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ABSTRACT GPS trajectory data plays a critical role for the intelligent transportation. Due to many factors
like measure error, sampling error and battery power-saving requirement, the directly obtained trajectories
will inaccurately align to the digital map. This requires an online map matching algorithm with high
precision, low latency, and energy consumption saving. However, the existing approaches need to make
some trade off among these criterions. Hence, based on the hidden Markov model, this paper proposes an
adaptive online map matching algorithm to improve the performances in these perspectives at the same time:
1) the probabilistic method integrating the geometric information and topological information is developed
to improve the accuracy; 2) the adaptive sampling frequency method is proposed to reduce the energy
consumption; and 3) the adaptive sliding window method is presented to reduce the output delay. The
experiments demonstrate that our approaches can not only improve the matching precision, but also reduce
the latency and energy consumption simultaneously.

INDEX TERMS Onlinemapmatching algorithm, hiddenMarkovmodel, adaptive sampling, adaptive sliding
window.

I. INTRODUCTION
In recent years, with the development of GPS-based posi-
tioning devices [34], a large number of GPS trajectory data
can be real-time obtained from the taxi, smartphones and
other GPS-based intelligent devices. Using these trajectory
data, online path planning, traffic incident detection, and
travel time prediction can be easily implemented to provide
location-based services.

However, due to the GPS data error and the energy limi-
tation [2], the coordinate obtained from the GPS-based intel-
ligent devices, especially for the mobile devices, cannot be
used directly. The limitation of the GPS technology itself,
including the GPS data measured, transmit and accept, will
cause the measure error. Meanwhile, the availability of the
data storage and transmission bandwidth inevitably constrain
the GPS trajectory sampling interval, resulting into the sam-
pling error. In addition, nowadays the location-based services
based on the online map matching are typically installed on
mobile where the high energy consumption is a critical issue
which cannot be ignored.

Many solutions have been proposed to solve the onlinemap
matching algorithms over these years. Geometric-based [24]
map matching algorithm is simple to implement, but it
only considers the geometric information of the road net-
work regardless of the connection information between the
road networks. Topological-based [3], [4] map matching
algorithm improves the Geometric-based algorithm by mak-
ing full use of the road network connectivity and continu-
ity. Probabilistic-based [5] map matching algorithm further
considers the probability of the GPS point being selected.
Recently, some advanced algorithms using Kalman filter-
ing [6], [7], Hidden Markov Models [8], [9], [33] or machine
learning [11], [26] are proposed to further improve the per-
formance.

To reduce the battery power consumption, some solu-
tions [16], [17] using low sample rate trajectories are pre-
sented for the off-line scenarios. However, for the online
scenarios, due to the loss of the valid information be offer, this
results into a significant reduction in the matching accuracy.
The straightforward solution here is to increase the sliding
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window size [8], [15], which insteadly cause significant out-
put delay.

Hence, it has become critical and challenged to simultane-
ously improve these three metrics, including high precision,
low energy consumption, and low output delay. To achieve
this goal, this paper proposes anAdaptive OnlineMapMatch-
ing algorithm based on HMM, named AOMM:

A. MULTI-INFORMATION INTEGRATION
To improve the accuracy, AOMM integrates the information
including the geometric information of the space road net-
work, the connectivity and continuity information of road
network, and the basic idea of probability matching.

B. ADAPTIVE SAMPLING FREQUENCY
In the most of existing map matching algorithms [12], [16],
the GPS data sequences are sampled with the fixed frequency
without considering the road condition. For some road seg-
ments, the fixed sampling rate could be too low, so that
the effective information in the sliding window is too little,
leading to lower matching accuracy. On the contrary, for
some other road segments, the fixed sampling rate is too high
which does not providemore effective information to increase
the accuracy but only lead to power consumption. Hence,
in this paper, the adaptive sampling frequency method which
enables different sampling frequencies in different roads can
not only guarantee the matching accuracy but also reduce the
energy consumption.

C. ADAPTIVE SLIDING WINDOW
The sliding window method is widely adopted in the online
map matching scenarios. Most existing online map match-
ing solutions employ the fixed sliding window sizes, which
makes it difficult to achieve the high accuracy and low latency
simultaneously. This is because a too large window size will
cause high output delay while the too small window size
cannot offer enough information to guarantee the accuracy.
Therefore, in this paper, we develop an adaptive sliding win-
dow method which can balance the accuracy and the output
delay by adjusting the window size adaptively according to
the real-time road conditions.

To evaluate the effectiveness of our approach, we use the
real dataset provided by CAR Inc1 in the
November 2015 Beijing. The result shows that comparing
with the state-of-the-arts, our approach always achieves a
higher average accuracy, reaching 96.41%.More importantly,
it achieves a 46.51% reduction inmapmatching time, 19.05%
reduction in window size, and 2/3 decreasing of the energy
consumption at the same time.

The rest of this paper is organized as follows. Section II
discusses the related works. Section III shows some prelim-
inary definitions and baseline model. Section IV details our
algorithms. Section V reports the experiments and the results.
Section VI concludes this paper.

1www.zuche.com.

II. RELATED WORK
Depending on how the trajectory data and road network
information are used, the map matching algorithms are
divided into four types: geometric-based, topological-based,
probabilistic-based and other advanced algorithms. The geo-
metric map-matching algorithm is a basic matching algo-
rithm. A pioneering work on map-matching by considering
the geometric information of the space road network was
published by Greenfeld and Joshua [24] in 2002. This algo-
rithm is easy to implement. However, since it does not con-
sider the connection information between the road networks,
it has poor matching accuracy. From a different perspective,
topology map-matching algorithm [4], [13] makes full use
of connectivity and continuity of the road network, and sig-
nificantly improves the map matching accuracy. However,
the accuracy is still not efficiency enough that they can only
be used in the scenarios which don’t require a high accuracy.
Furthermore, to deal with the intersections or complex road
segments, the probabilistic map matching algorithm [5] is
developed and significantly improves the matching accuracy.
More recently, some advancedmapmatching algorithm using
Kalman filtering [6], [7], fuzzy logic model [10], Hidden
Markov Models (HMM) [8], [9], [33] etc, are developed to
deal with complex road conditions. Typically, the HMM [9] is
used to identify the optimize matching path when considering
the noisy and sparse location data.

Depending on the range of trajectories used, the existing
map matching algorithms can be divided into two types:
the local/incremental [14], [15] map matching algorithm,
and the global [16], [17] map matching algorithm. The
local/incremental algorithm is a greedy algorithm, which
only determines the matching results of current trajectory
point, and the next point starts from the determined match-
ing point. The local/incremental algorithm has good perfor-
mance in accuracy when the sampling frequency is very high
(e.g., 2-5seconds). As the sampling rate decreases, the arc-
skipping problem [12] referring to the scenarios that the
vehicle jumps directly from one road segment to another
while it is still far away from the intersection, becomes
serious, and causes a significant decrease in accuracy. There-
fore, the local/incremental algorithm will have a relative high
energy consumption due to the high sampling frequency.
In this situation, the EnAcq algorithm [32] is proposed
when the researcher hopes to propose an algorithm that can
reduce energy consumption while ensuring accuracy. The
idea of adaptive sampling is first proposed in EnAcq, it can
be described as dividing the vehicle speed into three fixed
thresholds, and assigning different sampling frequencies to
different thresholds. However, the sampling process is not
fully adaptive, there is room for improvement. A global map-
matching algorithm tries to find the curve in the road network
that is as close as possible to the vehicle trajectory. Fréchet
distance [18] and Weak Fréchet distance [19] are widely
adapted to measure the similarity between the vehicle trajec-
tory and road. Intuitively, the global map matching algorithm
requires all trajectories as input data and is only suitable
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TABLE 1. Performance comparison.

for the off-line matching scenarios. Additionally, if only the
local trajectories are provided, the matching accuracy will
be significantly reduced as there is not enough valid infor-
mation. To solve this problem, a synthesis algorithm named
AntMapper-matching [26] is proposed in 2017. It not only
considers local geometric/topological information, but also
use a global Ant colony algorithm to find the shortest path.
Experiments show that the AntMapper-matching algorithm
can provide accuratematching results within a relatively short
running time.

As summarized in Table 1, most of these algorithms use the
fixed sampling frequency method (or simply ’FSF’). We can
see that when the sampling interval increases, the accuracy
of the above algorithms decreases obviously, as there is not
enough effective information to ensure the accuracy. If the
sampling interval is too small, a lot of similar data will lead
to a waste of resources, including sampling and transmission.
In contrast, the accuracy of the EnAcq algorithm [32] using
the adaptive sampling frequency strategy (or simply ‘ASF’) is
stable. In addition, ST-matching, IF-matching, and AntMap-
per are all global algorithms which are used in the off-line
scenarios, and they do not use a sliding window strategy.
To achieve the online process, HMM uses a fixed sliding
window strategy(or simply ’FSW’). The size of the window
has an effect on the accuracy and the output delay. If the
window size is too small, it may not find the best match
sequence. And if the size is too large, the output delay will
be raised. Based on this, the adaptive sliding window strategy

2Please refer to Section V to check the detail about the experiment to
calculate the accuracy for each algorithm. The dataset used in the comparison
algorithms is the same as that in our algorithm. And our paper completely
re-implement the comparison algorithms.

TABLE 2. Metadata of GPS LOG.

(or simply ’ASW’) [15] is proposed to solve the above prob-
lem, and it has been applied to some map matching algo-
rithms [1]. However, there is almost no algorithm can make
themapmatching satisfy the high accuracy, low sampling rate
and low output delay simultaneously well.

III. PRELIMINARIES
In this section, the basic concepts and models involved in the
AOMM-Matching algorithms will be discussed.

A. PROBLEM FORMULATION
Definition 1 (Trajectory Point, TP): Each TP consists of a
series attributes, including id, longitude, latitude, speed, and
timestamps. It can be abbreviated as a tuple represented by
< id, lng, lat, v, t >, as illustrated in Table 2. For example,
the longitude of trajectory point TP1 is 116.325693, the lat-
itude is 39.891172, and the speed is 47.52km/h. TP1 was
sampled at 2015-10-16 17:59:32.
Definition 2 (GPS Trajectory, T): A GPS Trajectory T is a

sequence of TP. The time interval between any consecutive
TP not exceeding a certain threshold 1T , i.e. T : TP1 →
TP2 → . . . → TPn, where 0 < TPi+1.t − TPi.t <

1T (1 ≤ i < n).
Definition 3 (Road Segment, RS): A road segment RS is

a directed edge that is associated with an id RS.id , a typical
travel speed RS.v, a starting point RS.start , and an ending
point RS.end .
Definition 4 (Road Network, RN): The Road Network is a

directed graph RN < V ,E >. RN .V is a set of vertices, each
of which represents starting point, endpoint or intersection
point of RS. RN .E is a set of edges, each of which represents
a road segment.
Definition 5 (Candidate Road Segment, CRS): CRSs of

each TP can be obtained by traversing the road network.
The CRS should be satisfied that the distance between TP
and CRS is less than error radius r . These CRSs are called
Candidate Road Segments corresponding to TP.
Definition 6 (Candidate Point, CP):The projection point of

the TP on its corresponding candidate road segment is called
the Candidate Point.

B. BASELINE MODEL
Hidden Markov Model (HMM) [35] is a statistical model
used to describe a Markov process with hidden parameters.

Figure 1 displays an ideal hidden markov process in the
map matching scenario. The sequence {CRSi−1,CRSi, . . . ,
CRSn} represents the hidden states, corresponding to the
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FIGURE 1. An ideal Hidden Markov process.

Candidate Road Segments in the map matching. The
sequence {TPi−1,TPi, . . . ,TPn} represents the observable
states, corresponding to the Trajectory Points in the map
matching. The ti−1,i represents the transition probability
between CRSi−1 and CRSi, corresponding to the transition
probability between the Candidate Road Segments. Obvi-
ously, the higher the possibility of moving the TP from
CRSi−1 to CRSi is, the closer the transition probability
between them is to 1. If the two CRSs are parallel, the tran-
sition probability between them is 0. oi (TPi) represents the
emission probability between CRSi and TPi, corresponding
to the probability of the observed trajectory point is on the
candidate road segment.

The HMM has been proved effective for the map matching
problem. Therefore, in this paper, we also choose the HMM
as the basic model of our algorithm.

IV. AOMM: ADAPTIVE MAP MATCHING ALGORITHM
A. ALGORITHM FRAMEWORK
The framework of the AOMM algorithm is illustrated
in Figure 2, which consists of three parts: 1) candidate prepa-
ration, 2) probability analysis and 3) online map matching.

The implementation of the AOMM can be summarized as
follows: First, the trajectory-based application sends a request
to the AOMM System, including the location, speed and
timestamp of the current vehicle. The criteria for this request
should satisfy the sampling specification of the adaptive
sampling frequency method. Then, Candidate Preparation
Module uses GPS trajectory, the geometric information of
road networks, and the topological information of road net-
works to obtain candidate sets. The candidate sets include
candidate points and candidate road segments. Next, Prob-
ability Analysis Module uses candidate sets information
to calculate transition probability and emission probability.
After that,Online Map Matching Module uses the result of
probabilistic analysis as input to the online Viterbi algorithm.
It should be noted that in the online Viterbi algorithm, we will
use the adaptive sliding window algorithm to minimize the
output delay and improve the matching accuracy of the algo-
rithm. Finally, the matching result will be returned to the
trajectory-based application.

The Viterbi algorithm [27], [28] is based on the known
observation sequence and the state transition probabil-
ity, and obtains the most probable hidden state sequence

FIGURE 2. The framework of the AOMM algorithm.

FIGURE 3. An illustration for getting matching result.

by backstepping. It is essentially an HMMdecoding problem.
It adopts the idea of dynamic programming, and recursively
calculates the most probable (local optimal) path in the cur-
rent candidate pathes by using the backward pointer. Through
the online Viterbi algorithm, each GPS trajectory can be
matched to its proper road segment.

B. CANDIDATE PREPARATION
The goal of Candidate Preparation is to get the candidate sets
for each trajectory point. The candidate sets include candidate
segments and candidate points for each TP. To achieve this
goal, this paper uses the GeoHash [20], [21] algorithm to
convert the coordinates into a string by using the dichotomous
infinite approximation in the latitude and longitude interval.
The more the number of the same prefixes in the string,
the nearer the distance between two GPS points will be.
As shown in Figure 3, using the GeoHash algorithm, we get
the GeoHash string for the trajectory point P1, P2, and P3 as
WA2ZDT, WA2ZBF, WA2ZFF, respectively. And the Geo-
Hash strings of road segments e1, e2, and e3 are WA2ZBM,
WA2ZBP, WA2ZBD, respectively.

Secondly, for each trajectory point, this paper will tra-
verse all the road networks to find the corresponding can-
didate roads. These candidate roads should satisfy that their
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corresponding GeoHash strings have the same prefix as the
GeoHash string of the trajectory point. In this paper, the num-
ber of the same prefixes in the string is defined as r , which is
also called error range. Take the trajectory pointP2 in Figure 3
as an example, when r is set as 5, e1 and e3 can be considered
as the candidate road segment for P2. This is because there
are 5 consecutive same characters WA2ZB between them.
Similarly, the candidate road segments of the P1 are e1 and
e2, and the candidate road segment of the P3 is e1. Note that,
we may get too many candidate road segments, which will
lead to the increase of computational complexity. To avoid
this, we will predefine the maximum number of candidate
road segments as k for each trajectory point. The selection
criteria of k is the shortest distance [12] between trajectory
point and candidate road segments. In Figure 3, k is set as 2.
Finally, we calculate the candidate point on each candidate

segment corresponding to each TP. In this paper, the can-
didate point is defined as the projection point of the TP on
the candidate segment. If the projection point does not exist,
the endpoint of the candidate segment closest to the trajectory
point is defined as the candidate point. Taking trajectory point
P2 in Figure 3 as an example, the projection point of P2 on the
candidate road segment e1 is C1

2 , so C
1
2 is a candidate point of

P2 on the road segment e1. C2
2 is a candidate point of P2 on

the road segment e3. Since the projection point P′ of P2 on
the line e4 is not on the road segment e4, the endpoint P′′

of the candidate segment e4 closest to the trajectory point P2
is defined as the candidate point. The candidate points of P1
are C1

1 and C2
1 , and the candidate point of P3 is C

1
3 .

C. PROBABILITY ANALYSIS
In this subsection, we will detail the probability analysis
for candidate sets. As shown in Figure 2, the probabilistic
analysis includes the transition probability calculation and the
emission probability calculation.

1) TRANSITION PROBABILITY
This component will calculate the transition probability by
using the topological and speed information of the road
network. Specifically, the topological information is used to
describe distance similarity between GPS trajectory and road
segments, the speed information is used to calculate speed
similarity between GPS trajectory and road segments.

a: DISTANCE SIMILARITY FUNCTION (DSF)
The DSF function calculates the distance similarity proba-
bility between the real distance and the matching distance,
as shown in formula 1. di→i+1 is the real driving distance
between two adjacent trajectory points, and ai→i+1 is the
shortest distance between the corresponding candidate point
of these two adjacent trajectory points. Take the trajectory
point P1 and P2 in Figure 3 as an example. dP1→P2 represents
the real driving distance fromP1 toP2. aC1

1→C1
2
represents the

shortest path length from any candidate point of P1(C1
1 , C

2
1 )

to any candidate of P2(C1
2 , C

2
2 ). There are four combinations

of collocation, C1
1 → C1

2 , C
1
1 → C2

2 , C
2
1 → C1

2 and
C2
1 → C2

2 . The more similar the two distances is, the greater
the probability is that the vehicle will drive between these two
candidate points.

DSF (TPi→i+1) = 1−
|di→i+1 − ai→i+1|

ai→i+1
(1)

In the above formula, di→i+1 can be calculated by Equa-
tion (2). 1T is represented as a time interval and v̄ is the
average speed of a vehicle. ai→i+1 can be calculated by
A-Star [29] algorithm, which finds the shortest path in a static
road network. A-Star algorithm makes the routing results
achieve the best compromise between speed and accuracy,
compared with the traditional DFS algorithm, BFS algo-
rithm [30], and Dijkstra algorithm [31]. When di→i+1 and
ai→i+1 is more similar, |di→i+1 − ai→i+1| value is more close
to 0, the value of DFS is more close to 1. On the contrary,
when the difference between di→i+1 and ai→i+1 is large,
the two candidate points cannot reflect the real situation, and
the matching results may not be correct.

di→i+1 = 1T · v̄ (2)

b: SPEED SIMILARITY FUNCTION (SSF)
The SSF function calculates the speed similarity probability
between the road segment speed limit and the average speed
of the adjacent trajectory points. In this paper, the cosine
value [22] of the above two speeds is used to describe the
speed similarity probability, as shown in formula (3). rj.v is
the speed limit of the road segment. v̄(i→i+1) is the average
speed from TPi to TPi+1. The range of j is from 1 to q,
indicating the number of road segments passing from TPi
to TPi+1. When the above two speed are more similar,
the cosine value is more close to 1, the value of SSF is
more close to 1. On the contrary, if the similarity is smaller,
the value of SSF is more close to 0. However, the above
simple cosine formula values will tends to favor local streets
with low free flow speeds instead of major roads with high
free flow speeds, when traffic is congested with low average
speed. To solve this problem, the congestion factor α is
proposed. Because the vehicle speed can reflect the vehicle
driving condition3 to a great extent, we can give different
coefficients α to different vehicle speed ranges. When the
road condition is smooth, the SSF has a great impact on the
result, and α is set as 1. Conversely, when traffic congestion
occurs, the SSF almost no longer affects the result, α is set as
0.25. as shown in table 3.

SSF(TPi→i+1) = α ×

∑q
j=1

(
rj.v× v̄(i→i+1)

)√∑q
j=1 (rj.v)

2
×
∑q

j=1 v̄
2
(i→i+1)

(3)

3Since this paper uses trajectory data of Beijing, the setting standards
of α will refer to Beijing local standard ‘‘The urban road traffic con-
gestion evaluation index system’’. For details, please refer to the link:
https://max.book118.com/html/2017/0209/89663836.shtm.
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TABLE 3. Congestion factor.

c: TRANSITION PROBABILITY (T)
The transition probability will take into account both DSF
and SSF, as shown in equation (4).

TPi→i+1 = DSF (TPi→i+1)× SSF (TPi→i+1) (4)

2) EMISSION PROBABILITY
The Emission probability is used to compute the distance
similarity between the trajectory point and candidate road
segment. The distance similarity is assumed to satisfy the
Gaussian normal distribution, which has been proved effec-
tive in many papers [12], [23]. It is shown in equation (5).
When the distance is nearer, the probability is higher. On the
contrary, the probability will be smaller.

E (TPi) =
1

√
2πσ

e
−

(
dis
√
2σ

)2
(5)

The dis represents the projection distance from the trajec-
tory point to the candidate road segment. The σ represent
standard deviation. In most of the existing papers, σ is fixed,
making it impossible to satisfy the different road conditions in
reality. To solve this problem, this paper uses Median Abso-
lute Deviation(MAD)4 train dynamically [25]. The training
process is shown in formula (6).

σ =

{
1 (n = 1)
1.4826× median (|disi − median (dis)|) (n > 1)

(6)

Where n represents the size of the sliding window. When
the sliding window is initialized, set σ = 1. Once the
size of the sliding window changes, the value of the σ
changes dynamically. Among them, disi is the vertical dis-
tance between each TPi in the sliding window to the can-
didate road segment, and all disi form a data set dis. The
function median() is used to calculate the median of the dis.

Through the above process, we have obtained the trajec-
tory points, candidate road segments, transition probabil-
ity and emission probability, which correspond to observ-
able states, hidden states, transition probability and emission
probability in the HMM, as shown in figure 4. It describes
the matching process of the best matching sequence,
which is implemented by the Viterbi algorithm. The Viterbi

4When the sample obeys the normal distribution, the MAD is usu-
ally used to estimate the standard deviation of the sample. The spe-
cific derivation process can be seen in the link http://en.wikipedia.org/
wiki/Median_absolute_deviation. And the derivation conclusion is σ =
1.4826×MAD.

FIGURE 4. The matching process.

algorithm is used to deal with the decoding problem of this
type of HMM, and its implementation principle has been
described in the subsection A of this section. After the online
Viterbi algorithm, the optimal matching sequence will be
output as a result.

D. ADAPTIVE SLIDING WINDOW (ASW) METHOD
Until now, we can see that the approach using the global map
matching, which means that it can not be directly applied in
the online map matching scenario. This is because that for the
online scenario, only a sequence of points before the current
one, instead of all the trajectory points, will be available.
Hence, the local sliding window strategy is further adopted by
the existing global map matching algorithms [12] to solve the
online version. In these online algorithms, the sliding window
size is set as a fixed value so that we name it as fixed sliding
window method(FSW ).

However, it is difficult to achieve the high accuracy and
low latency simultaneously for the FSW method. This is
because for some road segments, the fixed window size could
be too large, which will cause a significant increase in the
output delay. On the contrary, for some other road segments,
the fixed window size will be too small, so that not enough
valid information be offer to identify the optimize path and
guarantee the accuracy.

Inspired by this, this paper further proposes an adaptive
sliding windowmethod, referred to asASW . The core idea for
ASW is to automatically change the window size according to
the different traffic conditions. So, the dynamic balance can
be achieved between the accuracy and the output delay.

Initially, the window size is set as two, as shown
in Figure 5(a). Then, based on whether the local path in
the window can converge to the leftmost candidate point.
we consider the following situations: 1) If it can converge,
which indicates that the final matching results will contain
this candidate point, and the candidate point is output as a
matching result. The above convergent process can be seen
in Figure 5(a), the candidate point C1

2 in the three candidate
points of P2 has the maximum probability. The candidate
point C2

1 in the three candidate points of P1 has the maximum
probability. In addition, the C2

1 and C1
2 are reachable. Hence,
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FIGURE 5. The illustration of adaptive sliding window.

C1
2 can converge to C2

1 , that is, C
2
1 is a matching result.

2) if it cannot converge, the algorithm will continue to
increase the window size to the right until the convergence
point is found. The above process is presented in Figure 5(b)
and 5(c). The candidate point C2

3 in the three candidate points
of P3 has the maximum probability. However, C1

2 and C2
3

are unreachable. Therefore, we need to expand the window
to the right. We can find that the candidate point C3

4 in the
three candidate points of P4 has the maximum probability,
andC1

2 andC
3
4 are reachable. In other words,C

3
4 can converge

to C1
2 , that is, C1

2 , C
3
3 , and C3

4 are all matching results.
3) If the convergence point is always not found, it will make
the window size increase infinitely, resulting in an increase
in the output delay. To avoid this problem, the maximum
window size is set as n in this paper. When the window size
reaches n while no convergent results are identified, it will
stop and output the candidate point with the maximum joint
probability corresponding to the leftmost trajectory point.
The above process is shown in Figure 5(d).

O(1,k) = P
(
TP(1,k)

)
...

O(t−1,k) = P
(
TP(t−1,k)

)
O(t−2,m)

O(t,k) = P
(
TP(t,k)

)
O(t−1,n) (7)

The above whole adaptive process can be expressed as a
formula (7). TP(t,k) denotes the k th candidate point for TPt .
P
(
TP(t,k)

)
represents the probability sum of the trajectory

point TPt , as shown in equation (8). O(t,k) represents the
maximum joint probability based on the trajectory sequence
{TP1,TP2, . . . ,TPt }. The index m and n maximize the joint
probability are stored as the forward pointer. It points to the
previous convergence point.

P
(
TP(t,k)

)
= DSF × SSF + E (8)

Algorithm 1 details the sliding window adaptive process.
The input parameter is the trajectory sequence in the window,
and the output result is the matching result. Line 1 is used
to calculate convergence points. If the convergence point is

found, line 12 is executed directly to output the matching
result. If it is not found, the 2-11 lines are executed to
extend the window size. The 5-9 lines are used to determine
whether the window has reached the maximum size. If yes,
lines 6-7 are executed to output the matching result. Other-
wise, line 10 is executed to increase the window size.

Algorithm 1 Adaptive Sliding Window Algorithm(ASW)
Input: sequences: store the trajectories in the window;
Output: result: the matching result;
1: result = getConvergencePoint(sequences);
2: while result is null do
3: size = sequences.getSize();
4: if size == n then
5: result = getMaxProbabilityPoint(sequences);
6: return result;
7: end if
8: sequences.add(getNextPoint());
9: end while
10: result = getMaxProbabilityPoint(sequences);
11: return result;

E. ADAPTIVE SAMPLING FREQUENCY METHOD
A suitable sampling frequency is crucial for online map
matching. The existing map matching algorithms use fixed
sampling frequency method, named as FSF method. This
strategy makes it challenged to achieve the high accuracy and
low energy consumption at the same time.

Note that different roads are always corresponding to dif-
ferent road speed limit, road width, and real-time traffic
conditions. For some roads, the fixed sampling rate is too
high, which means the increasing of available data can hardly
improve the matching accuracy but only require more energy
to proceed them. For some other roads, the fixed sampling
rate could be too low, which means the sampling interval
will be large and only too few effective information between
the adjacent two trajectory points are available, and the best
matching results can not be identified. Hence, it is not suitable
to use a fixed sampling frequency for all road conditions.

Based on this, the Adaptive Sampling Frequency Method
for urban roads is proposed in this paper, referred to as ASF
method. The core idea of adaptive sampling rate is that the
vehicle can sample at different frequencies on different urban
roads. As a result, the matching algorithm can reduce the
battery power consumption to the maximum extent while
guaranteeing the accuracy. Intuitively, when the vehicle is
driving on the urban road, the vehicle speed can reveal the
current road condition. When v is small, it indicates that
the vehicle may have encountered traffic jams. So even the
sampling interval is large, the key information will not be
ignored during the driving process. At the same time, it can
guarantee the accuracy effect to the maximum extent. On the
contrary, when v is high, it indicates that the algorithm
can reduce the sampling interval appropriately to ensure
sufficient information between adjacent two trajectory points.
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As a result, under the prerequisite of sampling interval dis-
tance guaranteed, we can dynamically change the sampling
frequency according to the current vehicle speed.

The above adaptive sampling frequency determination pro-
cedure can be expressed as a formula (9). In this formula,
v denotes the vehicle speed, and h represents the adaptive
sampling interval distance.

SI (TPi) =
h
v

(9)

Algorithm 2 details the adaptive sampling frequency pro-
cedure. The input parameters are the velocity v, the timestamp
t of the current trajectory point, and the adaptive interval
distance h. The output is the next trajectory point. Line 1 cal-
culates the adaptive sampling frequency si. Lines 3-7 are used
to calculate the next trajectory point satisfying the sampling
interval condition.

Algorithm 2Adaptive Sampling Frequency Algorithm(ASF)
Input: v : the speed of current trajectory point; time : the

sampling times; h : the adaptive sampling distance;
Output: point : the next point under the adaptive sampling

interval;
1: si = h / v;
2: while getNowTime()− time >= si do
3: point = getNextPoint();
4: return point;
5: end while

F. ONLINE MAP MATCHING
Until now, we already detail our approach to integrate differ-
ent information to increase the accuracy, employ the adap-
tive sliding window size to reduce the output delay and
use the adaptive sampling frequency to reduce the energy
consumption. As shown in Algorithm 3, these components
work together to achieve the three important measures simul-
taneously. In algorithm 3, the algorithm 1 is applied to the
framework of the entire algorithm. It can be seen that Lines
1-5 construct the initial sliding window. Line 6 uses the ASW
method to find convergence points. If the convergence point
is not found, the lines 8-19 are used to continue to find the
convergence point. Among them, Lines 10-14 are used to
determine whether the maximum window size is reached.
Lines 15-17 enlarge window size by using the ASF method.
Line 20 generates the matching point sequence on the map
for the given GPS trajectory.

V. EXPERIMENT
A. DATA PREPARATION
1) THE TRAJECTORY DATA
The trajectory data is derived from real data provided by CAR
Inc during November 2015 Beijing. The sampling interval
is 0 ∼ 45s, and each record details the longitude, latitude,
timestamp and speed of vehicle.

Algorithm 3 Adaptive Online Map Matching Algorithm
Input: RN : the road network; T : GPS Trajectory,
{TP1,TP2, . . . ,TPn}; h : the adaptive distance;

Output: result : the matched point;
1: initial gpsqueue as an empty list;//trajectory points in the

adaptive sliding window.
2: p_point = getNextPoint(T);
3: n_point =ASF(p_point.getSpeed(),p_point.getTime(),h);

//get the next adaptive trajectory by using ASF algorithm
4: gpsqueue.add(p_point);
5: gpsqueue.add(n_point);
6: convergencepoint = getConvergencePoint(gpsqueue);
7: while convergencepoint is null do
8: if gpsqueue.size() == n then
9: result = getMaxProbability-

Point(gpsqueue.poll());
10: return result;
11: end if
12: p_point = n_point;
13: n_point = ASF(p_point.getSpeed(),p_point.

getTime(),h);
14: gpsqueue.add(n_point);
15: end while
16: result = gpsqueue.poll();
17: return result;

2) ROAD NETWORK DATA
For the road network data, we use the whole road network
in Beijing from the open source site OpenStreetMap,5 which
includes 332112 road segments composed by 182981 inter-
section points. Then the preprocessing process is used to map
the trajectory data to the road network, and only the road
network in the mapping area is extracted to complete the later
computation. The extracted road network includes 112 road
segments composed by 74 intersection points. The above pro-
cess is completely reasonable because the experiment proves
that for the two cases of the whole road network and the
mapping road network, 96.05% of the trajectory points get
exactly the same candidate road segments, and the algorithm
accuracy of the two cases is both 96.41%.

3) VELOCITY DISTRIBUTION
We further calculate the velocity distribution for the trajectory
data, as shown in Table 4. It can be seen that more than 48% of
the trajectory point velocity is more than 30km/h, more than
41% of the trajectory point speed is between 10 ∼ 30km/h.
Only about 10% with speeds less than 10km/h.

B. EXPERIMENTAL SETUP
1) PARAMETER SETTINGS
In the comparative experiment, the standard deviation of the
measurement error is calculated by using the Median Abso-
lute Deviation formula for our dataset. As a result, the value

5www.openstreetmap.org.
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TABLE 4. Data of velocity distribution.

of the standard deviation parameter in emission probability
models of the HFF and HMM+RCM algorithms both are
set as 201 meters. In our experiments, we set the maximum
number of candidate points for each trajectory point as k = 5,
the number of the same prefixes in the string as r = 5.
In the adaptive sliding windowmethod, the maximum sliding
window size is n = 5. The adaptive sampling distance is
h = 1500. We will discuss their impacts on the performance
in section V.D.

2) EVALUATION METRICS
As we discussed before, the matching accuracy, the out-
put delay and the energy consumption are critical for the
online map matching scenarios. Hence, for each methodol-
ogy, we will use these three measures to evaluate its perfor-
mance.

3) THE MATCHING ACCURACY
Ar is calculated the matching accuracy by the formula (10).
Ar is the ratio of the number of correctly matched road
segments in all road segments. A larger Ar means a higher
accuracy.

Ar=
#the number of correctly matched road segments

#the number of all road segments
(10)

4) THE OUTPUT DELAY
The output delay for the map matching, od (TPi), refers to
the time interval when the trajectory point enters the sliding
window until the matching result is calculated, which can be
separated into two parts: 1) the time waiting for the sampling,
defined as sp (TPi), and 2) the time identifying the matching
point, defined as mp (TPi) = od (TPi) − sp (TPi). Given
a fixed sampling frequency, sp (TPi) is proportional to the
window size. Hence, in the following experiments, we will
focus on the window size for the considered algorithms. For
the time to identifying the matching trajectory path, we cal-
culate the average time as:

OD =

∑p
i=1 (od (TPi)− sp (TPi))

p
(11)

5) THE ENERGY CONSUMPTION
Intuitively, the battery power consumption of mobile phones
is positively correlated to the number of sampling trajectory
points. To illustrate this assumption, the GT-Battery6 simula-
tor is used to simulate the change of the battery power con-
sumption when sampling different number(500,1000,1500)

6http://gt.tencent.com/index.html.

FIGURE 6. The sampling number w.r.t. The battery consumption.

of trajectory points in five minutes. To make the experimental
results more reliable, the experiment was repeated five times,
and named as EX1-EX5, respectively. As shown in Figure 6,
it can be seen that when 500 points are sampled, the average
battery power consumption is 4.85%. When 1000 points are
sampled, the average battery power consumption is 10.83%.
When 1500 points are sampled, the average battery power
consumption is 16.03%. Based on this, we can conclude that
the more the number of points is sampled, the more bat-
tery power consumption will be. Therefore, in this following
experiments, we will use the sampling point number as the
measure to evaluate the energy consumption.

6) COMPARING METHODOLOGY
To demonstrate the effectiveness of the presented approach,
AOMM, which employs HMM, ASF and ASW simulta-
neously, we compare its performance with the following
methods:

a: HMM+FSW+FSF, NAMED HFF ALGORITHM
HFF is a basic model used by most of the online map
matching algorithms [15]. HMM is used to implement
the map matching process, while the fixed window size
strategy(FSW ) and the fixed sampling strategy(FSF) are
employed.

b: HMM+RCM ALGORITHM
HMM+RCM [1] is an online map matching algorithm using
HMM and the routing choice model (RCM) to evaluate
the probability for each selected path. We named it as
HMM+RCM for short. It employs the ASW strategy[15] and
FSF strategy. However, the window sliding mode is different
from ours, specific performances: HMM+RCM still needs
to calculate all the candidate points of the next point after
determining a certain convergence point, but AOMM directly
determines the other endpoint of the convergence path as the
matching point, and continues matching with the endpoint as
the starting point.

c: ENACQ ALGORITHM
EnAcq [32] is an online map matching algorithm,
this approach employs the same ASW strategy[15] as
HMM+RCM and ASF strategy, but the adaptive sampling
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FIGURE 7. The performance comparison, when FSF = 0.5min, and FSW = 10. (a) The accuracy comparison. (b) The window size comparison. (c) The
output delay comparison. (d) The battery comparison.

mode is different from ours. EnAcq actually uses a semi-
adaptive sampling strategy, which gives fixed three speed
thresholds, each corresponding to a specific sampling
frequency. In contrast, our ASF strategy is completely
adaptive.

d: ANTMAPPER ALGORITHM
AntMapper [26] uses a global ant colony algorithm to find the
shortest path and the local geometric/topological information
is employed to match the trajectory points. It is not an online
map matching algorithm but an off-line approach. Hence,
the sliding window method is not applicable.

In addition, to dig deeper into the performance of the
adaptive slide window and the adaptive sampling frequency,
we further consider the following two methodologies:

e: HMM+ASW+FSF, NAMED HAF ALGORITHM
For this method, we only use the adaptive slide window
strategy but keep the fixed sampling frequency.

f: HMM+FSW+ASF, NAMED HFA ALGORITHM
Unlike 5), we keep the slide window fixed while use the
adaptive sampling frequency strategy.

C. EXPERIMENTAL RESULTS AND DESCRIPTION
For the three comparing algorithms, AntMapper, HMM+RCM
and HFF, the FSF strategy is used so that we named them as
FSF-Algorithm for convenient. In addition, we set the fixed
window size of HFF as 10. We will discuss the impact of the
window size in the following subsection V.D.

Firstly, the fixed sampling frequency for all the three
FSF-Algorithms are set as 0.5min. As shown in Figure 7(a),
we can observe that the AOMM algorithm always has
the highest accuracy, reaching a 96.41% average accu-
racy. AntMapper algorithm is the following one with a
95.29% accuracy. EnAcq gains a 94.43% accuracy. And
HMM+RCM gains a 94.14% accuracy while HFF is the
worse, with only 91.92% accuracy. In addition, unlike HFF
with the fixed window size 10, we can see from Figure 7(b)
that AOMM has a much dynamic and smaller window size,
which is fluctuating between 3 and 4, with an average 3.4win-
dow size. Although HMM+RCM and EnAcq use another

TABLE 5. Accuracy of various algorithms.

sliding window algorithm, the required window size is larger
than AOMM, which is approximately 4.2. As a result, this
will significantly reduce the output latency for the AOMM
algorithm as the waiting time to gain the sampling data in
the window size will be significantly reduce. In addition,
as reported in Figure 7(c), the average matching time of
AOMM is about 0.023min, both HMM+RCM and EnAcq
are about 0.043min, and HFF is about 0.087min, indicating
AOMM gains a 46.51% reduction in matching time com-
paring with HMM+RCM/EnAcq while it reaches 73.56%
reduction when compared with HFF. Finally, Figure 7(d)
shows that AOMM requires much less trajectory points.
The longer the driving distance is, the larger the reduc-
tion of the trajectory points between AOMM, EnAcq and
FSW-Algorithms are. Actually, the AOMM only requires
about 1/7 trajectories points comparing with the other three
FSF-Algorithms(0.5), and only requires about 1/3 trajectories
points comparing with the EnAcq. The above all mean that
AOMM will significantly reduce the energy consumption.
Therefore, comparing with the considered methods, AOMM
can achieve a 2.465% average accuracy improvement while
at the same time, reduce 64.62%mapmatching time and need
only 1/5 energy consumption.

In addition, to dig into the effectiveness of AOMM in bal-
ancing the accuracy and the energy consumption, we vary the
fixed sampling frequency of three FSF-Algorithms (AntMap-
per, HMM+RCM and HFF) among 0.1min, 0.2min, 0.5min,
1.5min, 3.5min and 4.5min. For each algorithm and the
sampling frequency, given 90km driving distance, we can
calculate its average accuracy. As shown in Table 5, it can
be seen that for the three FSF-Algroithms, its accuracy is the
closest to ours when the sampling frequency is set as 0.2min
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and 0.1min. This proves our previous argument that too many
sampling data will include some duplicate information and
is not necessary to improve the map matching accuracy.
In addition, we can see that the larger the fixed sampling
frequency is for the FSF-Algorithm, the more the accuracy
improvement the AOMM gains. For example, AOMM has
a 2.63% average accuracy improvement comparing with the
other FSF-Algorithm when the sampling frequency is set as
0.5min. For the scenario in which the sampling frequency is
set as 4.5min, this average accuracy improvement will reach
10.46%. This reveals that AOMM can achieve a significant
accuracy improvement in the highly sparse location data
scenario. For the high sample rate trajectories, AOMM still
have a better performance in map matching. Furthermore,
as shown in Figure 8(a), we evaluate the number of trajec-
tory points needed for EnAcq and each FSF-Algorithm with
different sampling frequency. It can be seen that AOMM has
the similar sampling number with FSF(4.5). This means that
the AOMM requires the similar energy consumption with the
other FSF-Algorithm when the sampling frequency is about
4.5min. Given a 90km driving distance, FSF(0.2) will require
1073 trajectory points, EnAcq will require 184 trajectory
points while AOMMonly needs 62 trajectory points. It proves
that the adaptive sampling algorithm of AOMM can reduce
more energy consumption than EnAcq.

Finally, we evaluate the output delay of the HFF at different
window size. As discussed above, AntMapper is a off-line
map matching algorithm that it considers the global data
that the output-delay is not applicable. For the other two
ASW algorithms, HMM+RCM and EnAcq, we consider the
map matching time as they both have a larger window size
comparing with AOMM. As shown in Fig 8(b), the average
matching time of AOMM is about 0.023min, while it is about
0.043min for HMM+RCM/EnAcq. When the window size
is 10, the average matching time of HFF tends to be stable,
about 0.087min. For average, AOMM can achieve a 64.62%
reduction in map matching time comparing with other
algorithms.

Therefore, we can see that AOMM achieves a better
accuracy performance comparing with the state-of-the-art,
AntMapper, when the fixed sampling frequency for AntMap-
per is set as 0.2min. However, AOMM only needs 5.78% of
trajectory points in this case. On the other hand, the sampling
trajectory points for AOMM is similar to the FSF(4.5min)
while comparing with the AntMapper, which has the best
accuracy performance in the three FSF-Algorithms, AOMM
achieves 10.46% improvement in accuracy. Furthermore,
comparing with the FSW-Algorithms, AOMM not only
always achieves a higher accuracy and lower energy con-
sumption, but also has a much smaller window size as well as
significant reduction (66%) in matching. Besides, compared
with the ASW strategy proposed in HMM+RCM, AOMM
has a better performance. Our average window size is reduced
by 0.8, our average output delay is reduced by 46.51%, and
our precision is increased by 3.62%. Similarly, compared
with the ASF strategy and the ASW strategy proposed in

FIGURE 8. The performance comparison in energy consumption and
matching time. (a) Eneragy comparison. (b) Matching time comparison.

EnAcq, AOMM also has a better performance. The average
sampling number is reduced by 66.30%, the average window
size is reduced by 0.8, the average output delay is reduced by
46.51%, and the precision is increased by1.98%. These prove
that our approach AOMM can achieve a high accuracy, a low
output latency and a low energy consumption simultaneously.

D. PARAMETER INFLUENCE
As discussed in Section IV, in the following sections, we will
discuss the impact of the three parameters in AOMM: the
maximum candidate points k , the maximum sliding window
size n and the sampling distance h.

1) THE INFLUENCE OF THE MAXIMUM CANDIDATE
POINTS NUMBER k
Straightforwardly, the number of candidate points k will
impact the map matching accuracy. As shown in Figure 9,
given n = 5, h = 1500, it can be seen that with the increase
of the candidate points number, the accuracy is constantly
improved. This is reasonable because more candidates will
enable the algorithm to identify the optimized points. How-
ever, it can be seen that the marginal improvement is decreas-
ing. What is worse, the more candidates will increase the
time needed to calculate the matching result. The green line
in Figure 9 reveals that for our experiment, the running time
needed dramatically increases when the candidate number
is larger than 5. This is because the increase of the number
of candidate points leads to the increase of time complexity.
Hence to make the trade-off between the accuracy and the
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FIGURE 9. Accuracy/Running time w.r.t Number of candidates.

running time, for the previous experiments, we set the candi-
date points number as 5.

2) THE INFLUENCE OF THE MAXIMUM SLIDING
WINDOW SIZE n
To dig deeper into the impact of the sliding window size
to the performance, in this part, we consider HFA as the
comparison. It uses the same adaptive sampling strategy as
AOMM. However, unlike AOMM, HFA employs a fixed
window size. As shown in Figure 10(a), it can be seen that
the AOMM always gains a higher accuracy comparing with
HFA, thought when thewindow size is larger than 18, AOMM
and HFA have the very similar performance. Actually, for
AOMM, when the maximum window size is set as 5, its
accuracy reaches 96.28% and then it stays relatively stable
even we continue to increase the maximum window size.
As shown in Figure 10(b), We can see that the matching
time of the AOMM will tend to be stable more quickly.
In average, the output delay of the AOMM is 1.21s while
it is 4.17s for HFA. This reveals a 70.98% reduction in
matching time for AOMM comparing with HFA. Tomake the
trade-off between the accuracy and the output delay, for the
previous experiments, we set the maximum sliding window
size n as 5.

3) THE INFLUENCE OF ADAPTIVE DISTANCE h
Straightforwardly, the sampling frequency distance h will
impact the number of the sampling, which then impacts the
accuracy. To understand this impact, for AOMM, given k =
5, n = 5, we vary h between 500, 1000, 1500, 2000 and 2500.
As shown in Figure 11(a), when h is set as 500m, 1000m,
and 1500m, the accuracy of above AOMM have the similar
average accuracy, which is 96.30%, 96.29% and 96.28%.
For AOMM(2000), the average accuracy slightly decreases to
95.16%. For AOMM(2500), the average accuracy is greatly
reduced to 90.57%. Thismeans that the accuracy ofAOMM is
robust to the frequency sampling distance h in a given range,
which is 500m to 2500m in our dataset, and then larger hwill
result into reduction in accuracy because not enough effective
sampling is collected. As shown in Figure 11(b), we can see
that the larger the distance h is, the fewer the sampling data
for map matching are collected. In our dataset, when h is set
as 1500m, AOMM can reach the best performance.

FIGURE 10. The influence of the maximum sliding window size. (a) The
influence on accuracy. (b) The influence on latency.

FIGURE 11. The influence of adaptive distance h. (a) The influence on
accuracy. (b) The influence on battery.

4) THE INFLUENCE OF THE NUMBER OF THE SAME
PREFIXES IN THE STRING r
Straightforwardly, r will impact the map matching accuracy
and the number of calculated candidate road segments. The
smaller the r value is, the more number of candidate road
segments will be obtained. However, many of these road
segments are far away from the trajectory point, and the
computation of these road segments is meaningless. There-
fore, determining the number of GeoHash string is very
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TABLE 6. Data of velocity distribution.

importance, it enables us to find the best results with the
fastest time.

In this situation, we did a series of experiments on r ,
the results is shown in the table 6. It can be seen that when r is
set as 5, the candidate road segments number is the minimum
for the best accuracy. Reducing r to 1-4 will not improve the
accuracy but only increase the candidate road segments while
increasing r to higher than 5, will reduce the accuracy.

VI. CONCLUSION
Because of the existence of measurement error, sampling
error, and battery power-saving requirements in map match-
ing process, how to match the trajectory points to the digital
map in realtime with high accuracy, low latency and low
energy consumption simultaneously is an enormous chal-
lenge in practice. To deal with this challenge, this paper
proposes an adaptive online map matching algorithm called
AOMM algorithm. Combing with the geometric structure
of the road network (geometric probability), the topology
structure of the road network (topology probability) and
the time/speed information of the vehicle operation, based
on the HMM(a statistical model), the matching probabil-
ity for each trajectory point is calculated to identify the
matching trajectory path. Furthermore, the adaptive window
size strategy and the adaptive sampling frequency strategy
are developed to reduce the output latency and the sam-
pling data for map matching. Comparing with the state-
of-the-art algorithms such as HMM+RCM, EnAcq and
AntMapper, our AOMM can achieve a significant perfor-
mance improvement: 1) Our approach achieves a higher
average accuracy, reaching 96.41%. Especially in the high
sparse scenario, AOMM can gain a 1.98% accuracy improve-
ment comparing with the state-of-the-art. 2) Employing the
adaptive window size strategy benefits us a 19.05% reduc-
tion in needed window size and a 46.51% reduction in
matching time. 3) The adaptive frequency sampling strategy
achieves a 3/4 decreasing of the sampling numbers compar-
ing to the methods with EnAcq and the fixed sampling fre-
quency(0.1min, 0.2min,0.5min,1.5min,3.5min and 4.5min)
in our experiment. This demonstrates that our approach can
achieve a high accuracy, low output delay and energy con-
sumption reduction at the same time.

In this paper, we introduced the parameter h to achieve
adaptive sampling. In the future, we plan to improve the
h by bringing more indicators, such as road grade, vehicle

angular speed, etc, thus our adaptive sampling algorithm is
more adaptable. In addition, in this paper, we only focus on
the map matching in city. In the future, we will further extend
it to take the freeway into consideration.
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