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ABSTRACT In recent decades, there have been considerable improvements in target-tracking algorithms.
However, aspects such as target occlusion, scale variation, and illumination changes still present significant
challenges to existing algorithms. In this paper, we describe an occlusion-aware correlation particle filter
target-tracking method based on RGBD data. First, we derive a target occlusion judgment mechanism
based on a depth image and the histogram of oriented gradients (HOG) feature. We then formulate the
tracking mechanism for the target prediction–tracking–optimization–redetection process using a correlation
maximum likelihood estimation particle filter algorithm. We propose an adaptive update strategy whereby
the system saves a well-tracked model when no occlusion occurs, and then uses this saved model to
replace poorly tracked models in the event of occlusion. Furthermore, we consider the scale variation and
adjust the target size according to the depth image, but we leave the HOG feature vector dimension of
the target area unchanged. Thus, the problems such as model offset, scale variation, and loss of features
are corrected over time. The experimental results demonstrate that the proposed target-tracking algorithm
can detect target occlusion and track targets well, requires fewer calculations to perform target prediction–
tracking–optimization–redetection, reduces the impact of illumination changes, and achieves better real-time
performance and accuracy than many existing algorithms.

INDEX TERMS Adaptive update strategy, correlation maximum likelihood estimation particle filter,
occlusion-aware, RGBD, target tracking.

I. INTRODUCTION
Target tracking has been the focus of considerable research
in the field of machine vision. Target tracking entails estab-
lishing the position of the tracked object within a continu-
ous video sequence and obtain its complete trajectory. The
real-time, robust tracking of moving objects in a dynamic
environment is an important part of target tracking. With the
continuous improvement of computer technology, target
tracking is increasingly used in fields including robotics,
intelligent security, intelligent transportation, artificial intelli-
gence, and other fields. Recently, the introduction of machine
learning has significantly improved target-tracking technolo-
gies; however, there are still many challenges [1], [2], includ-
ing scale changes, illumination changes, target deformation,
scale variation, fast motion, target occlusion, and tracking
speed.

Target-tracking methods can generally be divided into
those based on a production model and those based on

a discriminative model. Methods based on a production
model determine the closest sample to the target model to be
the current target state estimation. These methods typically
proceed by calculating the joint probability of the target and
the sample, and representativemethods include themean shift
algorithm, the Kalman filter, the optical flow algorithm based
on feature points, and the particle filter. The mean shift algo-
rithm [3], [4] is a tracking method based on the distribution
of the probability density. The search for the target always
follows the direction of increasing probability gradient, and
the iteration converges to the local peak of the probability
density distribution. In [3], the mean shift algorithm models
a target with nonparametric distributions of color features
and locates the object with mode shifts. The Kalman filter
algorithm [5] models the target’s motion, uses an adaptive
filtering method to estimate the process noise variance and
measure noise variance, and then estimates the target’s posi-
tion in the next frame. The optical flow trackingmethod based
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on feature points [6], [7] extracts some feature points from the
target, and then calculates their optical flow matching points
in the next frame. This allows for a statistical determination
of the target’s position. The optical flow algorithm essentially
uses feature points to characterize the target model. These
production model methods are generally fast, have the ability
to process occlusion problems, and can manage nonlinear
systems. However, they all have problems with robustness
and low accuracy.

Methods based on a discriminative model perform tracking
using classification. The tracked target is considered to be
the foreground and an online or offline training detector
is used to distinguish the foreground target from the back-
ground. Representative methods include tracking–learning–
detection (TLD), structured output tracking with kernels
(Struck), differentiated-scale spatial tracking (DSST), circu-
lant structure of tracking-by-detection with kernels (CSK),
and the kernel correlation filter (KCF). TLD [8] is a novel
tracking framework that explicitly decomposes the long-term
tracking task into tracking, learning, and detection. Struck [9]
performs adaptive visual target tracking based on structure
output predictions. By explicitly introducing the output space
to satisfy the tracking function, it can avoid intermediate
classification links and output the tracking results directly.
Furthermore, the algorithm uses a threshold mechanism to
prevent the excessive growth of the support vector during
the tracking process, thus ensuring real-time performance.
Bolme et al. [10] proposed amethod of learning theminimum
output sum of squared error (MOSSE) correlation filter on
grayscale images. This was the earliest use of correlation
filters in target tracking. DSST [11] solves the problem of
target scale changes in the tracking process based on the
MOSSE tracking algorithm. Henriques et al. [12] proposed
the CSK method, also based on MOSSE, which uses kernel
tracking with a circulant matrix to solve the problem of dense
sampling. Additionally, this method uses a Fourier transform
to accelerate the detection process. In the context of big
data, convolution features obtained using a deep learning
training network model have been directly applied to the
relevant filtering framework [13], resulting in better tracking
at some additional computational expense. Methods based on
the discriminative model offer high accuracy and robustness.
However, in the event of target occlusion, their detection
templates are incorrectly updated, resulting in a failure to
follow the target.

The most difficult challenges in visual tracking are occlu-
sion, scale variation, and tracking speed. Many advanced
motion models have been devised to manage occlusions:
parametric templates [14]–[16], linear Kalman filters [17],
and nonlinear particle filters [18], [19] are the most useful
approaches. In particular, Liu et al. [20] presented an initial
target appearance model based on nonnegative matrix fac-
torization (NMF) to describe the target’s appearance along
with an inverse NMF model where each learned base vec-
tor is regarded as a clustering center in a low-dimensional
subspace. The model can produce more discriminative

encoding vectors. Training a SVM classifier by the encoding
vectors combined with using a particle filter can address
the occlusion problem. Particle filters [21]–[25] have been
applied to the problem of target occlusion using kernels, the
combination of multiple features, and sparse coding repre-
sentations. The common particle filter algorithm can solve
the problems of partial occlusion and complete occlusion;
however, its accuracy is reduced in the case of complex
backgrounds and occlusion. The L1 minimization particle
filter [25] can theoretically solve the problem of complex
occlusion; however, Suha et al. [26] reported that the actual
result is inadequate and does not consider the similarity
calculation and template update problem. Meshgi et al. [27]
proposed an occlusion-aware particle filter framework that
maintains target tracking by predicting the appearance of
occluded targets. The target template is updated by shifting
relevant information and performs re-tracking by expanding
the search area to find the occluded target. However, this
method is slow because it entails retrieving the target from
a large area. Henriques et al. [28] proposed the KCF track-
ing algorithm using the gradient histogram feature in the
correlation filter tracking algorithm to improve CSK. This
method can achieve fast target tracking, but cannot solve
the problem of target occlusion. Yang et al. [29] presented
a simple and fast method to improve the robustness of KCF
by combining template and pixel-wise learners. Their method
achieved a speed of 42 frames/s on large-scale challenging
benchmark datasets, but still struggles effectively solve the
target occlusion problem. Liu et al. [30] presented a sophisti-
cated similarity metric termed ‘‘mutual buddies similarity’’ to
exploit the relationship between multiple reciprocal nearest
neighbors for target matching. They also designed a novel
online template updating strategy named ‘‘memory filtering’’
to construct the current stable and expressive template by
selecting a set of representative and reliable tracking results
from the tracking history. This set of templates allows the
algorithm to avoid poor tracking results caused by improper
template updates following target occlusion.

In modern target tracking, the complexity of practical
problems such as occlusion means that more nonlinear,
non-Gaussian problems are being encountered; in addition,
the tracking-speed requirements are ever-increasing. The par-
ticle filter method [18], [19] is widely used because of its
excellent performance in nonlinear, non-Gaussian systems.
Although the probability distribution given by the algorithm
is only an approximation of the true distribution, the non-
parametric characteristics of particle filters eliminate the need
for the random variables to satisfy a Gaussian distribution
when solving the nonlinear filtering problem. As a result,
a wider range of distributions can be expressed with particle
filters than with a Gaussian model. Particle filters also have
stronger modeling capabilities for the nonlinear properties
of variable parameters and can process occlusion problems
in some extent. However, the main drawback is that particle
filters require a large number of sample sizes to approximate
the system’s posterior probability density. The KCF tracking
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algorithm [28] uses a circulant matrix to acquire positive and
negative samples with respect to the target, and applies ridge
regression to train the target detector. The diagonalizable
properties of the circulant matrix in the Fourier space are then
used to successfully transform the matrix operations into the
Hadamard product of the vector, which is the dot product of
the elements. This greatly reduces the computational expense,
allowing the algorithm to meet real-time requirements. How-
ever, this algorithm cannot manage the problem of complete
target obstruction, and also lacks a truly adaptable model
updating strategy.

To solve the above problems, we propose an occlusion-
aware correlation particle filter (OACPF) target-tracking
method based on RGBD data. The main contributions of the
proposed approach are as follows:
1) We propose a target occlusion judgment mechanism

based on a depth image and its histogram of oriented gra-
dients (HOG) feature is proposed. We use an improved
KCF method to fuse the target depth image and its HOG
feature to accurately determine the target occlusion.

2) We combine the original KCF on HOG of RGB and the
maximum likelihood estimation particle filter algorithm
to form a target-tracking mechanism for prediction–
tracking–optimization–redetection. In the case of no
occlusion, KCF is used to track the target. The target
particle is predicted and calibrated using the maximum
likelihood estimation particle filter algorithm based
on KCF. If occlusion occurs during the target tracking
process, the target model stops updating. If the target
appears after occlusion, the relevant maximum of the
original model is retrieved by KCF around the target
position predicted by the maximum likelihood parti-
cle filtering. This enables fast retrieval of the occluded
target.

3) We propose a self-adaptive model update strategy.When
no occlusion occurs, the well-tracked model is saved as
a historical model. In the event of occlusion, the histor-
ical model is used instead of the poorly tracked model,
thereby correcting the tracking over time. Furthermore,
our method judges scale variation and adjusts the target
size according to the depth image, but the HOG feature
vector dimension of the target area remains unchanged.
Problems such as model offset, scale variation, and loss
of features are thus corrected over time.

Compared with existing target tracking algorithms, exper-
imental results show that the proposed algorithm offers better
performance in terms of accuracy, computation speed, and
real-time performance.

II. OCCLUSION-AWARE CORRELATION PARTICLE
FILTERING TARGET-TRACKING ALGORITHM
BASED ON RGBD DATA
We propose an occlusion-aware correlation particle filter
method for target tracking using RGBD data. First, we pro-
pose a target occlusion judgment mechanism based on
a depth image and its HOG features. We then construct

the tracking mechanism for target prediction–tracking–
optimization–redetection using the correlation maximum
likelihood estimation particle filter algorithm. In addition,
we propose an adaptive update strategy that saves a well-
tracked model when no occlusion occurs, and uses this model
to replace a poorly tracked model in the event of occlusion.
Furthermore, our method judges scale variation and adjusts
the target size according to the depth image, but the HOG fea-
ture vector dimension of the target area remains unchanged.
The overall process of the proposed method is shown
in Algorithm 1.

A. TARGET OCCLUSION JUDGMENT MECHANISM BASED
ON DEPTH IMAGE AND ITS HOG FEATURE
The main problem with respect to target occlusion is accu-
rately determining whether occlusion is occurring. In this
paper, we propose a target occlusion judgment mechanism
based on a depth image and its HOG feature. We employ
an improved KCF method to fuse the target depth image
and its HOG feature to determine the occurrence of target
occlusion.

1) DEPTH IMAGE HOG EXTRACTION
To calculate the depth image HOG feature, we divide the
depth image into many cells and select different sliding
windows according to practical considerations. We use a
rectangular window for HOG feature extraction. The specific
calculation steps are as follows:

(i) Calculate the gradient
We calculate the horizontal and vertical derivatives dx and

dy from the convolution kernels [−1, 0, 1], and [−1, 0, 1]T,
respectively, to obtain the gradient information g for each
pixel in each cell, that is,

g =
[
dx
dy

]
. (1)

Converting the gradient to polar coordinates, the
direction β and size A of the gradient are obtained as

β = arctan
(
dx
dy

)
, (2)

A =
√
d2x + d2y . (3)

(ii) Calculate the gradient histogram
We divide each image into multiple cells such that each

cell includes C × C pixels. We calculate the β and A of each
cell, and create an n-bin histogram for these cells, where each
bin covers an angle of 360◦/n. The β and A in each cell are
superimposed and assigned to each bin to obtain a gradient
histogram of the cell, that is, a gradient vector.

(iii) Calculate the overall HOG feature vector
We compose a block of size b × b consisting of adjacent

cells in the depth image. We normalize each block and obtain
the size of the feature vector. Finally, we traverse the entire
image using the sliding length S to obtain the feature vector

50754 VOLUME 6, 2018



Y. Zhai et al.: OACPF Target Tracking Based on RGBD Data

Algorithm 1 Proposed Occlusion-Aware Correlation Particle Filter Target Tracking Based on RGBD Data
Input: Image sequences and initialization
Output: Object tracking results
Initialize target template
Initialize N particles
1 for frame = 1:numel(image)
2 if no occlusion or frame ==1

Target occlusion judgment based on the depth image. (Eq. (11))
3 end
4 if no occlusion

Target tracking using KCF on RGB data. (Eq. (22))
Optimize particle filter parameters (Eq. (21))
Update the target model (Section 2-C)

5 end
6 if occlusion

Stop the target model update (Section 2-C)
Predict and update particle filter model, and re-detect target using KCF on RGB data. (Section 2-B)

7 if success
Return to the state of no occlusion

8 else
Return to the state of occlusion

9 end
10 end

of the entire image. The dimension is

Dim = (
w− b× c

S
+ 1)× (

h− b× c
S

+ 1)× b× b× bin,

(4)

where w and h denote the image width and height, respec-
tively, and bin is the number of histogram slots.

For the HOG feature, we calculate the gradient vector is
calculated by traversing the image using the sliding window,
effectively representing the depth distribution of the image
edge points within the contour.

2) IMPROVED KCF OCCLUSION JUDGMENT MECHANISM
BASED ON TARGET DEPTH IMAGE AND ITS HOG FEATURE
The main idea of the KCF tracking algorithm [28] is that
a discriminative correlation filter can be taught to target a
new frame of the image. The algorithm uses the ridge regres-
sion method to model the problem. The training sample set
is denoted as {(xi,Ri)i = 1, ...,m}, where the samples xi
are characteristic representations of the image block and
Ri denotes the sample labels assigned using a continuous
Gaussian function. The kernel function κ (x1, x2) maps x
from a low-dimensional space to the high-dimensional ϕ(x).
The standard training process involves solving a linear regres-
sion function that minimizes the total residual f (x) =<
w, ϕ(x) >. The ridge regression problem with the kernel
function can then be expressed as

min
w

m∑
i=1

(f (xi)− Ri)2 + λ||w||2, (5)

where λ is the regularization coefficient and w represents the
ridge regression model parameters. According to a theorem
in [32], the solution to this problem can be expanded to
a linear combination in the high-dimensional sample space

ϕ(xi) satisfying w =
m∑
i=1
αiϕ(xi), where αi is the correlation

coefficient. Substituting this formula into (5), the derivative
can be obtained as

α = (K + λI )−1R, (6)

where α is the vector of αi, R is the vector of Ri, I is
the unit matrix, and K is the kernel matrix that satisfies
Kij = κ (x1, x2).

If α has been obtained by training the sample set, then,
in the detection of the current frame, the response of the
regression function f (z) for the newly input image block z
can be expressed as

f (z) =< w, ϕ(z) >= (
m∑
i=1

αiϕ(xi))Tϕ(z) =
m∑
i=1

αiκ(xi, z).

(7)

In the implementation of the KCF tracking algorithm,
the Gaussian kernel function is used to calculate

κ
(
xi, xj

)
= exp(−

1
σ 2 ||xi − xj||

2). (8)

Based on this, the properties of the circulant matrix can be
applied to (6) and the regression coefficients obtained from
training can quickly be calculated as

α̂ =
R̂

k̂xx + λ
, (9)
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where the symbol ∧ represents the discrete Fourier transform
of the corresponding vector. Applying the properties of the
circulant matrix to (7), the regression response of the input
feature to detect can be calculated as

f̂ (z) = diag(k̂xz)α̂ ⇔ f (z) = F−1(diag(k̂xz)α̂). (10)

The point at which f (zi) is maximized gives the value of zi
that represents the detected position of the tracked target.

In this paper, we derive a new regression response function
based on the depth image and its HOG feature to achieve the
accurate detection of target occlusion. This function can be
written as

f (z) = F−1(diag(k̂xz)α̂)− ε|dl − dp|, (11)

where x and z of k̂xz are the depth image HOG feature
vectors of the training image block and the image block to
be detected, respectively, ε is the depth image proportion
coefficient, dl is the mean of the depth image in the previous
image block, and dp is the mean of the image block in
the depth image to be detected. ε was set according to the
measurement range of the depth sensor. f (z) represents the
correlation between two adjacent depth frames. Specifically,
we obtain f (z) by calculating the correlation of the HOG fea-
tures of two adjacent depth images and the difference in depth
values between two adjacent depth images. We determine
that the target is occluded when f (z) is less than Fz or when
the difference in f (z) between two adjacent depth frames is
greater than 1(f (z)).

B. TARGET PREDICTION–TRACKING–OPTIMIZATION–
REDETECTION USING THE CORRELATION MAXIMUM
LIKELIHOOD ESTIMATION PARTICLE
FILTER ALGORITHM
In the tracking process, the original KCF using the HOG fea-
ture of the RGB image obtains the position of the target in the
current frame according to the degree of correlation between
the current frame and the image of the target in the previ-
ous frame. This does not involve motion state information
about the target. When the target is completely obstructed,
it becomes lost and the tracking result is degraded. Therefore,
we propose a target-tracking algorithm using the correlation
maximum likelihood estimation particle filter. When there is
no occlusion, we use the original KCF algorithm to track the
target, and incorporate the maximum likelihood estimation
particle filter algorithm based on the original KCF to predict
and calibrate the target position. If occlusion occurs during
the target-tracking process, the target model stops updating;
if the target appears after occlusion, the relevant maximum of
the original model is retrieved by the KCF algorithm around
the target position predicted by the maximum likelihood par-
ticle filter to complete the retrieval of the occluded target. The
specific implementation process is as follows.

1) INITIALIZATION PHASE
The target tracking method based on particle filtering is a
production tracking method [7]; thus, there must be an initial

stage. For the first frame of the image, we manually select the
target to be detected and extract the feature for the target area.
In this paper, we use the RGB histogram as the target feature
to establish the initial sample set through SIS sampling:{
x(i)0 ,

1/
N
}N
i=1

.

2) STATE TRANSITION PROCESS
The particle filter state transfer equation is

Xk = A× Xk−1 + r, (12)

where r denotes noise and A denotes the state transition
matrix. The state transition is performed according to (12),

and the RGB template value of the new particle
{
x(i)k
}N
i=1

is
calculated.

3) UPDATE THE PARTICLE WEIGHTS
We use the Bhattacharyya distance as a measure of the
RGB histogram similarity between the target and the particle
region. The Bhattacharyya coefficient for two consecutive
distributions p(u) and q(u) is as follows:

ρ[p, q] =
N∑
i=1

√
p(i)q(i). (13)

The target histogram in this paper is Q and the calculated
RGB histogram of the particle region is py. The particle
weight update formula is

w(i)
k =

1
√
2πσ

exp
(
−
1− ρ[Q, py]

2σ 2

)
. (14)

The weights can be normalized as

w(i)
k =

w(i)
k

N∑
i=1

w(i)
k

. (15)

Finally, we calculate the most likely position of the tracked
target xk at time k . We use the weighted average of all of the
particles as the state estimate of the target location:

xk =
N∑
i=1

x(i)k w
(i)
k . (16)

4) UPDATE THE TARGET STATUS
The latest state of the target at time k is calculated as xk =
N∑
i=1

x(i)k w
(i)
k using the latest set of particles and their weights.

5) RE-SAMPLING
An important problem with particle filtering is that, as the
number of iterations increases, the weights become concen-
trated on a small number of particles. This leads to calculation
errors and particles with smaller weights occupying excessive
computing resources. Thus, we set a measure of the particle

weights, Neff = 1
/

N∑
i=1

(
wik
)2
. When the particle weights
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are below this threshold, the particles must be re-sampled.
We reselect particles to continue computing according to
the weight of the current particle. Unselected particles are
abandoned. After re-sampling, all of the particles are assigned
a weight of 1/N.

6) OPTIMIZATION
The actual state of the target and the predicted state of the
particle filter are related as follows,

yk+1 = xk+1 + v, (17)

where v is the error. To accurately predict the target position,
we consider the variances σ 2

r , σ
2
w, and σ

2
v to be equal, where

σ 2
r , σ

2
w, and σ

2
v are the variances corresponding to r , w, and v,

respectively. We obtain a new equation based on the actual
state of the target detected by the KCF algorithm using the
RGB HOG feature and the predicted state obtained using
particle filtering:

yk+1 = xk+1 + N (0, σ 2). (18)

The actual state and predicted state of the tar-
get obey the Gaussian distribution, that is, y1:K ∼

N
(
x1:K , σ 2

)
. According to the availablemaximum likelihood

estimate,

l(σ |y1:K , x1:K ) = −
K ln(2πσ 2)

2
−

K∑
k=1

(yk − xk )2

2σ 2 . (19)

By determining the partial derivative of σ 2 for the above
formula and setting it to zero, we have

σ 2
=

1
K

K∑
k=1

(yk − xk )2. (20)

To apply this method to online systems, the recursive rela-
tionship between σ 2

k+1 and σ
2
k can be obtained as follows:

σ 2
k+1 =

k − 1
k

σ 2
k +

k − 1
k

(yk − xk)2 . (21)

During particle filter target tracking, the variances σ 2 and
the particle distribution are adjusted recursively using the
original KCF based on the HOG of RGB data; this can
improve the speed and accuracy of target prediction.

7) OCCLUSION AND REDETECTION PROCESSING
When the target is occluded, the target model stops updating.
When the target reappears after occlusion, we retrieve the
relative maximum value of the original model by using the
original KCF on the HOGof RGB data around the target posi-
tion, as predicted by the maximum likelihood particle filter.
According to the KCF method described above, the regres-
sion response function based on the KCF using the RGB
HOG feature is obtained as

f (z) = F−1(diag(k̂xz)α̂), (22)

where the x and z of k̂xz are the RGBHOG feature vectors cor-
responding to the training image block and the image block
to be detected, respectively. α is the correlation coefficient.
The point at which f (z) is greatest represents the position
of the tracked target. The target retrieval after occlusion is
considered successful when the difference in fc(z) between
the last frame before occlusion and the next frame after
occlusion is less than 1(fc(z)).

C. ADAPTIVE MODEL UPDATE STRATEGY
The original KCF adopts a real-time update strategy to
improve its adaptability. During the processing stage, the tar-
get model is updated at every frame to adapt to temporal
changes in the target appearance characteristics. However,
the target model is based on the current frame only, thereby
ignoring the influence of the previous frame. The model loses
the feature values pertaining to the target, thereby degrading
the tracking results when the target becomes occluded or the
scale changes.

In the proposed method, we update the feature models
corresponding to the RGB of the target and depth image of
the target based on the KCF of the RGB HOG feature and
the depth image HOG feature, respectively. During the target
tracking process, we update the historical model built from
the well-tracked frames as a candidate model with a certain
weight. When the target becomes occluded, the candidate
model replaces the original model for tracking. The main
steps are as follows:
Step 1: Initialize the candidate model, including the

RGB image featuremodel and the depth image featuremodel;
Step 2: When the KCF based on the RGB HOG feature

outputs a good tracking result, we update the two models
according to the original KCF algorithm, and assign the result
to the candidate model. During the update process, the target
size is determined according to the depth image; if there is
a certain degree of change, then we adjust the target size
according to the depth image, but we do not change the HOG
feature vector dimension of the target area. The models are
updated according to the original KCF algorithm, and the
candidate model is updated simultaneously.
Step 3: If the target is determined to be occluded using

the improved KCF based on the target depth image and its
HOG feature, the original model stops updating and the can-
didate model is used instead. The candidate model is used to
re- detect the target once the target reappears.

III. EXPERIMENTAL RESULTS
We evaluated various aspects of the proposed OACPF algo-
rithm experimentally. We compared OACPF with an RGBD
SVM algorithm with an occlusion indicator (OI+SVM) [31],
adaptive color-based particle filter (ACPF) [22], KCF [28],
Background-Aware Correlation Filters (BACF) [33], Dual
Linear Structured SVM (DLSSVM) [34], Scale-Adaptive
Kernel Correlation Filter (SAMF) [35], Simple Tracker Com-
bining Complementary Cues (STAPLE) [36], and RGBD
single-object tracker with KCF tracker (DSKCF) [37].
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All of the tracking algorithms were applied to five
standard annotated video sequences from the Prince-
ton Tracking dataset. Additionally, we further compared
OACPF to the existing multiple-registration algorithms using
95 un-annotated test videos from the Princeton Tracking
dataset.

A. DATA AND EVALUATION CRITERIA
The Princeton Tracking dataset consists of 100 RGBD
video sequences acquired using the Microsoft Kinect.
Of these, new_ex_occ4, face_occ_5, bear_front, child_no1,
and zcup_move_1 are annotated, whereas the remaining
95 video sequences are un-annotated. In all of the video
sequences, people or objects exhibit different degrees of
movement, and some people or objects are occluded during
the movement.

To verify the effectiveness of the algorithm, we use the fol-
lowing evaluation criteria: the center position (CP), the area
under the curve (AUC), the center position error (CPE), false
tracking (FT), mistaken tracking (MT), and frames per sec-
ond (FPS). CP is mainly used to evaluate target occlusion
detection and whether the target can be re-tracked after it
reappears. AUC refers to the area under the tracking success
rate curve for different overlapping thresholds. To provide
better insight into the algorithm’s outcomes, we define CPE
as the L2-norm difference of the center position between the
detected bounding box and actual bounding box. In the case
of target occlusion, FT denotes that the algorithm cannot
judge occlusion. MT refers to very little or no agreement
between the target area detected by the algorithm and the
actual target area.

B. TARGET OCCLUSION JUDGMENT RESULT BASED ON
THE DEPTH IMAGE AND ITS HOG FEATURE
To validate the target occlusion judgment based on a depth
image and its HOG feature, we used five annotated stan-
dard video sequences from the Princeton Tracking dataset.
Three of these video sequences (bear_front, face_occ_5,
and new_ex_occ4) contain occlusion problems. We use the
CP judgment criteria to evaluate our method for these three
video sequences. For the proposed OACPF algorithm, we set
the number of initial particles in the maximum likelihood
estimation to 100; According to the 0.5m to 5mmeasurement
range of the Kinect, we set ε to 0.1 – 0.2, Fz to 0.2, 1(f (z))
to 0.3 – 0.5, and 1(fc(z)) to 0.1 – 0.25.

We use several existing methods for comparison:
(1) ACPF is a particle filter that integrates color distributions

and edge-based image features [22];
(2) OI+SVM uses a latent SVM with HOG features

extracted from the RGB and depth images and an
additional optical flow module to monitor occluding
objects [31];

(3) KCF uses the circulant matrix of the target area
to collect positive and negative samples, and applies
ridge regression to train the target detector. A cor-
relation filter is trained based on the information in

the current and previous frame. The correlation is
then calculated with the new input frame, and the
resulting confidence map forms the predicted tracking
result [28];

(4) BACF is a background-aware correlation filter based on
hand-crafted features that can efficiently model how both
the foreground and background of the object varies over
time [33];

(5) DLSSVM uses a primal classifier update formula in
which the learning step size is computed in closed form.
An intersection kernel is used to provide feature represen-
tations, with an explicit feature map to improve tracking
performance. The algorithm offers multi-scale estimation
to address the drift problem [34];

(6) SAMF uses an effective scale adaptive scheme to tackle
the problem of the fixed template size in the kernel
correlation filter tracker. Features including HOG and
color-naming are integrated to further boost the tracking
performance [35];

(7) STAPLE is a simple tracker combining complemen-
tary cues in a ridge regression framework. This
approach can handle illumination changes within a
sequence [36];

(8) DSKCF is an RGB-D single-object tracker built on the
extremely fast RGB-only KCF tracker [37].

The horizontal and vertical coordinates outputted by the
different algorithms are shown in Fig. 1. NaN indicates that
the occlusion cannot be judged. For the bear_front video,
the frame locations corresponding to target occlusion were
partially determined by OI+SVM (39, 57, NaN, NaN, NaN,
NaN) and DSKCF (40, 72, 128, 148, 206, NaN), undeter-
mined by ACPF, BACF, DLSSVM, SAMF, STAPLE, and
KCF (NaN, NaN, NaN, NaN, NaN, NaN), and consistently
determined by OACPF (42, 70, 127, 151, 207, 251). The
actual frame locations were (41, 68, 125, 153, 205, 250).
For the face_occ_5 video, the frame locations corresponding
to target occlusion were judged as follows: OI+SVM (69),
DSKCF (170), ACPF/ BACF/ DLSSVM/ SAMF/
STAPLE/KCF (NaN), and OACPF (169); the actual frame
position was (168). For the new_ex_occ4 video, the frame
locations corresponding to target occlusion were judged to
be: OI+SVM (25), DSKCF (30), ACPF/ BACF/ DLSSVM/
SAMF/ STAPLE/KCF (NaN), and OACPF (28), while the
actual frame position was (29).

This analysis and [33]–[36] indicate that ACPF, SAMF,
BACF, DLSSVM, STAPLE, and KCF cannot accurately
identify the occlusion problem when the target is occluded.
DSKCF and OI+SVM showed some ability to judge occlu-
sion. OACPF accurately judged single or multiple occlusions
in all of the video sequences.

Table 1 presents the errors between the actual
horizontal/vertical coordinates and those outputted by
OI+SVM, ACPF, KCF, SAMF, BACF, DLSSVM, DSKCF,
STAPLE, and OACPF. The experimental results show that
OACPF achieved the smallest error for all three video
sequences.
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FIGURE 1. Horizontal and vertical coordinates outputted by OI+SVM, ACPF, KCF, SAMF,
BACF, DLSSVM, DSKCF, STAPLE, and OACPF for bear_front, face_occ_5, and
new_ex_occ4 video sequence tracking. The experimental results show that the OACPF
method had the smallest error and highest occlusion accuracy.

TABLE 1. Errors between the actual horizontal/vertical coordinates and those obtained by OI+SVM, ACPF, KCF, SAMF, BACF,
DLSSVM, DSKCF, STAPLE, and OACPF.

C. VERIFICATION OF CORRELATION MAXIMUM
LIKELIHOOD ESTIMATION PARTICLE FILTERING
ALGORITHM
Here, we detail the results of our algorithm and the com-
parison algorithms with respect to the following evaluation
metrics: AUC, CPE, FT, MT, and FPS.

Table 2 compares the tracking algorithms in terms of the
AUC, CPE, FT, MT, and FPS results. All of the experiments

were conducted on a 3.2 GHz 64-bit AMD Ryzen 1600 com-
puter, with OACPF, OI+SVM, ACPF, KCF, SAMF, BACF,
DLSSVM, DSKCF, and STAPLE implemented in Matlab.
OACPF achieved the best scores with respect to AUC, CPE,
FT, and MT. Although KCF achieved the highest FPS value,
this algorithm performed poorly in other respects, particularly
in the event of occlusion. OACPF achieved a superior FPS
score to ACPF because the correlation maximum likelihood
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TABLE 2. Comparison of the tracking algorithms OACPF, OI+SVM, ACPF, KCF, SAMF, BACF, DLSSVM, DSKCF, and STAPLE in terms of AUC, CPE, FT, MT, and
FPS. Bold font denotes best score for each metric.

FIGURE 2. Tracking process of OI+SVM, ACPF, KCF, OACPF, SAMF, BACF, DLSSVM, DSKCF, and STAPLE algorithms on new_ex_occ4 video sequence.

FIGURE 3. AUC and CPE for OACPF, OI+SVM, ACPF, KCF, SAMF, BACF, DLSSVM, DSKCF, and STAPLE when
tracking the target in the new_ex_occ4 video sequence.

particle filter algorithm effectively reduces the number of par-
ticles as well as the amount of calculations, thereby improv-
ing the overall computation speed.

Figs. 2 and 3 provide a detailed illustration of the tracking
process of the different algorithms on the new_ex_occ4 video
sequence with respect to the AUC and CPE parameters.
The algorithms did not output the tracking result when the
tracking target was missing or occluded. This analysis shows
that the ACPF algorithm produced significant tracking errors
because of its vulnerability to the background. OI+SVM
can judge target occlusion, but its sensitivity was too high,
resulting in occlusion detection in the absence of occlusion.
When the target reappeared, OI+SVM attempted to track
the target again, but failed. KCF, BACF, DLSSVM, and
STAPLE tracked the target well in the absence of target
occlusion, but could not judge the occurrence of occlusion

or re-track the target after it reappeared. SAMF tracked
the target well in the absence of target occlusion; it can-
not accurately judge the occlusion of the target, but could
re-track the target once it reappeared. DSKCF judged partial
occlusion and re-tracked the target fairly well. The AUC
and CPE output curves demonstrate the superior tracking
performance of OACPF, which has a small false tracking
rate (the maximum success rate is close to 1). OACPF also
recovered the target effectively after occlusion and had small
CPE values.

Fig. 4 shows the distribution region of the particles in the
OACPF algorithm and the search region of the KCF circulant
matrix. The OACPF algorithm combinedwith the KCF detec-
tion results provides the basis for the prediction and update
of the particle filtering, reducing the distribution area and the
number of particles, thereby improving the overall speed of
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FIGURE 4. Particle distribution area in our OACPF algorithm and the search area of the KCF
circulant matrix. OACPF reduces the number of particles and improves the speed of the overall
algorithm. Particles in the distribution area provide possible locations for re-detection after the
target becomes occluded, allowing the re-tracking of the target.

TABLE 3. Quantitative comparison of state-of-the-art algorithms for 95 test video sequences in the Princeton Tracking Dataset. Best results are shown in
red, second and third best are marked in blue and green, respectively. Results were calculated by the online evaluation system provided by the dataset
creators: http://tracking.cs.princeton.edu/eval.php.

the algorithm. Additionally, the particles in the distribution
area provide possible locations for re-detection after the target
becomes occluded. Once the target reappears, KCF completes
the maximum matching of the original model according
to the established search area, and achieves the re-tracking
of the target.

Fig. 5 shows a visual review of the algorithms’ perfor-
mance on four other annotated sequences. As can be seen
from the figure, OAPCF, KCF, SAMF, BACF, DLSSVM,
DSKCF, and STAPLE effectively track the target when
it is not occluded, whereas ACPF and OI+SVM exhibit
partial tracking errors because of their vulnerability to
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FIGURE 5. Visual review of the algorithms’ performance on four other annotated sequences. These results show that OACPF performed
favorably against OI+SVM, ACPF, KCF, SAMF, BACF, DLSSVM, DSKCF, and STAPLE.

the background. With the target occluded, KCF and ACPF
cannot effectively judge the occlusion, resulting in subse-
quent tracking errors. SAMF, BACF, DLSSVM, and STAPLE
cannot judge the occurrence of occlusion, but they can re-
track the target to some extent. OACPF determines occlusion
more accurately than DSKCF and OI+SVM, and success-
fully recovers target tracking after the occluded sequence.

To test the applicability of OACPF, we performed
further experiments on 95 unannotated video sequences
in the Princeton tracking dataset and evaluated the
results using a tool on the Princeton tracking web-
site (http://tracking.cs.princeton.edu/eval.php). The tracking
results were compared with those obtained by a number
of state-of-the-art RGB and RGBD algorithms including
OAPF [27], DS-KCF [37], KCF [28], Struck [9], TLD [8],
VTD [16], CT [38], MIL [39], SemiB [40], OF [41] and
others. The experimental results are presented in Table 3.

The experimental results in Table 3 are classified
according to target type (human, animal, rigid), target
size (large or small), movement (slow or fast), occlusion
(yes or no), and motion type (active or passive). The most
accurate algorithm is marked in red, and the second and third
most accurate are marked in blue and green, respectively. The
average ranking across all of the classifications is presented
in the first column.

OACPF exhibits good overall performance, ranking first in
the case of target occlusion. Overall, the proposed OACPF
method offers significant improvement over many existing
algorithms. Compared with productionmodel-basedmethods
such as OAPF, the overall result of the proposed OACPF
approachwas relatively poor; however, OACPF performs bet-
ter on human targets and in scenarios with occlusion. Addi-
tionally, according to [27], OAPF has a slower processing
speed and is not suitable for real-time applications. Compared
with methods based on the discriminative model, such as
TLD, KCF, and Struck, the overall result and all of the aspects
of the proposed OACPF approach are superior.

IV. DISCUSSION
The results presented in the previous section clearly demon-
strate the effectiveness and efficiency of OACPF, with
KCF and the recursive maximum likelihood estimation par-
ticle filters enhancing and complementing each other well.
We highlight the following conclusions:

1) The target occlusion judgment mechanism based on
a depth image and its HOG feature effectively addresses
the problem of target occlusion. As shown in Fig. 1, com-
pared with OI+SVM, ACPF, KCF, SAMF, BACF, DLSSVM,
DSKCF, and STAPLE, the proposed OACPF effectively and
accurately determine target occlusion.
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2) Particle filters require dense particles for state transfer
during target tracking. This process requires a great deal of
time, which was reduced by using KCF. The KCF method
can refine particles to cover target object states with recur-
sive maximum likelihood estimation particle filters. Thus,
the number of particles required in the target tracking process
is reduced. As shown in Fig. 4, the actual state of the target
was obtained during target tracking by KCF. According to the
previous target and the new target, the maximum likelihood
estimation method combines the actual state with the particle
filter to provide a reliable basis for the prediction and update
of the particle filter, and further redefines the distribution
area of the particles as the new particle distribution. This
method reduces the number of particles in a limited particle
distribution area, thereby reducing the overall number of
calculations and enabling real-time target tracking.

3) KCF cannot solve the problems of occlusion and scale
variation; however, these are managed using particle filters.
The particle filters make multiple assumptions and estimate
the target position through state transitions, providing pos-
sible locations for the re-detection of the occluded target.
Therefore, particle filters effectively help KCF to solve the
occlusion problem, as demonstrated in Fig. 4 for the chal-
lenge of tracking an occluded object. As shown in Fig. 4, if the
search area of KCF is only the search region of particle m,
the tracking process fails after the target becomes occluded.
However, searching for the target based on the position of
the particle filter in the search region of particle n achieves
re-tracking using the maximum value of KCF.

4) Adaptive update strategy: as shown in Fig. 2, when
no occlusion occurs, the well-tracked model is saved as a
historical model. After occlusion occurs, this historical model
replaces the poorly tracked model. Furthermore, scale vari-
ations are judged according to the depth image. The tar-
get size is also adjusted according to the depth image, but
the HOG feature vector dimension does not change. Prob-
lems such as model offset, scale variation, and loss of features
are corrected over time. After the target reappears, the his-
torical model is used to perform KCF maximum relevance
matching, thereby completing the target’s re-tracking.

V. CONCLUSION
In this paper, we describe an occlusion-aware correlation
particle filter target-tracking algorithm based on RGBD data.
The proposed algorithm effectively solves some of the prob-
lems associated with target occlusion, including the accurate
judgment of occlusion and the re-detection of the target. The
proposed OACPF algorithm uses a target occlusion judgment
mechanism based on a depth image and the associated
HOG feature to accurately judge the occurrence of target
occlusion. The algorithm also uses maximum likelihood
estimation combined with the KCF tracking algorithm to
reduce the number of particles required in particle filtering,
not only improving the running speed of the algorithm, but
also enhancing the accuracy of the particle filter predic-
tions and providing substantial help for target re-detection.

Moreover, the adaptive model updating strategy included in
the algorithm corrects problems such as model offset, scale
variation, and feature loss, and provides the necessary basis
for the re-detection of the target. Compared with existing
target tracking algorithms, the experimental results show that
the proposed OACPF detects target occlusion and tracks the
target well. The proposed OACPFmethod reduces the impact
of illumination changes, requires fewer calculations, and
achieves better real-time performance and higher accuracy
than many existing algorithms.
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