
Received June 18, 2018, accepted July 30, 2018, date of publication September 13, 2018, date of current version September 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2864871

Malytics: A Malware Detection Scheme
MAHMOOD YOUSEFI-AZAR 1,2, LEONARD G. C. HAMEY 1,
VIJAY VARADHARAJAN3, AND SHIPING CHEN2
1Department of Computing, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
2Commonwealth Scientific and Industrial Research Organisation, Data61, Marsfield, NSW 2122, Australia
3Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia

Corresponding author: Mahmood Yousefi-Azar (mahmood.yousefiazar@hdr.mq.edu.au)

ABSTRACT An important problem of cyber-security is malware analysis. Besides good precision and
recognition rate, ideally, a malware detection scheme needs to be able to generalize well for novel malware
families (a.k.a zero-day attacks). It is important that the system does not require excessive computation
particularly for deployment on the mobile devices. In this paper, we propose a novel scheme to detect
malware which we call Malytics. It is not dependent on any particular tool or operating system. It extracts
static features of any given binary file to distinguish malware from benign. Malytics consists of three stages:
feature extraction, similarity measurement, and classification. The three phases are implemented by a neural
network with two hidden layers and an output layer. We show feature extraction, which is performed by
tf -simhashing, is equivalent to the first layer of a particular neural network. We evaluate Malytics per-
formance on both Android and Windows platforms. Malytics outperforms a wide range of learning-based
techniques and also individual state-of-the-art models on both platforms. We also show Malytics is resilient
and robust in addressing zero-day malware samples. The F1-score of Malytics is 97.21% and 99.45% on
Android dex file and Windows PE files, respectively, in the applied datasets. The speed and efficiency of
Malytics are also evaluated.

INDEX TERMS Malware detection, static analysis, binary level n-grams, term frequency shimhashing,
extreme learning machine.

I. INTRODUCTION
Malware detection is of paramount importance to our digital
era and thus the daily life. Only in 2016/2017 [1], a vast num-
bers of metamorphic variants of malware for Windows and
Android platforms were developed. In addition to the volume
of malware generated, novel families make the detection task
overwhelming.

Malware detection is mostly based on static or/and
dynamic analysis of samples [2]–[4]. Static analysis uses a
binary file and/or disassembled code without running it. It is
quite efficient, in most cases, but has problems with heavy
obfuscation. Dynamic analysis is a better solution for obfus-
cated samples because it relies on the run-time behaviour, but
it is computationally expensive, and the analysismight not see
malicious behaviour during testing. Given features extracted,
a classic method to detect malicious codes is to generate
a signature for every malware sample. The signature-based
methods are only good for detecting known malware.

In particular, it is not difficult to create many polymor-
phic/metamorphic variants of a given malware sample. The
new variants easily evade signature-based defence systems.

However, the different variants of the same malware typ-
ically exhibit similar malicious patterns. Learning the pat-
terns is the given task of most modern malware detection
schemes [5], [6].

Deep Convolutional Neural Network (CNN) and other
deep learning models have been developed to address a wide
range of our daily life phenomenons such as vision, speech
and NLP [7], [8]. The motivations behind them are quite
intuitive for the given task and make them state-of-the-art
for most cases; however, the proposed scheme of this paper
outperforms a wide range of such models. This might be
because the scheme is particularly developed for our given
task.

This paper presents a novel learning-based scheme that
shows robust ability to detect malware compared with exist-
ing state-of-the-art learning-based models and other base-
lines. The proposed scheme which we call Malytics is
resilient to zero-day samples.

We named ourmodelMalytics because the intuition behind
the scheme is an analytic solution to detect malware. That
is, the learning algorithm comes from a top-down theory

49418
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-1029-6584

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

FIGURE 1. Detailed schematic of the proposed solution for malware detection. We used 2-gram (see section II) in this
particular example.

with a direct solution rather than learning through samples
in an iteration fashion. A wide range of learning algorithms
have been developed to learn from input samples [9]. We do
not argue the capability of learning models that initiate a
hypothesis space (i.e. a model) and adapt this hypothesis
space into the training samples. However, we propose to use a
learning algorithm that is theoretically related to our proposed
feature representation.

The model is an integrated system in which static features
are extracted from a binary file and classified by a neural
network. Although deep learning models can be this neural
network, it is computationally very expensive to use back-
propagation to learn a very large feature space. A common
solution for this situation is to use random projection tech-
niques [10]. The projected feature space is then fed to the deep
neural network. Random projection with our training algo-
rithm shows quite strong results, supported by a theoretical
justification.

Figure 1 present a high level concept of the Malyt-
ics. Inspired from Natural Language Processing (NLP)
(see section II), the term-frequency (tf) of the given binary
file is multiplied by the random projection matrix including
1 and −1. The result is called tf -simhashing. This process is
linear.

The representation is fed to the next stage/layer where
the similarity indices are obtained as the input for classifi-
cation. To improve classification, generic non-linear features
(e.g. the Gaussian kernel) can be used [11]. This can cause
poor generalization [12]. A motivation that this paper uses
Extreme Learning Machine (ELM) (see section III) as the
supervised classifier is to address the generalization.

We collected different datasets for our experiments.
Because the samples were collected in the wild, they could
be a malware file or malicious code that was imaged into
another file. This setting helps test the model for real world
application. We cannot directly compare our model with the
other work because we do not have access to specific state-of-
the-art work datasets, except one Android dataset; however,

we think that in many cases similar datasets have been
used [13]–[16]. Our ground-truth for malware samples is a
collection of 19 well-known AV vendors.

To evaluate Malytics a wide range of experiments on
Android and Windows samples is conducted. For Android,
We propose to use the Dex (Dalvik Executable) file rather
than the raw APK. Our experiments show tf -simhashing of a
dex file of an APK carries more efficient information rather
than the APK itself. Dex files are also smaller than APKs. The
results on Windows Portable Executable (PE) files show that
the model is not dependent on a particular operating system.

Raff et al. [17] showed for n-grams with n > 2
(e.g 4-gram and 6-gram), the byte-level representation is
informative while the information contained in n-grams stem
from string features. However, we think 2-gram can carry
more information related to instructions and also preserve the
string pattern in the frequency.

A. PROBLEM
Malware must be distinguished from benign samples. The
system needs to be fast and efficient. Novel Malware families
must be detected.

B. SOLUTION
Malytics is a resilient solution for the problem. The byte
representation contains important information such as APIs,
op-codes. The model learns the pattern of bytes. The
tf -simhashing static feature representation is a fast solution
to embed the byte patterns into a short size vector. Malytics
generalizes the patterns well even for novel samples.

C. CONTRIBUTION
- We propose a single and integrated model for malware

detection. The model has no dependency on particular tools.
Malytics places no restriction on the operating system. Eval-
uation shows it outperforms other single (non-ensemble)
state-of-the-art models for both Android and Windows static
analysis.

VOLUME 6, 2018 49419

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

- We bridge the gap between simhashing and a type of
neural network. In particular, we show that simhashing has
a close relation to the first layer of ELM. This paper theo-
retically and empirically show this neural network where the
first layer is not trained, has a strong capability for malware
detection.

- We show least squares regression in the form of the
ELM with a non-linear kernel can provide a template to fully
enhance the feature space rather than implicit feature selec-
tion of the regressor used in [17]. TheMalytics generalization
performance for unseen data also shows the effectiveness of
the applied regularization technique.

- A further empirical evaluation of Malytics shows that it
can successfully detect new malware families and zero-day
samples in the wild. This paper also shows Malytics can be
tailored for large scale data application while still remains
competitive.

The feature extraction method is presented in section 2,
and providing the detail of the proposed scheme in section 3.
In section 4, we present a comprehensive evaluation on
the performance of Malytics for both Android and Win-
dows platforms, and also discuss the results. In section 5,
we provide the limitations of Malytics and future direction
of research. Section 5 and 6 present related work to our work
and conclusion respectively.

II. THE FEATURE EXTRACTION
Hashing is a computation which maps arbitrary size data into
data of a fixed size. Hashing algorithms have been widely
used in the security application domain [18]–[20]. Locality
Sensitive Hashing (LSH) is one of the main categories of
hashing methods. It hashes input data so that similar data
maps to the same ‘‘buckets’’ with high probability, maxi-
mizing the probability of a ‘‘collision’’ for similar inputs.
Simhashing is one of the most widely used LSH algorithms,
adopted to find similar strings [21], [22]. Simhashing is an
LSH that is designed to approximate the cosine similarity
between inputs. The main concept of simhashing comes from
Sign Random Projections (SRP) [21], [23], [24]. Given an
input vector V , SRP utilizes a random Gaussian unit vector
(a random hyper-plane) I with each component generated
from a Gaussian unit (i.e., Ii ∼ N (0, 1) where i is the number
of component) and only stores the sign of the projected data
as:

hash(V) = sign(V · I) (1)

where · is the dot product. Depending on which side of the
hyper-plane V lies, hashing(V) = ±1. A family of the hash
function with the mentioned characteristics provides a setting
where for two inputs vectors V and U :

Pr[hash(V) = hash(U)] = 1−
θ (V ,U)
π

θ = arccos (
|V ∩ U |
√
|V | · |U |

) (2)

Where θ (V ,U) is closely related to cosine(V ,U) for the
two vectors.

If V · I ≥ 0 then hash(V) = 1 and otherwise
hash(V) = 0, the hamming distance is related to the similar-
ity and it provides a good space to solve the nearest neighbour
problem; however, this is not the problem we look to solve.

The hash function family generates a real value vector if
hash(V) = V · I and equation 2 is still guaranteed. We use
simhashing that produce real values.

Simhashing has wide-ranging applications from detecting
duplicates in texts (e.g. websites) to different security and
to malware analysis, specifically with the Hamming distance
similarity measure [25]–[27]. Inspired from NLP application
domain, a n-gram is a contiguous sequence of n items (here,
a byte pair) from a given sequence of the binary file. The n-
gram feature representation is a specific type of bag-of-words
representation in which only the number of occurrences of the
items is decisive and the location of the items in the binary
file is neglected. The theory behind simhashing allows us to
weight the byte n-gram [21] with the number of occurrences
rather than only representing presence (i.e. zero and one) of
the byte n-gram in the file.

The proposed feature representation generates a fix size
vector from an arbitrary size binary file. Given a binary file,
each n-gram is first hashed to a single fix size vector. To speed
up this process, first a dictionary of n-grams is provided and
then, this vocabulary hashed to binary values. Having tf of
the vocabulary stored, each hash bit with value 1 or −1 is
weighted with tf of the n-gram. Thus, tf is inserted into
the representation [28]. In the next step, all the vectors sum
up bit-wise, thereby providing a final fix size vector. With
this process, we embed the distribution of the n-grams of
bytes into the vector. This representation provides the two
vectors that are close to each other when two files have many
common n-grams and different when the files have many
different n-grams.

Bit-wise summing up all the real-value hash vectors of
a file (i.e. hash(Vi) = Vi · Ii where i is the number of
components of hash vector, for example 1024) results in a
vector with high variance that needs to be reduced for feeding
to an learning algorithm. Support Vector Machines (SVMs)
as a competitor to Malytics requires normalizing each feature
independently. This transformation reduces the performance
in real word application.

Because we want to map the representation into the space
where dot product of vectors directly depends on the angle
between vectors, each vector needs to be linearly transformed
to have zero mean and unit variance. This transformation
is different than normalizing each feature independently,
because it normalizes each input vector. The other option is to
normalize each vector to its Euclidean length (a.k.a L2 norm).
In this case, the dot product of two vectors is directly Cosine
similarity. But, since the representation will further map
to an infinite-dimension space using a Euclidean-distance-
based similarity measure, we do not use L2 normalization
but linearly transform (Z = X−µ

σ
to have zero mean and

49420 VOLUME 6, 2018

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

FIGURE 2. The proposed scheme. tf -simhashing algorithm has been considered as the first hidden layer.

Algorithm 1 tf -simhashing
1: procedure tfSimhash(Dataset, ngram, i)
2: dictionarySize← 28∗ngram

3: componentsSize← i
4: IdictionarySize×componentsSize← Ii ∼ N (0, 1)
5: Where ii ≥ 0 set to 1 and ii < 0 set to −1
6: repeat
7: for each binary file:
8: HexStr ← Hex(BinaryFile)
9: TF1×dictionarySize← dic(HexStr, dictionarySize)
10:

tf −simhash1×componentsSize← normalization(TF×I)

unit variance). We observed that this transformation provides
better results. The pseudo-code of the proposed greedy-wise
algorithm is:

The aforementioned algorithm is how tf -simhashing can
be implemented; however, in the context of neural network,
algorithm 1 is equivalent to the whole process of feeding
tf representation of byte n-grams to a layer with weights
randomly set to 1 or −1; thus, no training is required for
this layer (see section III for more theoretical elaboration).
The output of the hidden layer is exactly our tf -simhashing.
Indeed, the proposed algorithm bridges the gap between
simashing and a neural network inwhich the first hidden layer
has random weights.

We already know that the similarity of the output of the
hidden nodes in algorithm 1 closely depends on the Cosine
angle between two samples (i.e. V and U). In algorithm 1,
the vector size i corresponds to the number of hidden nodes
in the neural network.

In the next section, we call the tf -hashing phase as the first
layer of our neural network.

III. THE PROPOSED SCHEME
Because the latent representation generated in the output
of the first hidden layer is based on the similarity of the

original space, the second hidden layer of the proposedmodel
can provide a similarity measure. Indeed, we need a task-
specific similarity over pairs of data points to facilitate the
prior knowledge (i.e. training samples in the first hidden
layer). This similarity measure followed by a linear predic-
tor also yields a convex optimization problem [29]. Kernel
methods can play this role. The relation between kernel
machines and the neural network has been widely investiga-
ted [29]–[31]. Because kernel layer is data-dependent but
unlabeled, the kernel layer training could be seen as
unsupervised.

Figure 2 presents the proposed scheme. The output layer
weights are analytically obtained using the linear least
squares technique. The output layer is the ELM. The whole
scheme has more than one hidden layer; thus, it is a deep
neural network. However, because the training does not use
the back-propagation algorithm for training, the scheme dif-
fers from the deep learning that is a well-known term in the
machine learning community.

The kernel layer is a non-parametric and nonlinear model
to match the input to the templates that are obtained from the
training samples. The Radial Basis Function (RBF) kernel
is well known for providing an infinite-dimensional kernel
space and is commonly used with the kernel trick [31], [32].
As we show later, our model supports the kernel trick, so the
RBF kernel is a logical choice.

K (x, xi) = exp

(
−d(x−xi)

2

2γ 2

)
(3)

where d is the Euclidean distance and γ is the spread
parameter. The function is symmetric K : X × X → R,
a positive-definite matrix and always a real-valued square
matrix. This function projects tf -simhashing vectors into an
infinite dimensional space. The output layer weight can be
trained to predict both classes (i.e. 1 and −1).
In detail, although approximations to RBF can also provide

good results [32], our malware detection task alongside with
the first hidden layer topology give a good reason not to use

VOLUME 6, 2018 49421

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

any approximation but to use the kernel trick. The kernel trick
implicitly maps the feature space to an infinite-dimension
feature space. The trick makes the mapping limited by the
number of data. We empirically evaluate the effect of the
kernel dimension (see the subsection IV-F2).

To obtain the output layer parameters, we use the ELM. Let
{(xi, t i)|xi ∈ Rd , t i ∈ {−1, 1}}Ni=1, where N is the number of
training samples, d is the dictionary size and m is the number
of output nodes. The ELM model is f as follows:

f (x) =
L∑
i=1

βih(x, ai, bi) = h(x)β (4)

Where L is the number of hidden nodes,β = [βi, . . . , βL]T

is the output weights and a and b, in our model, are the kernel
parameters (i.e exp(−b||x−a||

2). b are constant when ELM is
being trained. h(·) is the RBF kernel. The ELM objective
function is to minimize:

Minimizeβ :
1
2
||β||2 + C

1
2

N∑
i=1

||ξ ||2

Subject to : h(xi)β = tTi − ξ
T
i , i = 1, . . . ,N (5)

Where C is the trade-off parameter, ξ = [ξi,1, . . . , ξi,m]T

is the error between the desired target (e.g. [−1,1] for benign
and [1,−1] for malware) and the labels predicted by the mod-
els. There are different techniques to obtain the output layer
weights β including orthogonal projection method, iterative
methods, and singular value decomposition (SVD) [33]–[35].
To minimize the least squares norm, the methods are based
on the calculation of the MooreâĂ"Penrose pseudo-inverse
matrix [35], [36] as follows:

β = H†T (6)

Where H† is the matrix. For the sake of feasibility,
Kozik [37] used the SVD matrix factorization technique for
malware activity detection; however, the proposed malware
detection scheme of this paper allows us to use the closed
form solution [38]. With Karush-Kuhn-Tucker conditions,
the Lagrangian dual problem is defined:

LDualELM :
1
2
||β||2 + C

1
2

N∑
i=1

||ξ ||2

−

N∑
i=1

m∑
j=1

αi,j(h(xi)β j − t i,j + ξi,j) (7)

Where β j is the out put layer weight/vectors and in our
case m = 2. The dual problem can be optimized (see
Appendix VII) and provides the direct solution as follows:

β = HT (I
C
+HHT)−1T (8)

The ELM function is:

f (x) = h(x)β = h(x)HT (I
C
+HHT)−1T (9)

Algorithm 2 The Proposed Scheme Algorithm
Input : given N training samples as

{(xi, t i)|xi ∈ Rd , t i ∈ {−1, 1}}Ni=1, given V
testing samples as {(xi, t i)|xi ∈ Rd , }Vi=1,
n-gram, i, l

Output : predicted labels (Benign or Malware)
Training:

tf -simhashN×i←
tfSimhash(Dataset, ngram, i)

KernelMatrixN ,N ← RBF(tf -simhashN×i)
if l 6= N then

RandK ← Random(1 : l)
return KernelMatrix l,l(RandK ,RandK);

end
β ←

(I
C + KernelMatrix

)−1T
Testing :

tf -simhashV×i←
tfSimhash(binaryfile, ngram, i)

Predictions← β × RBF(tf -simhashV×i)

Where h(·) can be unknown and an implicit function sat-
isfies the task. A kernel matrix � using a kernel function K
can be used as follows:

� = HHT
: �i,j = h(xi) · h(xj)

= K(xi, xj), i, j = 1, . . . ,N (10)

The output function as follows:

f (x) =

K(x, x1)...

K(x, xN)

(I
C
+�)−1T (11)

The applied kernel is RBF. The method is similar to RBF
kernel in SVM. Indeed, SVMs are the particular case of ELM.
That is, in ELM all the inputs construct support vectors [38].
Based on the ELM universal approximation capability that is:

lim
L→∞

||

L∑
i=1

β ihi(x)− f (x)|| = 0 (12)

As long as h(·) is a strict positive definite kernel [39], [40],
a sufficient number of hidden nodes still satisfies 12. In our
model, the first hidden layer (tf -simashing algorithm) is
equivalent to the random nodes; additionally, we also show
that we can choose a random subset of the support vectors,
from kernel matrix, to reduce the computational over-head
and required memory for big data in the cost of the model’s
performance, that is, ||K l×lβ − T || < ε where l < L.

The proposed scheme is summarized in Algorithm 2

IV. EVALUATION
To evaluate our scheme, we conducted a wide range of
experiments on real datasets collected from the wild for both
Android and Windows platforms. During all experiments,
we kept the training data balanced (i.e. malware to benign

49422 VOLUME 6, 2018

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

ratio (MBR) is 0.5) except especially to evaluate the capabil-
ity of the scheme to deal with imbalanced data. Our benign
samples were collected from Androzoo, a freely available
APks repository [41]. Androzoo crawled several markets
including the official Google Play. We randomly selected
apps collected fromGoogle Play. Our collectedmalware sam-
ples (from Virussahre.com)1 includes a wide range of mal-
ware families for both Android and Microsoft Windows plat-
forms. We double checked the status of all malware samples
using VirusTotal.com API.2 VirusTotal provides the results
of analysis by about 55 anti-virus vendors. To avoid having
a considerable inconsistency, we selected 19 of the most
well-known vendors’ results. The selected companies are
Kaspersky, Symantec, ESET-NOD32, Avast, McAfee, AVG,
Avira, Microsoft, BitDefender, Panda, F-Secure, Malware-
bytes, TrendMicro, Comodo, VIPRE, AVware, Ad-Aware,
Sophos and Qihoo-360. A malware that is detected by at least
one of the vendors was picked to be included in our datasets.
This procedure was used to establish the ground-truth in all
our experiments. Because we collected the samples from the
wild, they can be full malware or partially malicious files.

The first malware dataset is Drebin [42]. It consists
of 5560 malware of which 5555 have a.dex file.

We also collected our own malware dataset from
the two packages VirusShare_Android_20130506.zip and
VirusShare_Android_20140324.zip, that we downloaded
from VirusShare.com. Together these consist of 35397 mal-
ware that were collected before April 2014. Since some
samples of the packages have been reversed engineered and
were re-compressed, we focus on intact samples. Also, each
malware must meet our ground-truth threshold. 20255 mal-
ware samples met our criterion. Figure 3 shows the num-
ber of samples detected by the 19 anti-virus vendors.
We again randomly select 20255 benign from our reposi-
tory. The statistics of the dataset (DexShare) is presented in
the table 1.

For Microsoft Windows, 8912 PE (WinPE) benign has
been collected from a fresh installed Windows 10 with
2016 updates. The other benign set, consisting of 11983 PE
(WinAppPE), was collected by combining the Windows
benign with 77 applications (e.g. firefox, Adobe Reader, etc),
automatically install by Ninite.3 For the malware set,
we downloaded VirusShare_00271.zip a package containing
65,536 malware of which 11483 are PEs that also meet the
threshold of the selected anti-virus vendors. The package
was captured from 2016-11-01 to 2016-11-20 from the wild.
To provide balance, we collected further 500 malware from
the previous package in VirusShare and added this mal-
ware set to yield MalPE2016. Because one of our evalua-
tion goals is zero-day detection, we also collected PEs of
VirusShare_00298.zip (MalPE2017) that is a package col-
lected about one year after PE2016. The table 1 shows the

1https://Virusshare.com/
2https://www.virustotal.com/##/home/search
3https://ninite.com/

FIGURE 3. The number of samples detected by the 19 selected anti-virus
vendors.

TABLE 1. The statistics of the datasets. Max, Min and Ave stand for
maximum size (MB), minimum size (KB) and average size (MB) of the
files respectively.

statistics of the Windows dataset (PEShare). Figure 3 also
shows the number of samples detected by 1 to 19 anti-virus
vendors for both malware sets. When it comes to testing
Malytics for WinPE set, we randomly select 8912 malware
from MalPE2016.

We used different evaluation metrics to analyze the per-
formance of the proposed scheme. The metric for our
two class classification task is based on the confusion
matrix:

The common performance metrics are:
Recall (a.k.a hit/detection rate or sensitivity) = TP

TP+FN .
And, False Negative Rate (FNR) = FN

TP+FN . where FNR is 1
- recall.

Precision = TP
TP+FP

f1-score = 2 ∗ precision∗recall
precision+recall

Accuracy = TN+TP
TN+FP+FN+TP

False positive rate (FPR) = FP
TN+FP

The mentioned metrics are enough to evaluate a model.
We also used AUC (the area under receiver operating char-
acteristic (ROC) curve) where we found other work with
this index. AUC is the probability that a classifier will rank
a randomly chosen positive sample higher than a randomly
chosen negative sample.

VOLUME 6, 2018 49423

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

A. EXPERIMENTAL SETUP
To practically show the scheme’s efficiency and meeting the
mentioned classifier characteristics, we used SVMs, Gradient
Boost (XGBoost), Deep Neural Network (DNN), Random
Forest (RF) and K-Nearest Neighbors (K-NN) as our base-
lines. The scikit-learn Python library was used to implement
the baselines for SVM, XGBoost, RF, K-NN. We use Keras
API, that runs on top of TensorFlow, to implement Deep
Neural network. We used grid search to optimize the hype-
parameters of the baselines. The results of this the grid search
(range from 10−4 to 104 for both C and gamma) for SVM
C = 0.1 and γ = 100 with RBF kernel. The grid search
for K-NN ranged from 1 to 20 for n_neighbors and is either
‘uniform’ or ‘distance’ for weights. The Deep learning model
has 3 hidden layer with 1024, 128 and 64 nodes and 1 node in
the output layer. The activation functions are linear rectifier,
linear rectifier, sigmoid. The first hidden layer is the proposed
representation. The optimizer, batch size and the number of
epochs are adam, 5, 100. The first two hidden layer adapt
dropout regularization with 0.2 probability.

The two hyper-parameters ofMalytics are trade-off param-
eter C and kernel parameter γ . The result of the grid search
for hyper-parameters C (ranging from 10 to 500) is 200 and
for γ (ranging from 0.5 to 1.5.) is 1.

Our machine specification is Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz, 32.0 GB RAM and hard disk
drive (HDD).

The hashing algorithm was designed to generate the vec-
tor of size 1024, showing strong performance. We observe
that larger vectors provide the slightly better results and
smaller vectors reduce the performance. The vector of size
1204 is an optimum size while it still is computationally
cheap. Over our experiments, we choose 2-gram and used
5-fold cross-validation. Malytics even with 2-gram outper-
forms the state-of-the-art models. We do not fix a thresh-
old to ensure the highest precision and recall but rather the
range of the capability of the model is also a goal of this
paper.

B. RESULTS AND DISCUSSION
This part of the paper presents the results of the proposed
model. To compare the scheme with other models, we feed
tf -simhashing to different classifiers. Thus, the proposed
feature extraction technique is also examined using different
classifiers. Because the presented results on both Android and
Windows are based on the 5-fold cross-validation, we present
mean and standard deviation (Std) of all 5-folds in the
tables. It is usual to present FPR as a fix value rather than
mean (±Std). We also calculated FPR in this way.

C. ANDROID MALWARE DETECTION
This section presents the performance ofMalytics onAndroid
malware detection. First, we show the model’s capability
compared with different baselines on Drebin and DexShare
datasets. Then, the model is evaluated in different settings.

Further analysis of Android malware detection is presented
in the section IV-F.

Table 2 shows the performance of Malytics compared with
the state-of-the-art models [3], [43], 5 baselines and ELM
(without kernel layer) on the Drebin dataset. Grosse et al. [43]
withMBR=0.5 can be comparedwith our experiments.Mari-
conti et al. [3] also provides a similar setting to ours. Malytics
outperforms all other techniques when it comes to detect-
ing malware, that is, FNR = 1.44%. This superior perfor-
mance is seen for f-score and accuracy as well. Interestingly,
DNN is the most precise model compared with all others with
only 1% FPR while its FNR is the worst.

TABLE 2. The Mean and Std of Malytics and the baselines for Drebin
Dataset.

We also tested the models on a more diverse dataset,
DexShare, with more samples, collected in wider time win-
dows. We used AVCLASS tool to label malware samples of
both Drebin and DexShare [44]. The tool labels the malware
sets based on VirusTotal reports. Because we use VirusTotal
to double-check the collectedmalware set, reports were avail-
able to use AVCLASS for labeling. With the tool, Drebin has
180 malware families while DexShare has 309 families.

The performance of the models on DexShare is presented
in table 3. It is to be expected that all models perform weaker
on the dataset compared to Drebin, since the detaset is more
complicated to deal with. Malytics again outperforms all
models on DexShare. The results show that Malytics has the
highest hit rate (a.k.a recall = 1 − FNR) to detect malware
and the highest precision that corresponds to low FPR.

In addition to Malytics, most baselines also provide good
performance compared with Zhu et al. [15]. This trend
shows the tf -simhashing feature representation is rich and
many classifiers can leverage it and provide good perfor-
mance. It is true that Zhu et al. [15] did not exactly use
the DexShare dataset, but they collected their dataset from
Virusshare.com as we did. Virusshare.com has two packages
for Android malware, and DexShare is a combination of
both. So, the results can be compared. Additionally, Hui-
Juan’s [15] feature extraction is on the basis of static anal-
ysis. For example, tf -simhashing feeding to SVM yields
93.35% (±0.16%), 08.00% (±0.48%), 94.77% (±0.25%),
93.44% (±0.16%) for AUC, FNR, precision, and accuracy

49424 VOLUME 6, 2018

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

TABLE 3. The Mean and Std of Malytics and the baselines for DexShare
Dataset.

respectively while Zhu et al. [15] reported 86.00% (±2.0%),
13.82% (±2.3%), 84.13% (±3.5%) and 84.93% (±1.8%) for
AUC, FNR, precision, and accuracy respectively when they
used SVM as the classifier.

Table 4 provides more inside into Malytics. The
tf -simhashing feature extraction algorithm can be imple-
mented on APK as well as only Dex file of respective APK.
Yousefi-Azar et al. [28] is based on tf -simhashing of
the APK. Table 4 shows hashing the dex file yields much
better performance compared with hashing the whole APKs.

TABLE 4. The Mean and Std of Malytics for DexShare dataset on the APK,
Dex. Also, the results when the dataset is imbalanced and for zero-day
(novel families) detection.

A common test is to evaluate a model in an imbalanced
setting to mimic the real world settings. For the test, MBR is
typically 10%, 20%, 30%. To have enoughmalware to test the
scheme and also to provide the imbalanced settings, we chose
MBR = 0.2. That is, we randomly selected 5060 malware
from the DexShare malware set while the total benign set was
used. Table 4 shows that Malytics performs more precisely
with imbalanced data. We expect this results because the
model saw more benign sample in the training. FNR does not
show a statistically significant change. It demonstrates that
Malytics is robust to the imbalanced situations.

One of the most important tests of a malware detection sys-
tem is to evaluate the system against zero-daymalware. There
are different evaluation methods to do a zero-day experiment.
Mariconti et al. [3] use a time frame test. That is, they trained
the model with samples of a given date, the model was tested
on samples of one year and also two years later than the given
date. In short, training on past sample and testing on new
samples in time.

Although we could use the timestamp of the samples of
DexShare, because the timestamp of a file is easily forged,
both by malware and benign writers, we think timestamp is
not a good index to partition our dataset into past and future
samples. We also think that AVCLASS is not a very accurate
technique to partition our dataset.

However, because we do not have any other concrete
option, we again rely on AVCLASS. As mentioned earlier in
this section, AVCLASS labels DexShare with 309 different
families. From 309 families, about 20 families havemore than
about 150 samples in each family. We chose these 20 families
for our novelty detection test. To do this test, we selected
training and test sets andwe do not use cross-validation. From
malware set, out of 20 families, 4 families were chosen to
be the test set and the rest of malware set were chosen to be
training set. We did this test 5 time to test on all 20 families.
To be clear, when 4 families were chosen to be the test set,
the other 16 families plus the rest of the malware set are
the training set. The benign set was randomly chosen from
DexShare to keep the training and test sets balanced.

Table 4 shows the average FNR, precision, f1-score, accu-
racy and FPR of Malytics with our proposed feature repre-
sentation. The main important index of the test is FNR as a
measure that shows howwell Malytics detected new families.
Mariconti et al. [3] also provided a novelty detection setting
based on detecting future malware. Our test is different with
their test. But if we assume that our family exclusion test
is at least as difficult as predicting future malware (e.g. test
on one year in future), we can see that Malytics is quite
competitive with the state-of-the-art in novelty detection. For
further explanation see section IV-F1.

For real word application, we can increase the size of
hash vector to improve the performance while Malytics
still requires a light computation. Motivated from [45],
we replaced the tf -simashing weights (i.e −1 and 1 values)
with a sparse matrix including −1, 1 and 0 [46]. We set the
sparsity to 1% and the size of tf -simashing vector is 3000.
Thus, only 30 elements of the hashing matrix are non-zero
but after summing over the entire vocabulary, the hash size
is 3000. Then, this vector is used as the input to the kernel
layer and then the output layer. This sparse setting helps
reduce the complexity of the tf -simashing computation while
increasing the hidden feature representation size. Table 5
presents the results of the experiment on both datasets. Malyt-
ics False positive improves slightly while hit-rate is very
close to dense setting (see table 2). The size of hashing
provides richer hidden representation for DexShare samples.
In addition to being more precise, Malytics has better hit-rate
(see table 3). The imbalanced setting shows Malytics perfor-
mance for real word application.We set hash size 3000 which
has slight impact on the LEM computation.

We conducted the last experiment to show Malytics can
perform in different settings and its improvement capability.
To have a comparable settings, other experiments of the
paper are all based on dense matrix setting with the hash
size 1024.

VOLUME 6, 2018 49425

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

TABLE 5. The Mean and Std of Malytics with sparse tf -simashing for both
Drebin and DexShare Datasets.

D. WINDOWS MALWARE DETECTION
This section presents the capability of Malytics to detect
Microsoft Windows malware. We show that the scheme is not
restricted by any specific feature of the operating system.

Table 6 shows that Malytics and Wuechner et al. [14]
outperform other models when it comes to distinguishing
original Windows PE clean files from PE malware. Malytics
is the most capable method in detecting malware with low-
est the FPR compared with all methods, in particular, with
our machine learning baselines. It has better FNR compared
with Wuechner et al. [14] and both schemes have the same
precision while Wuechner et al. [14] used an imbalanced
dataset. In an imbalanced setting, trade-off indices are more
reliable for concluding an analysis. F-score of the proposed
model in Wuechner et al. [14] is more than Malytics but
the difference is not statistically significant. AUC indices
show that Malytics outperforms other models. The FPR as
an important factor for Windows platform malware analyzer
is well less than 1% that is critical for Windows.

TABLE 6. The Mean and Std of Malytics and the baselines for WinPE and
Mal2016 of the PEShare Dataset.

Table 7 shows that the proposed solution outperforms
other models over all evaluation indices. It is to be expected
that all models performance is reduced compared with
table 6, mainly because the benign set of this experiment
is a mix of Windows PEs and third-party PEs while the
malware set is from the same source and only has more
samples.

An interesting result of trying to distinguish Mal2016 mal-
ware set from WinAppPE benign set is in the comparison of
DNNwith Raff et al. [16]. Raff et al. [16] used deep CNN for
detection. The results show deep learning models also can be
competitive for malware application domain. Although the

TABLE 7. The Mean and Std of Malytics and the baselines for WinAppPE
and Mal2016 of the PEShare Dataset.

input of CNN is an image representation of the PE files and
DNN’s input is tf -simhashing, we think deep learningmodels
can also be competitive if the feature representation has more
theoretical justification in the deep learning models’ training
algorithm.

Figure 4 shows the detection rate of Malytics on Mal2017.
The training sets are Mal2016 and WinAppPE while
Mal2017 is the test set. To have a similar setting to the
real world, the training benign set was WinAppPE rather
than WinPE. This experiment is to evaluate how well the
scheme can detect zero-day attacks. We assume that a one
year interval between the malware set in training and the
malware set for testing is an acceptable chronological gap.

FIGURE 4. The detection rate of Malytics and the 19 malware vendor for
Mal2017, trained on Mal2016 and WinAppPE.

Malytics could successfully detect 95.5% of the
Mal2017 as zero-day samples. It is only one percent less
than ESET-NOD32 detection rate. AVG with 91.5% is the
third in the ranking. Our ground truth for the detection rate of
AV vendors is VirusTotal real-time update report. VirusTotal
always uses the latest update of AVs; thus, the detection
rates it reports are considerably better than they would be
if the virus detector data was one year old. After one year,
Malytics performs competitively with the best AV vendor
software fully up to date. In another experiment, we trained
Malytics using Mal2016 and WinPE sets and tested on
Mal2017. As it is to be expected, the detection rate increases
to 98.1%.

49426 VOLUME 6, 2018

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

FIGURE 5. t-SNE of WinPE versus Mal2016. WE clustered each class with
1200 centroids for each class.

E. TF-SIMHASHING VISUALIZATION
To have more insight into the proposed latent representation,
that is, tf -simhashing layer and RBF kernel, a visualization
experiment was conducted on the feature space. We imple-
mented the experiment on Windows malware dataset,
WinPE and Mal2017 and used t-SNE [47] to visualize the
space.

To this end, tf -simhashing values have been clustered
using k-means clustering technique and then the centroids of
the clusters fed to t-SNE. We think because in the k-means
optimization algorithm the Euclidean distance is used as a
metric, it can provide a similar ground with RBF kernel that
is also based on Euclidean distance. But RBF kernel provides
an infinite feature space that we cannot visualize easily. Also,
the intention of the experiment is to show that similar vectors
of tf -simhashing are quantified similarly and tf -simhashing
is meaningful.

More precisely, tf -simhashing of the dataset (here
17824= 2×8912) benign andmalware samples) are clustered
into 2400 clusters (1200 centroids per class). So, the input
of the k-means function is a matrix of size 17824×1024 and
the output is a matrix of size 2400×1024. Effectively, we use
k-means as a vector quantisation algorithm, yielding on aver-
age, one codebook per about 7.4 vectors (178242400 = 7.43).
Our experiment shows the 2400-vector representation pro-
vides a good visual picture to understand the dataset. The
matrix of 2400×1200 is fed to t-SNE to be mapped into two-
dimensional space (2400×2) for visualization.

We obtain codebooks from malware and benign sets sep-
arately. That is, 1200 centroid per class. Figure 5 shows
clustering the representation provides a meaningful result and
the codebooks are basically distributed similarly. This means
the vectors of tf -simhashing is meaningful and can settle in
closed distance when we optimize k-mean with its Euclidean
distance measure. We do not show representation of feeding
tf -simhashing to t-SNE directly because it generates a mean-
ingless distribution.

F. CASE STUDY AND FURTHER ANALYSIS OF THE SCHEME
1) ANDROID FAMILY DETECTION CASE
The scope of this paper is not a particular malware family
but covers the range of malware disseminating all over the
network. Our datasets were collected with this purpose. How-
ever, looking into some specific cases may provide better
inside into the model.We used the DexShare dataset for detail
study.

As described in section 4, we tested the model on 20 new
families. In brief, we chose groups of 4 families for testing
and the remaining 16 families plus all the other malware and
benign sets for training. This routine was repeated 5 times.

Figure 7 presents the number of total samples in each
family and false negative detection. We tested Malytics in
the balanced and imbalanced group of families. Also, one of
the groups consists of malware families (Fakeinst,4 Adwo,5

SMSreg,6 Lotoor)7 with 4 different functions/intention. The
detection rate is similar for most families and the diversity of
malware function did not prevent detection.

The Adwo family is the least challenging for detection
by Malytics. This is to be expected since although Adwo
is not in the training set, other adware variants are used
in training. Fakeinst and Opfake were reported as similar
families and Fakeinst had been continued to be detected while
Opfake not.8 Malytics could detect Opfake better than Fake-
inst. It might because of the complexity of the Fakeint that
our model could not detect it well, as it was also continued
to disseminate over the net in the real world. But, it might
because of the number of sample in training when another
family is presented only in testing set.

The worst detection rate belongs to Plankton9

(80
344 = 23.3%). This family sits silently, collecting infor-
mation and sending it to a remote location. Its variants have
a wide range of actions.10 Calleja et al. [48] has particular
analysed on Plankton. They showed that this family is very
similar to the Nyleak and BaseBridge families. These two
similar families to Plankton have only 28 and 2 samples
in DexShare. We think that because, in training, there
are few similar malware samples to the Plankton family,
Malytics’ detection rate is reduced for this family; however,
the 76.7% hit rate is still very good for this family in this
setting.

Figure 6 presents ROC and respective AUC of the novelty
detection. With 2-3% FPR, the hit rate is more than 75% for
all four families that seems promising.

4https://www.f-secure.com/v-descs/trojan_android_fakeinst.shtml
5https://www.sophos.com/en-us/threat-center/threat-analyses/adware-

and-puas/Android%20Adwo/detailed-analysis.aspx
6https://home.mcafee.com/virusinfo/virusprofile.aspx?key=8503749
7https://www.symantec.com/security_response/writeup.jsp?docid=2012-

091922-4449-99
8https://threatpost.com/opfake-fakeinst-android-malware-variants-

continue-resist-detection-080712/76887/
9https://www.f-secure.com/v-descs/trojan_android_plankton.shtml
10https://www.avira.com/en/support-threats-

summary/tid/8996/threat/ANDROID.Plankton.C.Gen

VOLUME 6, 2018 49427

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

FIGURE 6. The ROC curve for novelty detection on DexShare. Each curve
shows the ROC curve and AUC when groups 4 families have been fetched
out from DexShare. First family is the first left 4 family in the figure 7 and
so on.

FIGURE 7. Total number of samples and False negative detection based
on 4 families fetching out on DexShare. The black bar separates each
group of 4 families.

2) RANDOM KERNEL
Malytics is based on the batch learning algorithm. That
is, the entire training set is fed to Malytics for training in
one batch. This process might become computationally very
expensive and demand a large amount ofmemory for big data.

As mentioned in III, Malytics has the capability of being
trained on a random subset of training data while still keep-
ing the generalization performance. This random selection
has a negative impact on the performance of Malytics.
Figure 8 presents the f-score for both platforms when the
kernel matrix size varies from 10% to 100% of the original
kernel matrix. Similar to all previous evaluations, Android
platform is more impacted thanWindows. It is to be expected
because Windows PEs are all from Microsoft while Android
apps are developed by many different developers and there-
fore exhibits a greater variety.

Table 8 shows the run-time performance of Malytics
with random kernel sampling from 10% to 100% of the
kernel matrix. The training and testing time increases but

FIGURE 8. The f1-score of Malytics trained on a random subsets of the
datasets. For Android, Drebin dataset was used and for Windows, WinPE
versus Mal2016.

not sharply. In contrast, the f-score value increases sharply
initially (see figure 8). This shows that choosing more than
a threshold number of samples may provide the desired per-
formance with optimum memory and computation require-
ments. This demonstrates Malytics’s scalability.

3) RUN-TIME PERFORMANCE
Because Malytics is based on static analysis, we compare
it with MAMADROID [3]. The run-time performance of
Malytics is not dependent on the operating system while
MAMADROID is proposed to detect Android malware.

The average execution time of MAMADROID for benign
samples in family and package modes are 27.3s and 33.83s
per sample respectively. MAMADROID says for 10000 apps
that are being submitted to Google Play per day, the model
requires less than one and a half hours to complete execution
with 64 cores.

In our prototype of Malytics, on average, tf -simhashing
algorithm speed is 560KB per second. This includes extract-
ing a dex file out of the APK.Also, for the Drebin dataset with
11110 samples (on average 3+0.36

2 = 1.68MB), the training
and testing time are 3.6s and 0.6s respectively, for each fold
(from table 8). That is, 3.6s

11110×0.8 = 0.4ms per sample to train
the model and 0.6s

11110×0.2 = 0.27ms per sample to test an App.
Based on the statistics of Drebin malware set and random

benign set collected from Google Play, Malytics requires,
approximately, 1.68MB

0.560MB/Sec = 3 second for each sample to
hash and 0.27ms to detect. For 10000 apps, 30003 seconds
to complete execution with one core and 470 seconds with
64 cores. In short, Malytics needs less than 8 minutes to
complete execution for all the Google Play new samples
in a day. The speed of Malytics provides the possibility of
frequently training with new samples.

V. LIMITATIONS AND FUTURE WORK
The main limitation of Malytics is the amount of the required
memory. More precisely, the advantage of Malytics batch
learning technique is speed and mostly convexity; neverthe-
less, the model needs to store all input samples as a batch
in memory. The learning process also requires a consider-
able amount of memory to obtain the output layer weights,

49428 VOLUME 6, 2018

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

TABLE 8. The run-time performance of Malytics with randomly selected kernel matrix L ranging from 10% to 100% of the kernel matrix N . The time is for
each fold (i.e. 8888 training and 2222 test samples) of the 5-fold cross-validation.

of course, but only for big data. Also, for the test phase,
the kernel layer needs to keep all the training samples. This
intensifies the memory issue and also makes the test process
directly dependent on the training set.

Malytics hashes the whole binary file into one vector. This
may not be effective for binary files that are partly infected
with malicious codes. To address this issue, hashing windows
of a binary file may help and is a potential direction of future
study.

Malytics relies on the static analysis of binary files and it
does not have any knowledge of the behavior of the binary.
Despite the computational expenses of dynamic analysis,
it can cover deficiencies of the static features of malware in
particular for obfuscated malware and more importantly for
advanced persistent attacks.
tf -simhashing visualization experiment suggests that k-

means might be used for feature learning the hashing dic-
tionary rather than random generation from a distribution.
Also, deep learning models have no theoretic underlying with
a random initialization layer. This may contribute to deep
learning models as well.

The dex file is the not the only source of information in
Android apps. The manifest file also contains critical infor-
mation. For Windows, PEs structure can be informative if
we could embed this information into the hashing algorithm.
Also, developing a feasible algorithm for larger n-grams
may improve the performance. Finally, an ensemble of fast
learning models is a potential direction of study for future
work.

VI. RELATED WORK
In addition to malware as a general concept, there are novel
systems to deal with particular types of malware [49], [50].
In both cases, learning-based systems show very promising
results [51]–[54].

For Android malware detection, Mariconti et al. [3] pro-
posed a static-feature extraction model that could provide
a very good performance. A novelty of the work was the
proposed randomvariable based onMarkov chain. The output
was fed to a feature extraction phase in which Principal
Component Analysis (PCA) [55] was used. At the end, each
sample file yeilds a vector of size 100,000 to be classified
as either benign or malware. Applying PCA to such fea-
ture space requires a huge amount of memory to obtain the
co-variance matrix. Zhu et al. [15] recently showed that
rotational forest, as a classifier, has the capability of being

applying for Android malware detection. They also used
static features.

Wuechner et al. [14] used a compression-based graph
mining technique to detect Windows malware. They widely
evaluated the effect of classifiers on their scheme and
reported that all the applied classifiers provide similar results.
Carlin et al. [13] used the run-time opcodes of every sam-
ple with significantly different approach compared with
Wuechner et al. [14] and still presented competitive results.
Both papers used dynamic analysis of Windows PEs.
Dynamic analysis of malware is more computationally
expensive than static analysis. Having said that, it is well-
known to be used in many anti-malware production due to its
reliable performance and capability to cope with obfuscated
files.

Dynamic analysis of a malware also has the vulnerability
of crafting an adversary. Very recently, Stokes et al. [10]
proposed a detection system using dynamic analysis and they
showed it is still vulnerability to crafted adversarial attacks.

The tf -simhashing representation is a promising feature
representation [28]. Simhashing has also been used for
malware detection and detecting similarity between data/
files [56], [57]. In both [28] and [56], simhashing was used to
represent each file as an image which was then fed to a naive
classifier or a CNN. Malware detection on the basis of visu-
alization is not restricted only to simhashing. Raff et al. [16]
proposed a new feature representation to map any binary file
into an image and used CNN as the classifier.

ELM shows very promising results for malware activity
detection and identification of malicious packed executables.
Kozik [37] presented a distributed ELM using NetFlow data
structure alongside the Apache Spark11 framework that pro-
vided good performance. Different types of ELM have been
applied for malicious packed executable identification [58].

VII. CONCLUSION
In this paper, we proposed a learning-based malware detec-
tion model called ‘‘Malytics’’. This integrated model com-
prises two layers of latent feature representation and a layer
for prediction. The first layer is a hashing algorithm (tf -
simhashing) and we showed that it has a close relation to the
first layer of the Extreme Learning Machine (ELM). ELM
is the output layer of the proposed scheme. We showed that
having a layer to measure the similarity of tf -simhashing

11https://spark.apache.org/

VOLUME 6, 2018 49429

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

before output layer strongly improves the performance of the
scheme. We used the RBF kernel for the similarity measure.

We conducted comprehensive evaluations on Drebin,
DexShare, PEShare datasets andMalytics outperforms differ-
ent baselines including non-ensemble state-of-the-art mod-
els. Drebin and DexShare are Android apps and PEShare is
Windnows PEs. The dex file of Android apps is informative
enough to compete with related work. We tested how well
Malytics could perform on imbalanced datasets, for novel
family detection. The Novelty detection was organized in two
different ways: particular family detection and chronological
novelty detection. We also evaluated the speed and scalability
of Malytics. It shows promising results for large-scale data.

APPENDIX
OPTIMIZATION
The dual problem can be optimized as follows:

∂LDualELM
∂β j

= 0→ βj =

N∑
i=1

αi,jh(xi)T → β = HTα (13)

∂LDualELM
∂ξj

= 0→ αi = Cξi, i = 1, . . . ,N (14)

∂LDualELM
∂αj

= 0→ h(xi)β − tTi + ξ
T
i = 0, i = 1, . . . ,N

(15)

Where αi = [αi,1, . . . , αi,m]T and αi = [α1, . . . ,αN]T .
With a bit of calculus, for β:

β = HT (I
C
+HHT)−1T (16)

REFERENCES
[1] AV Test: Facts and Figures—Security Report 2016/2017.

Accessed: Aug. 17, 2018. [Online]. Available:
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_
Security_Report_2016-2017.pdf

[2] M. Y. Wong and D. Lie, ‘‘IntelliDroid: A targeted input generator for the
dynamic analysis of Android malware,’’ in Proc. NDSS, vol. 16, 2016,
pp. 21–24.

[3] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, ‘‘MaMaDroid: Detecting Android malware by building
Markov chains of behavioral models,’’ in ISOC Netw. Distrib. Syst. Secur.
Symp. (NDSS), San Diego, CA, USA, 2017, pp. 1–15.

[4] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang, ‘‘Appintent:
Analyzing sensitive data transmission in Android for privacy leakage
detection,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2013,
pp. 1043–1054.

[5] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, ‘‘Learning
and classification of malware behavior,’’ in Proc. Int. Conf. Detection
Intrusions Malware, Vulnerability Assessment. Berlin, Germany: Springer,
2008, pp. 108–125.

[6] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
‘‘Scalable, behavior-based malware clustering,’’ in Proc. NDSS, vol. 9,
2009, pp. 8–11.

[7] S. Sabour, N. Frosst, and G. E. Hinton, ‘‘Dynamic routing between cap-
sules,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 3859–3869.

[8] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[9] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards,
Artificial Intelligence: A Modern Approach, vol. 2. Upper Saddle River,
NJ, USA: Prentice-Hall, 2003.

[10] J. W. Stokes, D. Wang, M. Marinescu, M. Marino, and B. Bussone.
(Dec. 2017). ‘‘Attack and defense of dynamic analysis-based, adversarial
neural malware classification models.’’ [Online]. Available: https://arxiv.
org/abs/1712.05919

[11] B. Schölkopf and A. J. Smola, Learning with Kernels—Support Vec-
tor Machines, Regularization, Optimization & Beyond. Cambridge, MA,
USA: MIT Press, 2002.

[12] Y. Bengio, O. Delalleau, and N. L. Roux, ‘‘The curse of highly variable
functions for local kernel machines,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2006, pp. 107–114.

[13] D. Carlin, P. O’Kane, and S. Sezer, ‘‘Dynamic analysis of malware using
run-time opcodes,’’ in Data Analytics and Decision Support for Cyberse-
curity. Cham, Switzerland: Springer, 2017, pp. 99–125.

[14] T. Wuechner, A. Cislak, M. Ochoa, and A. Pretschner, ‘‘Leveraging
compression-based graph mining for behavior-based malware detec-
tion,’’ IEEE Trans. Dependable Secure Comput., to be published, doi:
10.1109/TDSC.2017.2675881.

[15] H.-J. Zhu, Z.-H. You, Z.-X. Zhu, W.-L. Shi, X. Chen, and L. Cheng,
‘‘DroidDet: Effective and robust detection of Android malware using static
analysis along with rotation forest model,’’ Neurocomputing, vol. 272,
pp. 638–646, Jan. 2018.

[16] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas.
(Oct. 2017). ‘‘Malware detection by eating a whole exe.’’ [Online]. Avail-
able: https://arxiv.org/abs/1710.09435

[17] E. Raff et al., ‘‘An investigation of byte n-Gram features for malware
classification,’’ J. Comput. Virol. Hacking Techn., vol. 14, no. 1, pp. 1–20,
2018.

[18] J. Jang, D. Brumley, and S. Venkataraman, ‘‘Bitshred: Feature hashing
malware for scalable triage and semantic analysis,’’ in Proc. 18th ACM
Conf. Comput. Commun. Secur., 2011, pp. 309–320.

[19] S. Dharmapurikar and J. W. Lockwood, ‘‘Fast and scalable pattern match-
ing for network intrusion detection systems,’’ IEEE J. Sel. Areas Commun.,
vol. 24, no. 10, pp. 1781–1792, Oct. 2006.

[20] E. A. Manzoor, S. Momeni, V. N. Venkatakrishnan, and L. Akoglu.
(Feb. 2016). ‘‘Fast memory-efficient anomaly detection in streaming het-
erogeneous graphs.’’ [Online]. Available: https://arxiv.org/abs/1602.04844

[21] M. S. Charikar, ‘‘Similarity estimation techniques from rounding algo-
rithms,’’ in Proc. 34th Annu. ACM Symp. Theory Comput., 2002,
pp. 380–388.

[22] G. S. Manku, A. Jain, and A. Das Sarma, ‘‘Detecting near-duplicates for
Web crawling,’’ in Proc. ACM 16th Int. Conf. World Wide Web, 2007,
pp. 141–150.

[23] A.Gionis, P. Indyk, andR.Motwani, ‘‘Similarity search in high dimensions
via hashing,’’ VLDB, vol. 99, no. 6, pp. 518–529, 1999.

[24] A. Andoni and P. Indyk, ‘‘Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,’’ in Proc. 47th Annu. IEEE
Symp. Found. Comput. Sci. (FOCS), Oct. 2006, pp. 459–468.

[25] M. S. Uddin, C. K. Roy, K. A. Schneider, and A. Hindle, ‘‘On the
effectiveness of simhash for detecting near-miss clones in large scale
software systems,’’ in Proc. IEEE 18th Work. Conf. Reverse Eng. (WCRE),
Oct. 2011, pp. 13–22.

[26] P.-T. Ho, H.-S. Kim, and S.-R. Kim, ‘‘Application of sim-hash algorithm
and big data analysis in spam email detection system,’’ in Proc. ACMConf.
Res. Adapt. Convergent Syst., 2014, pp. 242–246.

[27] K. Han, B. Kang, and E. G. Im, ‘‘Malware analysis using visualized image
matrices,’’ Sci. World J., vol. 2014, Jul. 2014, Art. no. 132713.

[28] M. Yousefi-Azar, L. Hamey, V. Varadharajan, and M. D. McDonnell,
‘‘Fast, automatic and scalable learning to detect Android malware,’’ in
Proc. Int. Conf. Neural Inf. Process. Cham, Switzerland: Springer, 2017,
pp. 848–857.

[29] Y. Bengio andY. LeCun, ‘‘Scaling learning algorithms towardsAI,’’ Large-
Scale Kernel Mach., vol. 34, no. 5, pp. 1–41, 2007.

[30] Y. Cho and L. K. Saul, ‘‘Kernel methods for deep learning,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2009, pp. 342–350.

[31] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, ‘‘Deep kernel
learning,’’ in Artificial Intelligence and Statistics. 2016, pp. 370–378.

[32] A. Vedaldi and A. Zisserman, ‘‘Efficient additive kernels via explicit
feature maps,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3,
pp. 480–492, Mar. 2012.

[33] G. Huang, G.-B. Huang, S. Song, and K. You, ‘‘Trends in extreme learning
machines: A review,’’ Neural Netw., vol. 61, pp. 32–48, Jan. 2015.

[34] G. H. Golub and C. F. Van Loan, Matrix Computations, vol. 3. Baltimore,
MD, USA: JHU Press, 2012.

49430 VOLUME 6, 2018

http://dx.doi.org/10.1109/TDSC.2017.2675881

M. Yousefi-Azar et al.: Malytics: Malware Detection Scheme

[35] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its
Applications. New York, NY, USA: Wiley, 1971.

[36] R. Penrose, ‘‘A generalized inverse for matrices,’’Math. Proc. Cambridge
Philos. Soc., vol. 51, no. 3, pp. 406–413, 1955.

[37] R. Kozik, ‘‘Distributing extreme learning machines with Apache Spark
for NetFlow-based malware activity detection,’’ Pattern Recognit. Lett.,
vol. 101, pp. 14–20, Jan. 2018.

[38] G.-B. Huang, ‘‘An insight into extreme learning machines: Random neu-
rons, random features and kernels,’’ Cognit. Comput., vol. 6, no. 3,
pp. 376–390, 2014.

[39] W.-Y. Deng, Y.-S. Ong, and Q.-H. Zheng, ‘‘A fast reduced kernel extreme
learning machine,’’ Neural Netw., vol. 76, pp. 29–38, Apr. 2016.

[40] G.-B. Huang, L. Chen, and C.-K. Siew, ‘‘Universal approximation
using incremental constructive feedforward networks with random hidden
nodes,’’ IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892, Jul. 2006.

[41] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, ‘‘AndroZoo: Collecting
millions of Android apps for the research community,’’ inProc. IEEE/ACM
13th Work. Conf. Mining Softw. Repositories (MSR), May 2016,
pp. 468–471.

[42] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, and
C. Siemens, ‘‘DREBIN: Effective and explainable detection of Android
malware in your pocket,’’ in Proc. NDSS, 2014, pp. 1–15.

[43] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
‘‘Adversarial perturbations against deep neural networks for malware
classification,’’ in Proc. Eur. Symp. Res. Comput. Secur., Oslo, Norway:
Springer, 2017, pp. 62–79.

[44] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, ‘‘AVclass: A tool for
massive malware labeling,’’ in Proc. Int. Symp. Res. Attacks, Intrusions,
Defenses. Cham, Switzerland: Springer, 2016, pp. 230–253.

[45] C. Chen, C.-M. Vong, C.-M. Wong, W. Wang, and P.-K. Wong, ‘‘Effi-
cient extreme learning machine via very sparse random projection,’’ Soft
Comput., vol. 22, no. 11, pp. 3563–3574, 2018.

[46] P. Li, T. J. Hastie, and K. W. Church, ‘‘Very sparse random projections,’’ in
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2006,
pp. 287–296.

[47] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[48] A. Calleja, A.Martín, H. D.Menéndez, J. Tapiador, and D. Clark, ‘‘Picking
on the family: Disrupting Android malware triage by forcing misclassifi-
cation,’’ Expert Syst. Appl., vol. 95, pp. 113–126, Apr. 2018.

[49] A. Kharaz, S. Arshad, C. Mulliner, W. K. Robertson, and E. Kirda,
‘‘UNVEIL: A large-scale, automated approach to detecting ransomware,’’
in Proc. USENIX Secur. Symp., 2016, pp. 757–772.

[50] I. Gasparis, Z. Qian, C. Song, and S. V. Krishnamurthy, ‘‘Detecting
Android root exploits by learning from root providers,’’ in Proc. 26th
USENIX Secur. Symp. (USENIX Secur.) Vancouver, BC, USA: USENIX
Association, 2017, pp. 1129–1144. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity17/technical-sessions/presentation/
gasparis

[51] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, ‘‘MADAM: Effec-
tive and efficient behavior-based Android malware detection and preven-
tion,’’ IEEE Trans. Dependable Secure Comput., vol. 15, no. 1, pp. 83–97,
Jan./Feb. 2016.

[52] D. Ucci, L. Aniello, and R. Baldoni. (Oct. 2017). ‘‘Survey on the usage of
machine learning techniques for malware analysis.’’ [Online]. Available:
https://arxiv.org/abs/1710.08189

[53] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, ‘‘A survey on automated
dynamic malware-analysis techniques and tools,’’ ACM Comput. Surv.,
vol. 44, no. 2, 2012, Art. no. 6.

[54] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti, ‘‘Detecting
Android malware leveraging text semantics of network flows,’’ IEEE
Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1096–1109, May 2018.

[55] S. Wold, K. Esbensen, and P. Geladi, ‘‘Principal component analysis,’’
Chemometrics Intell. Lab. Syst., vol. 2, nos. 1–3, pp. 37–52, 1987.

[56] K. Han, J. H. Lim, and E. G. Im, ‘‘Malware analysis method using visual-
ization of binary files,’’ in Proc. ACM Res. Adapt. Convergent Syst., 2013,
pp. 317–321.

[57] C. Sadowski and G. Levin, ‘‘Simhash: Hash-based similarity detection,’’
Google, Tech. Rep., 2007.

[58] P. Xie, X. Liu, J. Yin, and Y. Wang, ‘‘Absent extreme learning machine
algorithm with application to packed executable identification,’’ Neural
Comput. Appl., vol. 27, no. 1, pp. 93–100, 2016.

MAHMOOD YOUSEFI-AZAR is currently
pursuing the Ph.D. degree with the Computing
Department, Macquarie University, Sydney, NSW,
Australia, and is also a Student Researcher with
Data61, Commonwealth Scientific and Indus-
trial Research Organization. His research aims
to develop novel learning-based algorithms for
cyber security applications. His Ph.D. project is
machine learning and malware analysis. He is a
Reviewer for journals, including ACM TOIT, IET
Signal/Image, and ESWA.

LEONARD G. C. (LEN) HAMEY is currently
a Senior Lecturer and the Deputy Head of the
Department with the Department of Computing,
Macquarie University, Sydney, NSW, Australia.
He works in both image analysis and machine
learning, with applications ranging from industrial
vision systems through to medical image analy-
sis and malware detection. He has authored over
50 refereed papers and holds two patents.

VIJAY VARADHARAJAN is currently a Global Innovation Chair Profes-
sor with The University of Newcastle, Australia, and the Director of the
Advanced Cyber Security Research Centre. He has authored over 400 papers
in international journals and conferences and 10 books in information tech-
nology, security, networks and distributed systems. He holds three patents.
He has been/is on the Editorial Board of several journals, including ACM
TISSEC, IEEE TDSC, IEEE TIFS, and IEEE TCC.

SHIPING CHEN is currently a Principal Research
Scientist at CSIRO, Data61. He also holds an
Adjunct Associate Professor with The University
of Sydney and the University of New South Wales
through teaching and supervising Ph.D. students.
He has been involving on distributed systems for
over 20 years with a focus on performance, secu-
rity, and trust. He has authored over 150 research
papers in these areas. He is also actively involved
in software engineering and service/cloud com-

puting research communities through publications, journal editorships, and
conference TPC services, including WWW, EDOC, ICSOC, and IEEE
ICWS/SCC/CLOUD. His current research interests include data services,
secure data sharing, and services for collaboration.

VOLUME 6, 2018 49431

	INTRODUCTION
	PROBLEM
	SOLUTION
	CONTRIBUTION

	THE FEATURE EXTRACTION
	THE PROPOSED SCHEME
	EVALUATION
	EXPERIMENTAL SETUP
	RESULTS AND DISCUSSION
	ANDROID MALWARE DETECTION
	WINDOWS MALWARE DETECTION
	TF-SIMHASHING VISUALIZATION
	CASE STUDY AND FURTHER ANALYSIS OF THE SCHEME
	ANDROID FAMILY DETECTION CASE
	RANDOM KERNEL
	RUN-TIME PERFORMANCE

	LIMITATIONS AND FUTURE WORK
	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	MAHMOOD YOUSEFI-AZAR
	LEONARD G. C. (LEN) HAMEY
	VIJAY VARADHARAJAN
	SHIPING CHEN

