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ABSTRACT With the increasing demand for unsupervised learning for fault diagnosis, the subspace
clustering has been considered as a promising technique enabling unsupervised fault diagnosis. Although
various subspace clustering methods have been developed to deal with high-dimensional and non-linear
data, analyzing the intrinsic structure from the data is still challenging. To address this issue, a new subspace
clustering method based on locality-preserving robust latent low-rank recovery (L2PLRR) was developed.
Unlike conventional subspace clustering methods, the developed method maps the high-dimensional and
non-linear data into a low-dimensional latent space by preserving local similarities of the data with the
goal of resolving the difficulty in analyzing the high-dimensional data. Likewise, in the developed L2PLRR
method, learned features correspond to low-rank coefficients of the data in the latent space, which will be
further used for fault diagnosis (e.g., identification of health states of an object system). The efficacy of
the developed L2PLRR method was verified with a bearing fault diagnosis application by comparing with
conventional and state-of-the-art subspace clustering methods in terms of diagnostic performance.

INDEX TERMS Fault diagnosis, locality-preserving robust latent low-rank recovery, subspace clustering,
unsupervised feature learning.

I. INTRODUCTION
With an ever-increasing demand for reliability in safety-
critical devices or systems (e.g., aero engines [1], medical
devices [2], and autonomous vehicles [3]), it is important to
detect and diagnose impending faults as early as possible to
prevent catastrophic failures that can lead to significant eco-
nomic losses and human casualty. In the recent past, machine
learning has evolved to become a key driver of data-driven
fault diagnosis methods.

Machine learning methods can be broadly divided into
the following two categories depending on the amount and

type of supervision they need while training: supervised
and unsupervised. In supervised learning, a dataset fed to
the machine learning for training includes the desired solu-
tions, called labels, while unsupervised learning methods are
trained on an unlabeled dataset. In the field, support vector
machines [4], [5], neural networks [6], [7], random forest [8],
convolutional neural networks [9], and deep residual net-
works [10] have been widely used for supervised diagnostic
applications.

In real industrial applications, it is difficult to label
data because professional knowledge about an object sys-
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tem is required. However, there is a relatively massive
amount of unlabeled data for fault diagnosis. Thus, it is
important to develop unsupervised data-driven fault diagno-
sis methods. Li et al. [11] developed a self-organizing map-
basedmethod for the identification of incipient bearing faults.
Baraldi et al. [12] employed an unsupervised fuzzy c-means
algorithm for the identification of operational/faulty transient
conditions of a nuclear power plant steam turbine. With the
advent of unsupervised deep learning, recent studies have
employed restricted Boltzmann machines [13] and autoen-
coders [14] for unsupervised fault diagnosis with feature
learning. Recently, sparse coding and dictionary learning
have been used for identifying machine faults in a semi-
supervised manner. Jiang et al. [15] used a semi-supervised
label consistent dictionary learning (SSDL) framework for
machine fault classification. Zhang et al. [16] introduced a
latent label consistent dictionary learning (LLC-DL) model
for the sake of classifying salient machine faults.

Subspace clustering (SC), which is used to seek a collec-
tion of implicit subspaces to fit a given unlabeled dataset
and segment them into different clusters [17], can be an
alternative unsupervised learning method for fault diagno-
sis. To conduct SC, the major two steps are: (1) building
an affinity matrix C , also called a similarity graph, to rep-
resent the affinity of data points, where Cij quantizes the
similarity (or closeness) between data points xi and xj and
(2) clustering data by grouping the eigenvectors of L =
D−1/2AD−1/2, where L is termed as graph Laplacian, D is
with the item Dij =

∑
j Aij and A = |C| +

∣∣CT
∣∣. Hence,

the clustering performance of this method is largely depen-
dent on the quality of A. Likewise, SC has difficulties deal-
ing with the high-dimensional and non-linear data that are
distributed in the overlapped subspaces [18]. SC is also
sensitive to outliers because they may lead to the wrong
segmentation of data points near the intersection of two
subspaces [18], [19].

Sparse subspace clustering (SSC) [19] is a variant of SC
that clusters data lying in a union of low-dimensional sub-
spaces. The SSCmethod uses the sparse coefficients of a data
point, which ideally corresponds to a combination of data
points from its own subspace, as features for clustering [19].
This approach facilitates solving the problems of clustering
data near the intersection of subspaces, since sparse optimiza-
tion automatically picks a few other data points that are not
necessarily close to it but belong to the same subspace [20].
Nevertheless, sparse optimization may cause the dispersed
distributions of the data in the same subspace, which further
leads to unsatisfactory diagnosis performance [20]. Aiming
at this problem, Liu et al. [20] introduced the SC-based low-
rank recovery (LRR) technique, which uses the low-rank
coefficients of the data as features. The LRRmethod captures
the global structure of the data, which compacts the distribu-
tions of the data into the same subspace. However, the LRR
method still has two major drawbacks—it is sensitive to the
noisy data and it makes sense onlywhen the data is distributed
in independent space (no overlapping or intersect) [21].

Aiming at the first problem (i.e., noisy data),
Dyer et al. [21] presented a ‘‘greedy’’ feature selection
method, which seeks the best low-rank representations as
features in a ‘‘greedy’’ way. Nevertheless, the complexity of
iteration limits its use in real applications. From the decompo-
sition perspective, Vidal and Favaro [22] introduced a robust
low-rank subspace clustering (LRSC) method. The authors
demonstrated that a clean and self-expressive dictionary can
be extracted from a corrupted data matrix, and the low-rank
coefficients can be learned from this dictionary. In terms
of clustering performance, the LRSC method outperformed
classical SC methods using LRR.
The second problem (i.e., subspace dependency) is also

a challenging issue. High-dimensional data, especially non-
linear data in different categories, are often distributed in
the non-independent (overlapping) subspaces, and thus the
low-rank coefficients calculated from the original data fail to
reveal the intrinsic structure of the data, and the discrimina-
tion of features is weakened. Searching for a framework that
separates the data and reduces the dimensions simultaneously
is necessary for improving the clustering performance [23].
To address this issue, Liu and Yan [23] introduced the

notion of latent SC. They explored the hidden data located
in latent space, which are as important as the observed data
for recovering the low-rank coefficients. Through latent space
mapping, the overlapping subspaces can be unfolded so that
hidden data can be observed. Patel et al. [24] investigated a
complete framework of latent SC based on SSC (LS3C) to
facilitate the dimension reduction and sparse representation,
simultaneously. They also offered two mapping functions for
the sparse representation: linear mapping and kernel map-
ping. Wei et al. [25] introduced latent SC based on the LRR
method to solve the challenge of LRR, which also employs
the two mapping functions. However, choosing an applicable
mapping function has been a long-standing challenge for
latent space sparse or low-rank subspace clustering because
both linear mapping and kernel mapping are not appropriate
for high-dimensional and non-linear data. Likewise, linear
mapping can distort the non-linear structure of the data to
some degree, whereas kernel transformation increases the
computation complexity, and the performance of clustering
is largely determined by the form of the kernel function.

This paper developed a new subspace clustering method
based on locality-preserving robust latent low-rank recovery
(L2PLRR) to address the problems in the above-mentioned
SC methods. The main contributions of this paper are as
follows. The developed L2PLRR model extends the LRSC
into latent space to recover the low-rank coefficients in that
space. Likewise, a new mapping function called ‘‘locality-
preserving mapping’’ was developed to project a given
dataset into a low-dimensional latent space by maintaining
the similarity of pairwise data points in a local area (in
the same subspace), while also retaining the distinction of
data lying in different subspaces (clusters). This new map-
ping function is effective for revealing the intrinsic structure
of non-linear data, which contributes to enhancing feature
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discrimination. Two experiments were conducted to verify
the effectiveness of the developed method. The first exper-
iment tested the robustness and accuracy of the developed
L2PLRR method in terms of clustering performance on a
synthetic dataset; the second experiment verified the efficacy
of the developed L2PLRR for fault diagnosis (on bearings).

The reminder of the paper is organized as follows.
Section II provides the theoretical background of L2PLRR.
In Section III, the L2PLRR subspace clustering method and
its optimization are presented in detail. Section IV verifies the
efficacy of the L2PLRR method for unsupervised clustering
by comparing with classical and state-of-the-art SC methods.
Section V presents conclusions.

II. THEORETICAL BACKGROUND OF
LOCALITY-PRESERVING ROBUST LATENT LOW-RANK
RECOVERY (L2PLRR)
The goal of SC based on LRR is to segment (or cluster)
data into clusters with each cluster corresponding to a sub-
space through extracting the low-rank coefficients of data
to build the adjacency matrix, which is used as the input
of the spectral clustering [26]. The low-rank coefficients
are recovered according to LRR as follows: ‖Z‖∗ s.t.X =
XZ , where X ∈ RN×D is the data matrix whose size is N
(observations) ×D (dimensions), and LRR produced low-
rank matrix Z by minimizing the nuclear norm: ‖Z‖∗ =∑

i σi (Z ), where σi (Z ) is defined as the singular values
of the matrix Z . The formula means that the data can be
represented by linear weight combination of the data itself,
and the low-rank coefficients are the weights that measure
the degree to which the two data belong to one subspace.
Ghergherehchi et al. [26] and Zhang et al. [18] proved that
if the data is seriously corrupted, the low-rank coefficients
fail to figure out the subspace information of data because
LRR uses the corrupted data as the dictionary to learn the
low-rank coefficients, which leads to low clustering perfor-
mance. Elhamifar and Vidal [19] pointed out that a clean,
self-expressive, and low-rank dictionary can be extracted
from a corrupted data matrix,

min
Z ,A,G,E

‖Z‖∗ + ‖A‖∗ +
γ

2
‖G‖2F + λ1 ‖E‖1

s.t. Z = ZT , A = AZ , and X = A+ G+ E (1)

where A is a new dictionary matrix detached from the data
matrix X ∈ RN×D, which can be self-expressive based on
the low-rank matrix Z ; at the same time, the dictionary A
also has a low-rank structure. G and E represent noise and
gross error, respectively, both of which should be depressed
through keeping Frobenius norm ‖G‖2F =

∑
ij G

2
ij and L1

norm ‖E‖1 =
∑

ij

∣∣Eij∣∣ minimum. Likewise, γ and λ1 are
the parameters to balance the noise and error minimum.
Note that the constraint A = AZ is a non-convex problem
because both A and Z are unknown, as a result, a convex
relaxation framework is put on (1) and the transformation is as

follows:

min
Z ,A,G,E

‖Z‖∗ + ‖A‖∗ +
γ

2
‖X − A− E‖2F

+
v
2
‖A− AZ‖2F + λ1 ‖E‖1

s.t. Z = ZT (2)

In (2), v is a parameter used to balance the bias of recon-
struction. An iterative update strategy was introduced to
solve (2), and its steps can be summarized as follows [24]:

AK+1 = UKPγ,v (6K )V T
K

EK+1 = Sλ1/γ (X − AK+1) (3)

whereUK6KV T
K is the singular value decomposition ofX−E

at iteration K , 6K = diag (σ1, σ2, . . . ,σn) are the singular
values of X−E , and n is the length of singular values. At first,
a polynomial thresholding operator Pγ,v is used to extract the
effective singular values of X − E to renovate the dictionary
A, and a lot of noise can be reduced during the polynomial
thresholding operation, which is defined in [25]; in a similar
way, E is then updated by thresholding the singular values
of X − A through a regular shrinkage-thresholding function
Sλ1/γ , defined in [22]. The iteration is started with E0 = 0 and
A0 = X , whereK is the number of iterations. Finally, the low-
rank matrix Z is gained by shrinking the singular values of A:

Z = V1

(
I −

1
v
3−21

)
V T
1 (4)

where 3 = Pγ,v (6K ) .

The matrices U = [U1U2], 3 = diag [3132], and
V = [V1V2] are partitioned according to the sets I1 ={
i : λi > 1

/√
v
}
and I2 =

{
i : λi ≤ 1

/√
v
}
, Z is the opti-

mization low-rank matrix in the end.

III. DEVELOPED L2PLRR FOR SUBSPACE CLUSTERING
In Section II, the framework of robust LRR for SC was pre-
sented. Although the robust LRR is effective for addressing
the noisy data for SC, it still fails to overcome the harm of
low clustering accuracy if the data is distributed in disjoint
and high-dimensional spaces. To address this issue, latent
LRR was introduced. As stated in Section I, Patel et al. [24]
developed a complete framework of latent LRR for SC, which
could recover the sparse coefficients and enable dimension-
ality reduction simultaneously.

However, because there are no SC models that can account
for noisy and non-linear data, the L2PLRR method was
developed for SC, and its model can be initially expressed
as follows:

min
Z ,P,A
‖Z‖∗ +

∥∥∥PT (A− AZ )∥∥∥2
F
+

∥∥∥A− PPTA∥∥∥2
F

(5)

where P ∈ RD×d is a matrix that maps the data matrix X
from the original space of dimension D into a latent space
of dimension d . In (5), the dictionary matrix Z in the latent
space still has a low-rank structure, and the last two terms aim
at avoiding loss of information of the original data as much as
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FIGURE 1. Effect of mapping data points from different subspaces into
the latent space.

possible after latent mapping. The use of the principal compo-
nent analysis-like mapping function is not appropriate for the
non-linear data. Likewise, kernel mapping is not an optimal
choice because it suffers from the curse of dimensionality.

As pictorially illustrated in Fig. 1, two data points A and
B are in subspaces 1 and 2, respectively, and their linear
projections in the latent space are A

′

and B
′

.
The Euclidean distance between A′ and B′ is denoted as

dist1 in Fig. 1. However, because the surface is completely
unfolded, the geodesic distance dist 2 (the real discrepancy
between actual projections A′′ and B′′) is larger than dist1.
That is, this explains that the difference between data points
A and B located in a non-linear subspace is decreased after
linear mapping. In contrast, data points B andC in subspace 2
(i.e., the small local area) are assumed to be distributed in a
linear space to a great approximation.

The angle between two normal vectors (or data points)
vi and vj in subspaces Si and Sj can be used as a metric to
determine whether the vectors are located on a curved surface
(or different subspaces), defined as:

θij = cos−1
(
〈vi, vj〉

‖vi‖2
∥∥vj∥∥2

)
∈ (0, π) (6)

where 〈vi, vj〉 is the inner product and ‖‖2 is the second norm.
It is worth noting that if θij ∈

(
0,π

/
2
)
, the positive

correlation of the subspaces reduces with an increase of θij,
whereas the negative correlation of the subspaces reduces
with an increase of θij if and only if θij ∈

(
π
/
2, π

)
. Likewise,

if the angle θij is π
/
2, the subspaces are assumed to be

orthogonal to each other, which implies that the vectors vi
and vj are placed in different subspaces.
In Fig. 1, v1 and v2 are two normal vectors in

subspaces 1 and 2, respectively, where the data points A and B
are located, θl indicates the angle between v1 and v2, whereas
θr is the angle between normal vectors v3 and v4 in subspace
2, respectively, where the data points B and C are located.
Because v1 and v2 are on a curved surface and in different
subspaces, θl is in the range of

(
0,π

/
2
)
. Likewise, because

v3 and v4 are parallel and in the same subspace, θr closes
to 0.

The subspace structure of the given data points should
be preserved in the latent space, which indicates that the
data points in the same subspace are tightly agglomerated
in the latent space or the data points in different subspaces
are alienated from each other in the latent space. Therefore,
an additional restraint factor is added to the model described
in (5); that is, the developed locality-preserving latent sub-
space low-rank recovery model is defined as:

min
Z ,P,A
‖Z‖∗ +

∥∥∥PT (A− AZ )∥∥∥2
F

+

∥∥∥A− PPTA∥∥∥2
F
+ PTALATP

s.t. PTASATP = I (7)

After latent space mapping, the data points in the local
area remain similar by minimizing the term PTALATP in (7),
where L is the Laplacianmatrix calculated by the local weight
matrix W : L = S − W and S = 6jWij. This constraint
term promotes the symmetry characteristic of the matrix S.
k-nearest neighbor classification can be used to build the
matrix W . In fact, the use of a data point’s k neighbors is
effective for composing a local area. If the k is small enough,
it can be said that data points in this area come from the
same subspace. Herein, searching for k neighbors of every
data point is based on a measure of similarity between angles,
defined as:

Wij = e
π/2−θij|

σ , θij ∈ (0, π)

σ =

√
1
N 2

∑N

i=1

∑N

j=1

(
θij − θ̄

)
,

σ̄ =
1
N 2

∑N

i=1

∑N

j=1
θij (8)

where θij is the angle of normal vectors vi and vj of subspaces
Si and Sj. The elements of the matrix W are computed by
an exponential function taking the angle of the two normal
vectors as an input parameter. Likewise, σ is the standard
deviation of the angles θij. Once the value of θij is π

/
2, Wij

will be 1, which is the minimum value of the matrix W .
Then, the intact framework of the L2PLRR is designed by
integrating (7) into (2):

min
Z ,A,E,P,L

‖Z‖∗ + ‖A‖∗ +
γ

2
‖X − A− E‖2F

+
v
2
‖A− AZ‖2F + λ1 ‖E‖1 +

∥∥∥PT (A− AZ )∥∥∥2
F

+

∥∥∥A− PPTA∥∥∥2
F
+ PTALATP

s.t. PTASATP = I (9)

Algorithm I summarizes the detailed steps of the L2PLRR
method.

By carrying out the steps listed in Algorithm I, the optimal
low-rank matrix Z is obtained, which will be further used to
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Algorithm 1 Detailed Steps of the Developed L2PLRR
Method for SC

Input:
A data matrix X = {x1, x2, . . . , xn}, where the dimen-

sionality of each data point is D.
Step 1: Initialization

1. Initialize parameters λ1, γ , and v, the number
of k neighbors, the dimension of the latent space
d , the number of iterations Nloop1 and Nloop2, and
the termination threshold ε.
K = 0;E0 = 0;A0 = X
FOR K = 1: Nloop1
Calculate the matrices AK and EK using (3)
END FOR

2. Obtain the matrix Z using (4)
Step 2: Update the matrixPby usingZandA

3. Transform (7) into the generalized Lagrange
function, defined as:

0 =

∥∥∥PT (A− AZ )∥∥∥2
F
+

∥∥∥A− PPTA∥∥∥2
F

+PTALATP− ρ
(
PTASATP− I

)
4. Take the derivative of 0 with respect to P and set
it to be zero, expressed as:

∂0
/
∂P =

(
(A− AZ ) (A− AZ )T − AAT + ALAT

)
= ρASATP

5. Perform P = V (1 : d), where V is the generalized
eigenvector

6. Perform A
′

= PA
Step 3: Update the low-rank matrix Z by using A

′

7. Search for the low-rank matrix Z with A
′

min
A,Z ,E

‖Z‖∗ + λ1 ‖E‖1

s.t. A
′

= A
′

Z + E

8. Solve the equation by employing an augmented
Lagrange multiplier to gain the low-rank matrix Z.

Output:
Z and P

build the adjacency matrix (or affinity matrix):

M = |Z | + |Z |T (10)

Then, data segmentation (i.e., clustering) is realized by
exploiting the adjacency matrix M as an input of SSC.

IV. EXPERIMENTAL RESULTS
To verify the effectiveness of L2PLRR in clustering, the clas-
sical and state-of-the-art SC methods, including SSC [19],

LRR [20], LS3C [21], LRSC [22], NLS3C [24], LSRS2 [25],
and LATLRR [23], were compared for unsupervised recog-
nition on the synthetic dataset [20] and bearing failure
dataset [27]. Additionally, this paper employed the accuracy
of clustering as a metric to evaluate the performance of the
SC methods because it intuitively shows the performance of
clustering, which is defined as follows [24]:

Accuracy (�,C) =
1
N

∑
k
max
j

∣∣ωk ∩ cj∣∣ (11)

where � = {ω1, ω2, . . . , ωk} is the true set of the centroids
of each cluster, ωk is interpreted as the set of documents in
the k th cluster, C =

{
c1, c2, . . . , cj

}
is the set of the classes,

and cj is interpreted as the set of documents in the jth class.
Each cluster is assigned to the class that is most frequent
in the cluster, and then accuracy is measured by counting
the number of correctly assigned documents and dividing
by the number of samples N , the value of accuracy ranges
from 0 to 1.

A. CLUSTERING RESULTS ON A SYNTHETIC DATASET
To verify the effectiveness of the developed L2PLRRmethod
for SC, a synthetic dataset was generated based on [20]. Four
pairwise disjoint subspaces

{
Si ∈ RD×d

}4
i=1 of dimension

d = 4 embedded in D = 100 dimensional space were
created.More specifically,Ci (i = 1, 2, 3, 4) are four bases of
these spaces, which can be computed by Ci+1 = RCi, where
the dimensionality of Ci is 100× 4 and R is a rotation matrix
that can be independently changed. Then, a 100× 120 dataset
[X1,X2,X3,X4] was constructed by sampling 30 points from
each subspace by Xi = CiWi with Wi being a 4 × 30 weight
matrix. In addition, some points could be randomly chosen to
be corrupted by adding Gaussian noise.

Fig. 2 illustrates the adjacency (or similarity) matrix recov-
ered by each of the SC methods. Note that the clustering
results rely on howwell the adjacencymatrices are recovered.
Likewise, if any of the adjacency matrices show an obvious
diagonal block structure on the synthetic data, which means
that similarities between data points in the same subspace are
larger than those in different subspaces, it can be said that
the clustering performance of the method associated with that
adjacency matrix is satisfactory. In Fig. 2, it is obvious that
the L2PLRR method yielded better clustering performance
than the other classical and state-of-the-art SC methods.

Likewise, by comparing with SSC and LRR
in Figs. 2(a) and 2(b), it could be possible to identify that
SCC resulted in a sparser adjacency matrix, even if the matrix
showed a block structure at the frontiers. This is because
SSC shows that the sparsest coefficients are also ‘‘block-
sparse’’. Namely, the within-cluster similarities are sparse
(but nonzero) and the between-cluster similarities are all
zeros, which implies that there is no global constraints to its
coefficients. Once the data is grossly corrupted, the clustering
performance of is largely depressed. It can be observed
in Fig 2(b) that low-rank coefficients have a block-impact
structure, but the non-diagonal coefficients are nonzero,
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FIGURE 2. The adjacency (or similarity) matrixes obtained by eight different algorithms: (a) SSC, (b) LRR, (c) LRSC, (d) LS3C, (e) NLS3C, (f) LSRS2,
(g) LATLRR, and (h) L2PLRR.

which means between-cluster similarities are still large and
may present an obstacle to clustering. The result of Fig. 2(d)
is similar to 2(a)—that is, the elements of the adjacency
matrix in a block were not as dense as those obtained by the
LRSC (see Fig. 2(c)), LSRS2 (see Fig. 2(f)), and L2PLRR
(see Fig. 2(h)), respectively. However, unlike the L2PLRR,
both LRSC2 and LRSC yielded scattered impurities in their
adjacency matrices.

In summary, the use of low-rank and sparse matrices
has pros and cons. More specifically, the inclusion of a
low-rank matrix in SC is effective for clustering data into
associated clusters but can introduce scattered impurities.
However, the inclusion of a sparse matrix in SC suffers
from decentralized data in one subspace but produces less-
scattered impurities. The L2PLRRmethod yielded good clus-
tering performance by preserving within-cluster similarities
while decreasing the between-cluster similarities as much as
possible.

Each of the SC methods was tested on corrupted data to
show the robustness of these methods to noise. In the test of
clustering pure data, experiments were conducted multiple
times and the average accuracy was calculated; in the test
of clustering corrupted data, various amounts of Gaussian
noise (–8 dB to 13 dB) were added to the data. Maximum,
minimum, median, and mean values of clustering accuracy
were counted to show that clustering performance varies
under different noise strength based on each SC method. The
L2PLRR method shows the most satisfactory performance
in terms of clustering accuracy, regardless of whether the
data is corrupted or not. The accuracy of purely synthetic
data is 100%; clustering the corrupted noisy data in different
strengths, the median and average accuracy of the L2PLRR
is highest, which means that the L2PLRR was effective elim-
inating the influence of noise when clustering.

FIGURE 3. Clustering accuracy in noisy environments.

FIGURE 4. Snapshots of bearing failures: (a) BFIR, (b) BFOR, and (c) BFRE.

The signal-to-noise ratio (SNR) [20] was used to quantify
the amount of noise:

SNR = 10log
(
σ 2
signal

/
σ 2
noise

)
(12)

The higher the SNR is, the less noise is contained in the
data.

Fig. 3 presents the clustering accuracy trends in noisy envi-
ronments. The clustering accuracy decreases with increase
of noise intensities in the data. Among the SC methods,
L2PLRR and LATLRR achieved higher accuracies at lower
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FIGURE 5. Visualization of clustering results on dataset 1 in the 2-dimensional latent space: (a) SSC, (b) LRR, (c) LRSC, (d) LS3C,
(e) NLS3C, (f) LSRS2, (g) LATLRR, and (h) L2PLRR.

FIGURE 6. Visualization of clustering results on dataset 2 in the 2-dimensional latent space: (a) SSC, (b) LRR, (c) LRSC, (d) LS3C,
(e) NLS3C, (f) LSRS2, (g) LATLRR, and (h) L2PLRR.

SNRs, indicating that these methods are relatively robust to
noise. More specifically, the L2PLRRwas capable of linearly
improving the clustering accuracy until SNR= 0dB.At above
SNR = 0dB, the L2PLRR showed the incisively increased
clustering accuracy. The LATLRR’s performance pattern was
similar to that of the L2PLRR. However, the developed
method was more stable than LATLRR at lower SNRs.

B. CLUSTERING RESULTS ON BEARING
FAILURE DATASETS
In this study, the SC methods were tested on bearing failure
datasets provided by the Center for Intelligent Maintenance
Systems (IMS), University of Cincinnati, USA [26]. The IMS
conducted tests for 35 days until they found failures on any
of bearing’s elements (i.e., a cage, an inner race, an outer
race, and rolling elements) by inspecting metal debris on
the magnetic plugs of the bearings under test. During the
run-to-failure tests, the following failures were found on the
bearing’s inner race (BFIR), outer race (BFOR), and rolling

element (BFRE), respectively, as depicted in Fig. 4. In this
study, these bearing failures are denoted as BFIR, BFOR, and
BFRE, respectively. Further information about test setup and
sensor replacement can be found in [26].

The SC methods were tested on two different bearing
datasets. The first dataset, denoted as dataset 1, contained
bearing run-to-failure data, enabling the observation of bear-
ing degradation. Further, dataset 1 consisted of a number of
1-s vibration signals sampled at 20 kHz for a specific bearing
failure—that is, dataset 1 contained 1-s vibration signals for a
BFIR, a BFOR, and a BFRE, respectively. On the other hand,
the second and third datasets, denoted as dataset 2 and dataset
3, consisted of 1-s vibration signals recorded at different
sensors, respectively, for a healthy bearing (HB) and a BFOR.

To verify the efficacy of the SC methods, the first step is to
configure a set of features that can be extracted from each
of the vibration signals in the datasets. To deal with non-
stationarity and non-linearity inherent in the vibration signals,
ensemble empirical mode decomposition [28] was applied to
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FIGURE 7. Visualization of clustering results on dataset 3 in the 2-dimensional latent space: (a) SSC, (b) LRR, (c) LRSC,
(d) LS3C, (e) NLS3C, (f) LSRS2, (g) LATLRR, and (h) L2PLRR.

TABLE 1. Clustering results for purely synthetic data and corrupted data.

decompose each of the 1-s vibration signals into so-called
intrinsic mode functions (IMFs). Because the frontier IMFs
tend to involve intrinsic information about bearing failures,
statistical features, such as mean, peak-to-peak, and root-
mean-square, were computed in the first five IMFs—the total
number of features used in this study is 55.

Fig. 5 illustrates the clustering results in a 2-dimensional
space on dataset 1. Note that dimensionality reduction is
carried out during the process of SC. It can be said that
the clustering result is satisfactory if the three bearing fail-
ures (i.e., BFIR, BFOR, and BFRE) are clearly separated
from each other. In Fig. 5, the SC based on L2PLRR

TABLE 2. Fault detection accuracy of various bearing datasets.

(see Fig. 5(h)) method was superior to the other clas-
sical and state-of-the-art clustering methods. Although
L2PLRR showed distinct separation among bearing fail-
ures, the other methods failed to properly separate BFIR
(see Figs. 5(a), 5(b), 5(c), 5(e), 5(g), and 5(f)) or BFOR (see
Fig. 5(d)). As illustrated in Figs. 6 and 7, L2PLRR outper-
formed the other SC methods in facilitating the recognition
of a healthy bearing and a BFIR.

Table 2 summarizes the classification accuracy of vari-
ous bearing datasets. As presented in Table 2, the cluster-
ing performance of latent SC was more predominant than
the classical LRR and SSC—that is, latent SC was effec-
tive for unfolding high-dimensional curled data into a low-
dimensional latent space. Likewise, the L2PLRR method
achieved 1.35-fold to 1.94-fold performance improvements in
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terms of the average of clustering accuracies. This wasmainly
because of the locality-preserving effect in the L2PLRR.

V. CONCLUSIONS
As mentioned in Section I, subspace clustering is an effective
unsupervised feature learning method that is widely used in
intelligent fault diagnosis owing to its ability to classify dif-
ferent kinds of data independent of label information. How-
ever, it is hard for conventional subspace clustering methods
to extract the discriminative features that reveal the intrinsic
structure of high-dimensional and non-linear data (e.g., bear-
ing failure data), thus diminishing diagnostic performance.
The developed L2PLRR method addresses this problem by
mapping the data into the latent space whose dimension is
lower than ones in the original space before clustering, in
the meanwhile, the locality-preserving constrained mapping
function is provided. Therefore, the learned low-rank coeffi-
cients or features contribute to reveal the intrinsic structure of
the data.

The result is improved accuracy of bearing fault diagnosis,
which is proven by comparing the L2PLRR method with
the conventional subspace clustering methods that employ
statistical parameters (i.e., LRR, SSC, and LRSC). The exper-
imental results show that the L2PLRR method outperformed
the most competitive LRSC and yielded 34.72% perfor-
mance improvement in terms of the averages of accuracies.
Likewise, due to locality-preserving, the L2PLRR method
can map the high-dimensional data into low-dimensional
latent space without destroying the intrinsic structure of the
high-dimensional and nonlinear data that contributes to dis-
crimination. The experimental data of the bearing fault diag-
nosis shows that the L2PLRR method outperformed the most
competitive latent subspace clustering methods, LSRS2 and
LATLRR, and yielded 51.56% and 56.45% performance
improvements in terms of averages of clustering accuracy,
respectively. The variation of accuracy with the increased
noise also confirms the high level of robustness of LATLRR.
In conclusion, L2PLRR is effective for unsupervised feature
learning of complex data, which is the foundation of intelli-
gent fault diagnosis under complicated circumstances such as
bearing operation.

Although the effectiveness of the L2PLRR method is ver-
ified by bearing fault diagnosis, this method is applicable to
general data-driven fault diagnosis with minor changes. The
L2PLRR method will be further studied in order to make
it appropriate for fault diagnosis of other machinery and
electronic components or systems.
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