and peers can be calculated as follows:

RunTime(Peer)
RunTime(MDEMS)

(13)

where

Peer ∈ {NSGA-II ,MOPSO,MOEA\D, SPEA2}

It can be seen that, MDEMS achieves a higher HV value
in most cases. This advantage is achieved in a way that the
individuals, with the help ofMDEMS, aremore likely to learn
from a group of other individuals with high reliability and low
response time estimates, rather than learning from a single
individual with seemingly highest optimality achieved by
traditional algorithms. It also shows that MDEMS achieves
higher time-efficiency in all cases (twice faster than MOPSO
on average, and 3 times faster than MODE and SPEA2 on
average).

We also compareMDEMSwith traditional non-prediction-
based service composition algorithms [20]–[22], which
assume stable service reliability. As shown in Table 2, our
proposed approach clearly outperforms non-prediction-based
approaches in most cases. To be specific, the success rate
achieved by our method is 5.35%, 6.81%, 21.8% and 29.57%
higher than EMOABC on average in four scenes, respec-
tively; 7.3%, 8.76%, 24.19% and 31.77% higher than ADE-
NSGA-II; and 9.16%, 11.06%, 27.15% and 35.05% higher
than MOPSO.

VI. CONCLUSION AND FURTHER WORK
This paper targets at an unreliable mobile service com-
position problem in a dynamic mobile service computing
environment. We propose a position-prediction-based mobile
service composition approach in the context of MANET.
We evaluate the reliability of mobile services dynamically
based on forecasted uses’ positions through a Gaussian
mixture prediction model. Mobile services are selected
and composed by an evolutionary multi-objective optimiza-
tion algorithm. The knowledge and patterns behind users’
mobility are thus excavated to compose and schedule reli-
able mobile services over a versatile MANET. Experimental

results show that our proposed algorithm outperforms a num-
ber of traditional approaches in term of composition success
rate.

As future work, we plan to consider soft deadline con-
straints (where response time is allowed to exceed a threshold
value with a bounded given rate) and introduce correspond-
ing algorithms to generate run-time mobile compositions.
Besides, more metrics, including service scalability and
service reputation, should be modeled and investigated and
recent intelligent optimization methods [23], [24] should be
explored.
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