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ABSTRACT In this paper, we show the possibility of using the smartphone built-in cellular radio modem to
track sudden changes in the environment around it, thus turning the cellphone into a radio—frequency (RF)
virtual sensor. In particular, we demonstrate how to isolate anomalous RF patterns by applying time series
modeling and analysis of downlink multi-cell radio signals. These RF anomalies may indicate a situation
change, namely, a body or object(s), movement in the surrounding of the smart-phone. Unlike Wi-Fi and
Bluetooth devices, that can be turned on and off according to the user demands, cellular radios are never
really disconnected. Even in idle mode, they carry out continuous and autonomous measurements of the
radio channel conditions, namely, the cellular signal quality (CSQ). This is performed in agreement with
standardized cell reselection procedures. Body movements or scene changes in general in the surroundings
of a cellular device are responsible for small CSQ fluctuations that can be isolated from normal network
operations and classified accordingly. The validation of this unconventional RF sensing method is based
on extensive measurement campaigns covering a period of one month, using up to four commercial off-the-
shelf smartphones. As a practical application case study, we developed a real-time demonstrator that is able to
detect body proximity events close to the device and discriminate other body-induced environmental changes
in the surrounding of the smartphone. Usage of data analytics tools for passive sensing from cellular signals
is a novel topic that shows great potential as paving the way to new applications and research opportunities.

INDEX TERMS Motion detection, wireless wide area networking, cellular signal quality, anomaly detection,

bayesian classification, segmentation, data analytics, mobile phone-sensing, machine learning.

I. INTRODUCTION

Cellular radio devices represent an ideal platform for study-
ing behaviour and interactions of people in real-life con-
texts. In fact, they are ubiquitous and unobtrusive, as users
are not generally aware of their presence. Mobile devices
are equipped with multiple wireless wide area networking
(WWAN) air technologies i.e., ranging from the GERAN
radio access for 2G, UMTS terrestrial radio access (UTRA)
for 3G, evolved UMTS terrestrial radio access (E-UTRA) for
4G (LTE, LTE-A and LTE-A Pro), up to the New Radio
(NR) air interface for the forthcoming 5G networks. Unlike
WiFi, Bluetooth and other local networking technologies,
whose coverage over unlicensed bands is not always guar-
anteed and subject to interference, cellular networks are
truly ubiquitous and rapidly evolving to support new func-
tionalities, including device-to-device communication [1] as

well as integration with Internet of Things (IoT) [2] and
WLAN [3].

In this paper, we show how to turn any cellular
(i.e., WWAN-enabled) radio modem into a passive virtual
detector of sudden changes in the environment around it.
The use of cellular radios, besides enabling wide area net-
working and communication functions, is proposed here
as a new paradigm for distributed stand-alone environmen-
tal sensing/detection systems that can be seamlessly inte-
grated within existing phone-sensing platforms [4], [5], while
enabling always-active operation. Sensing is herein based on
the real-time analysis of the cellular signal quality (CSQ)
indicators that measure the radio link propagation. Therefore,
front-end processing tasks are independent of the specific
device, sensor hardware and operating system. In addition,
as previously mentioned, the availability of standardized
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multiple Radio Access Technologies (RATs) makes this new
sensing capability independent of WWAN operators and
available worldwide.

In the idle mode state, namely turned on, camped on a cell
but not engaged in any sessions, every cellular device carries
out continuous measurements of the radio channel condi-
tions, looking for any chance to reselect from the camped
cell to a new better one from the neighboring set. This is
done to comply with the mobility procedures of WWAN
standards and without any user intervention. The presence
and/or the movement of objects in the surroundings of a fixed
WWAN:-enabled device result in a small change of the radio
propagation conditions between the transmitter(s) i.e., the cell
site(s) or tower(s), and the receiver i.e., the user equipment
(UE), that measures the CSQ. Alterations in the environment
surrounding the UE can thus be recognized in real-time by
properly analyzing CSQ time series, and changes therein.

The purpose of the paper is to make an unique attempt
towards the proposal and validation of data processing algo-
rithms that enable the use of cellular radio signals for human-
scale environmental sensing purposes. The research activities
shown in this article are based upon the emerging paradigms
of device-free radio sensing [6], [7] and radio vision [8].
However, while device-free human sensing [9], through-wall
imaging [10] and localization [11] methods rely on a dis-
tributed wireless local area network (WLAN) of peer-to-peer
radio nodes, the method proposed here depends on a cel-
lular wide area network of UE terminals that communicate
only exploiting a centralized set of base-stations with no
local communication involved. The adoption of data analytics
methods for cellular signals is a novel topic and it is intro-
duced in Sect. II. Compared to other radio sources, processing
of cellular data captured by the UE is more challenging.
In fact, CSQ is subject to changing dynamics due to varying
WWAN configurations and reselection from the camped cell
to new ones. Stochastic modeling of such changes is consid-
ered in Sect. III while CSQ data analytics for detection and
classification of changes around the smartphone are detailed
in Sect. IV. The proposed tools are first validated in Sect. V
based on extensive measurement campaigns using commer-
cial off-the-shelf (COTS) smartphones, by comparing differ-
ent methods for anomaly classification. Finally, in Sect. VI,
we developed and deployed a real-time demonstrator plat-
form where cellular signals are exploited for recognition
and classification of environmental alterations, namely to
discriminate body motions in close proximity to the device
from other scene alterations i.e., to detect if the smartphone
is being picked up, manipulated or tampered with.

Il. APPLYING DATA PROCESSING TO CELL SIGNALS

The human sensing by WLAN has been recently discussed
from a communication perspective (see Guo et al. [12]
and [13] in the Special Section: “Behavior Recognition Based
on Wi-Fi CSI”). Unlike WLAN-based sensing methods, cel-
lular signals captured by the UEs originate from cellular
towers at distance in the order of several hundred meters
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FIGURE 1. Example of changing CSQ dynamics due to network-driven and
body occupancy events. The downlink CSQ is measured by one cell-phone
for 3 UTRA high speed packet access (HSPA) enabled cells (k = 1, 2, 3).
Data extraction is performed by using the AT + ECSQ command.

for urban areas, and up to some kilometers for rural ones.
Moreover, these signals are subject to changing power levels
and dynamics due to varying network configurations. In some
cases, these perturbations may trigger the reselection from the
camped cell to a new one (cell reselection). Typical WWANs
are also characterized by a multiplicity of cellular towers each
serving multiple cells to guarantee wide area coverage. Each
cell is uniquely identified by a cell ID (CID) that indicates
one or more antennas, serving frequency or RAT of the same
cell tower. Cell reselection for the UE in idle mode can be
triggered by many factors [14] as a consequence of time-
varying changes of the network loading, as well as network
configurations, cell power control or status, signal failures
due to changes of the radio propagation scenario, UE mobil-
ity, in-hand manipulation or interference, just to cite a few.
According to the generic scenario of Fig. 1, the UEs are
assumed to be in the idle mode state and to occupy fixed
positions in the area of interest, namely the detection area,
aroom or an open environment. According to its RAT proto-
col, when camped on a cell, the UE must regularly check if
there is a better cell according to the cell reselection criterion,
and, if found, make a reselection towards this new cell.
In order to support cell reselection, CSQ measurements must
be performed and collected continuously by the UE to capture
the characteristics of the radio channel of both currently
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serving cell and neighboring ones i.e., the members of the
neighbor cell list. In the example of Fig. 1 at bottom, the CSQ
data for 3 cells s; x correspond to the time-varying camped
(k = 1) and neighbor (k = 2,3) cells at time 7. These
values may be retrieved from the UE, without no intervention
of the network, by exploiting standard query commands
(i.e, AT commands) performed at the application layer
through custom, or third-party apps, as shown in
Sects. III-B and III-C. Sequential analytics for detection is
applied here to the vector s; = [s;,1, $;.2, 5¢,3] that contains
the joint CSQ measurements of the camped s; | and the neigh-
bor s;.2, 5,3 cells. As described in Sect. III, CSQ dynamics
are governed by cell-specific RF propagation parameters in
response to both intrinsic changes due to network operations
and extrinsic alterations due to environment changes in the
surroundings of the UE. Intrinsic changes are modelled here
by parameters 6o that can be easily learned during an
online training stage. A change in the environment inside the
detection area X surrounding the cell-phone adds peculiar
variations of the cellular signal levels that make such param-
eters to change into (unknown) 61 # 60 k.

Ill. CSQ AND MULTI-CELL RESELECTION MODELING

In this section, we develop a model for the dynamic evolution
of the multi-cell RF signals from the UE perspective. Cell res-
election is evaluated autonomously by each UE in idle mode
using CSQ measurements obtained from a cell ranking list K
and performed periodically by the terminal itself. Reselection
from the serving cell to the new one causes abrupt changes
of the observed CSQ dynamics. In most cases, reselection
is not attributable to body movements but it can be due to
many factors, mainly network-driven events. On the contrary,
environmental changes caused by body/object movements are
responsible of extra, but small, variations of the CSQ that,
in many cases, affect multiple cells in the ranking list (Fig. 1),
as being the result of the permanent, or temporary, alterations
made in the surroundings of the UE. These changes can be
both additive and non-additive. Moreover, depending on the
cell status, CSQ changes might also trigger new reselections
that add to those normally observed in idle mode.

A. MODELING OF DOWNLINK MULTI-CELL SIGNAL
QUALITY
CSQ measurements are influenced by long- and short-term
fading random effects that may be altered by environmental
changes, and are thus modelled in this section as stochastic
processes. Let s; x be the CSQ measure at discrete time ¢
captured by a UE from a cell identified by the CID k.
The vector stk = [St.ks -+ s,z,k]T contains sequential
CSQ measurements (i.e., time series) of the same cell %,
from time #; to f,. The sampling interval Af is chosen
according to some criteria detailed in Appendix A. Mea-
surements are expressed in terms of received signal strength
in dB-scale (dBm).

Considering a typical cellular environment, for the
idle UE, the CSQ fluctuations s;; are modeled by
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a p-th order auto-regressive (AR) model [15] with parameters
0o,k = [bk, o, re]. Itis

stk0%) = bF X Si—1:—pk + Ve + 7k (D

where the p x 1 vector by contains the cell-specific
AR parameters (here p = 3), the residual v; x models the ran-
dom log-normal shadow fading fluctuations of link strength,
while r; describes the static CSQ component measured by
the UE on cell k£ and due to cell site-specific path-loss. The
residual fluctuations v, ~ N [0, O'kz] are represented by a
zero-mean Gaussian white stochastic process with standard
deviation oy.

Considering now a multi-cell environment during a cell
reselection procedure, we assume that the CIDs k € X belong
to the neighbor cell ranking list XC. This list contains the cell
identifiers suitable to camp on at time ¢, obtained from the cell
reselection criteria. The fluctuations of CSQ s; ¢, for each cell
in /C, are described by the AR model (1) with cell-specific'
parameters 0o x € O where Og = {0o : k € K}.

A change in the environment, e.g. an object/person occu-
pying or moving in the area X in the surroundings of the UE,
alters the AR parameters in ®¢ that are thus replaced with
new, but unknown, terms 01 ¢ ®q. The effective geometrical
sensing area X is measured in terms of distance d between
the altered target (body/object) and the UE; its influence on
detection resolution is discussed in Sect. V based on experi-
mental data. Considering multiple cells k£ € K, the data set

Sty = {StA:tB,k, ke ]C} )

represents the collection of the anomalous patterns Sy, ., k
induced by a potential change in the interval [#4, tg] for all
the monitored cells k. Being #4 and #p the beginning and
the end of the change, respectively, each s;,.;, x consists of
N = (tp — t4) /At samples.

B. CELL RESELECTION AND CSQ MEASUREMENT

An in-depth understanding of reselection procedures, as sup-
ported by the 3GPP WWAN standards [16]-[19], is instru-
mental to the design of CSQ analytics for motion detection.
This motivates the review herein for self-consistency of the
paper. Cell reselection defines a procedure where the UE
regularly checks the best cell to camp on according to some
RAT-specific ranking criteria. As summarized in the example
of Fig. 2 for UTRA WWAN, the general goal of the procedure
is to let the UE always camp on a non-barred cell with good
enough quality even if it is not the optimal cell at that time.
The cell to camp on is top-ranked by the UE based on CSQ
stk for k € K collected on a periodic basis (At), as well as on
cell-specific priority ordering criteria that are controlled by
the network and regularly published on the Broadcast Con-
trol CHannel (BCCH) over the System Information Blocks
(SIB). In particular, SIBs contain information about the CID,

1We consider here a static cell ranking list (i.e., KC is fixed). The case where
new cells add to the list is addressed in the experimental studies of Sect. V.
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FIGURE 2. Top: simplified message flow diagram for cell reselection
according to the UTRA WWAN standard. Bottom: example of cell
reselection (*) from serving cell CID#1 to neighbor cell CID#2. CSQ of
CID#1 + hysteresis Q1 is compared with CSQ data of CID#2 - Q2
(dashed lines). Reselection decision is delayed by T,eselection-

barred state, reselection hysteresis/offsets parameters, res-
election interval Tieselection, and CSQ measurement types.
Logging of CSQ data may be also retrieved on demand by
the network. Once the need for reselection is identified, the
UE selects the new highest ranked cell to camp on it through
the reselection indication procedure required by the specific
WWAN standard.

It is worth noticing that typical WWAN configurations
are characterized by a multiplicity of cells for each serv-
ing cell-tower or radio network controller (RNC). Cells
might correspond to sectors and/or serving frequencies
(for GSM/EDGE), one or multiple antennas (for UTRA
or E-UTRA), and support multiple RATs. Therefore,
the change of cell could imply a change of the radio access
protocol. Further details are shown in Appendix A.

Focusing on CSQ measurements, it is important to note
that the type and the dynamic range of observable CSQs
depend on the specific RAT and network type. For instance,
for WCDMA (UTRA), the measure related to the signal
strength is known as CPICH RSCP (Common Pilot CHannel
Received Signal Code Power) [16] while the measure related
to the signal quality is known as CPICH E,/ly, namely the
received energy per chip E. of the CPICH divided by the
total received power density Iy in the frequency band [17].
Likewise, for E-UTRA (LTE), the measure related to the
signal strength is known as RSRP (Reference Signal Received
Power) [18] while an additional signal quality indicator is
available as RSRQ (Reference Signal Received Quality) [19].
Arbitrary Strength Unit (ASU) [20] can be typically used
as a measure of CSQ values, quantized in 1dB steps
for UTRA/E-UTRA and 2 dB steps for GERAN.
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TABLE 1. CSQ measurements, CSQ range and ASU range for GERAN, UTRA
and E-UTRA WWAN. Notes: (1): ASU values 99 or 255 map to CSQ not
known/not detectable; (2): ASU value 0 maps to CSQ < —140 dBm;

(3): ASU value —17 maps to €CSQ < —156 dBm.

[ WWAN | CSQ range (dBm) | CsSQ ‘ ASU range |
GERAN -113 = -51 2ASU — 113 0=31or99 M
UTRA -120 + -25 ASU—116 | -5 + 91 or 255 (1)
ASU —141 | 0 = 97 or 255 (1.2)
E-UTRA 156 + -44 :
ASU — 140 17+ -16)

Table 1 summarizes the CSQ range and the correspond-
ing ASU to CSQ conversion formulas for current WWAN
systems obtained by using the extended cell signal quality
AT query command +ECSQ. This command returns the CSQ
measurements s; | of the current camped cell in terms of
received signal strength values. It is also possible to use the
channel bit error rate (for GERAN), the CPICH E_/Iy (for
UTRA) and RSRQ (for E-UTRA), even if these latter values
are not considered here.

C. AN INTRODUCTORY EXAMPLE: DETECTION

OF SPACE UTILIZATION

To better frame the problem, we consider the experimental
setting summarized in Fig. 3, that serves as an introductory
example as focusing on CSQ inspection on one cell only
(k = 1), namely the camped cell. A single WWAN-enabled
device (a smartphone) is deployed inside a 10 sqm room to
detect a human body in the proximity of the UE. In par-
ticular, in these tests, the area might be occupied by one
human subject that performs non-rigid body motions while
sitting at a desk and located at fixed position x € X in the
surrounding of the UE. Depending on the body movements,
the distance between the UE and the person is d < 1 m.
The CSQs s;,1 for time-varying camped cell are collected by
the UE over 4 days of continuous data logging in Fig. 3.(a).
Signal strength samples are periodically retrieved here on
time interval At = Ssec. and expressed in dBm scale, with
2 dB quantization steps. It is apparent that, for the considered
device, the serving cell switches among 2 sites here identi-
fied by the CID 1280 (for cell k¥ = 1) and the CID 3624
(for k = 2). In this example, the reselected cells do not
correspond to physically separated cell towers, but rather to
different serving frequencies of the same tower, identified by
the same Location Area Code (LAC), and RNC. Throughout
the 4 days trials, the smartphone is fixed in a selected position
and thus converted into an always-on passive body motion
Sensor.

The AR cell signal dynamics 6o € ®g for the unoc-
cupied environment are here estimated [15] autonomously
by the same smartphone during the application initialization.
AR parameters are estimated for both CIDs (k = 1,2):
for p = 3 (AR-3) these are by = [0.51, 0.18, 0.3],
001 = [b1,01 =1.0dB, r; = —64dBm], and by = [0.65,
0.16, 0.21], 892 = [b2,02 = 1.1dB, r, = —66dBm]. The
two sequences S;,.;,1 highlighted in gray and labelled as (*)
and (**), reveal the presence of a moving target in proximity
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FIGURE 3. From the top: (a) Long occupancy time examples from test measurements: the moving target (human body) is located inside the detection
area X, at distance from the UE ranging from 0.5 m up to 1 m. (b): multi-cell CSQ vs. time over 4 days recorded logs. (c): change-point detection
cumulative sum g; with T = 240 samples and At = 5 s (for visualization purposes only); threshold is set to hy = 193.

to the device, with occupancy time and distance d indicated
for both cases. Body presence causes small changes of the
CSQ dynamics. Other abrupt CSQ variations are clearly
visible for the CID 1280 during night-time as caused by
network-based power control modifications. These network-
induced CSQ changes are not due to body proximity, but
rather to network-specific features (e.g., varying cell loading
conditions during day-time) that must be detected and filtered
out before applying any body/object motion classification
algorithm.

The approach followed here for body detection is to first
extract (Sect. IV-A) temporal segments s;, ., x of anomalous
CSQ data that might indicate the presence of a moving body
in proximity to the UE, as shown in Fig. 3.(b). Then, con-
sidering all monitored cells k € K, every data set S;,.;,
in (2) is classified (Sect. IV-B) to discriminate body-induced
CSQ changes from others effects such as cell reselection,
environmental changes and other network- or cell-induced
settings, as shown in Fig. 3.(c).

IV. CSQ PROCESSING AND ANALYTICS FOR DETECTION
The data analytics problem is addressed according to the fol-
lowing two-stage algorithm composed by a sequential change
detector followed by a classification stage.

At first, a sequential change detection algorithm is pro-
posed in Sect. IV-A to isolate relevant perturbations in the
CSQ dynamics with respect to model (1) and to the cell
site-specific parameters 6o € . The algorithm effec-
tively detects small, non-additive, changes that are poten-
tially due to propagation environment perturbation around

51488

the UE with the aim to isolate them from intrinsic variations
clearly attributable to cell-driven re-selection effects, net-
work parameter changes, or other cell-specific modifications.
A change point detection method is designed to segment the
input CSQ data into the CSQ patterns S;, .1, (2) corresponding
to the identified beginning ¢4 and end ¢p of the anomaly.

Next, for the segmented CSQs, a classification stage dis-
criminates true body motions, and more generally body-
induced changes in the environment, from other cell-specific
effects. Classification of segmented CSQs can be imple-
mented by machine learning methods. More specifically,
in Sect. IV-B an ad-hoc Bayesian classifier is proposed.
Other tools, namely Support Vector Machines (SVM) and
Long-Short Term Memory (LSTM) networks are also eval-
uated. Bayesian classification leverages on prior modelling
and, in some cases, it is less sensitive to the training size.
In particular, Bayesian classification adopts a model space
based on training data or physical body models [21], [22] that
are used to characterize the multiplicity of scene alteration
configurations in the detection area X. Model averaging is
then applied by weighting each model with its probability of
being the correct one for the given setting.

The binary classification of environmental changes
(yvi = y1) compared to empty space (y; = yp) is validated
in Sect. V. Extension to multiclass classification is demon-
strated in Sect. VI for the considered case study.

A. IDENTIFICATION OF CHANGES IN MULTI-CELL SIGNALS
In this section, we investigate the problem of detection
and segmentation of changes in multi-cell CSQ signals s; k.

VOLUME 6, 2018
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Algorithm 1 Pseudo-Code Fragment of the Sequential CSQ
Change Detector

1: procedure change detection over interval [t — T, ]

2: fork €e Kdo < all monitored cells

3 forj=t—T:tdo

4 ¢k <CUSUM (5)

5: g = gi+7 max[0, £ ]

6 end for

7 end for

8 if (state(r—1) =NO_CHANGE) < no changes

detected at t—1 then

9: if (g > ho ) then

10: tp =t <—change start

11: state(t) = CHANGE_DETECTED
12: end if

13: else

14: if (g < ho) then

15: tg =t — 1 <—change end

16: state(r) = NO_ CHANGE

17: if(tg > t4+ T ) then

18: return Sy, .1,

19: end if
20: else
21: state(t) = CHANGE_DETECTED
22: end if
23: end if

24: end procedure

As previously described, the changes of CSQ dynamics might
affect the cell-specific parameters 6 ; that rule the cell signal
dynamics. Given a set of CSQ observations, the proposed
sequential change point detection method decides between
two composite hypotheses consisting of: i) CSQ dynamics,
described by parameters ©g = {6, k € K}, observed
by an idle UE from the cells” k € K; and ii) post-change
dynamics as possibly caused by body/object motions and
described by the unknown parameter set 61 ¢ .

Detection problem can be implemented iteratively
(on-line) by exploiting the cumulative sum (CUSUM)
paradigm. Optimality of CUSUM tests for detection is
investigated in [23], [24]. Assuming an inspection interval
[t — T, t] of duration T, the CUSUM function g; is defined
as

1 t
S=72 2 (Ga) " 3)
kel j=t—T

with ¢; ; the log-likelihood ratio terms computed for each cell
in the ranking list X and ()t = max[0, -]. For detection of
small changes, the terms ¢; ; simplify as (see Appendix B)

Gk ~va] x 21(00%), 4

21t is assumed that knowledge of the cell ranking list is available during
the on-line detection process. In fact, this information can be easily extracted
from the UE (see Sect. V).
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with v > 0 (here v = 0.2) and u; being a unit vector
indicating the predominant direction of the change that gives
more impact to perturbations of selected model parameters.
The (p + 1) x 1 score function z; ;. is defined [25] as

2
z (0 ) - _1 —1;j—p _1 _t’k -1 ( )
i,k\U0,k Vi kSj—1;j—p.k 5
Y kz] J—LJ ok k2

changes on oy,

changes on by

with the innovation term vji, from (1), is given by
vie = [1,=b} ] x8jj—pk — rr. According to the detection
threshold Ao, the beginning ¢4 and the end 75 of the anomalous
sequence are estimated as

ta = min{t: g; > ho}
tg = max{t >t4 +T: g > ho}, (6)

respectively. A pseudo-code for the anomaly detection tool is
illustrated in the fragment of Algorithm 1.

For the same example considered in Sect. III-C, the
CUSUM metric g, is visualized in Fig. 3.(b) as a function
of time ¢, and for interval (3) equal to T = 240 samples.
Interval T acts as an adjustable time control that can be
tuned to trade time resolution for detection area size (d) in
order to capture different motion events, according to the
specific application. This property is further discussed in
Sects. V and VI. The threshold A is chosen here as iy = 193:
optimization of hg = ho(¢) is based on a Constant False
Alarm Rate ¢ (CFAR) approach [26]. Change direction for
p=3isu; = [\%cos(f—s), %cos(f—s), \/Lgcos(f—s), sin({)]
as discussed in the Appendix B.

Cell-reselections and other cell-specific network configu-
rations are responsible of false alterations of CSQ dynamics
with respect to the AR parameters 0o € ®g: these false
changes, namely not induced by true modifications of the
environment around the UE, are addressed during the follow-
ing classification stage.

B. CLASSIFICATION OF CHANGES

We now discuss how to classify an anomalous CSQ input
sequence of N samples S;,.;; (2), from the posterior proba-
bility (or belief state) Pr [yi [Sty:t5 D] that discriminates envi-
ronment changes hypothesis indicated as y;, i > 0, from
the unchanged one (unoccupied space) with class label yy.
The latter hypothesis corresponds to effects that make the
CSQ dynamics to deviate from their nominal behavior, result-
ing in a false change (i.e., false positive).

Classification is here implemented by the UE based on
the input CSQ samples and supervised training. Train-
ing/example CSQ features D = {D;, i > 0} can be retrieved
from a remote data repository, before the actual placement of
the UE, at the time of the software installation, and reassigned
(by transfer learning) to the application.

Before applying classification, some necessary pre-
manipulation of the CSQ data is required to let the detection
system be independent from the specific UE or cell deploy-
ment as well as to simplify the training stage. Rather than
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classifying the segmented time series Sy, .;,, we choose a more
compact data structure by tracking the CSQ deviations

ASt k= Stk — Tk @)

between the observed CSQ s, € S;,.; and the static
CSQ component ry (1) measured during the app initialization
(Sect. V-A) for each monitored cell. The counts and the
distribution of such deviations are instrumental to classify the
potential environment changes. Considering the cell k and the
time interval [#4, t5], we define the CSQ deviation counts as
fio = [ S PR / S T .fk,Q] where the individual terms
fk,q are given by

fk,q = Z I (As,’k € [Vq—17 Vq])7 (8)

telta,tp]

with fi ; < N and the bin edges v, such that v,_; < v,.
I (-) is the indicator function. The optimal bin number Q and
the edges v, are obtained from experimental data as shown
in Sect. V. Deviation counts provide a useful fixed-length
representation that keeps information about CSQ alterations
and multiplicity over the considered cell list, but disregards
time dependency.

In what follows, we consider 3 different classifiers, these
are validated individually for binary and multiclass classifi-
cation problems in Sects. VI and VI, respectively.

1) BAYESIAN-DCM CLASSIFIER

Bayesian classification depends on prior modelling. Focus-
ing on binary classification, detection of true (y;) or false
(yo) changes for the input features fi o is conveniently

done by branching on the value of the belief L£o; =

Pr[yllfk.Q,D] . . .. .
D rek log (m> using a binary decision function
Jror.w, —> 10, 1}, namely

frorz, =1(Lo1 > t0.1) )

with the optimized threshold 7( . Posterior probabilities
Pr [y,'|fk,Q, D] simplify when no prior on class labels is avail-

able Pr[y;] = Pr[yo] as
P f
Lo =) log (Pr f"Q|y']) (10)
by r [fx.0l yo]

with Pr [fk,Q| yi] being the conditional density of the
deviation counts. A Dirichlet-Compound Multinomial
(DCM) model [27] is adopted to represent the distribution
Pr[f,ol yi] for each class

N! B (B« + fi.0)
0 X
qulfk,q! B (ﬁi,k)

Pr [fk,Q| yl] =Pr [fk,Qlﬂi,k] =

’

(11)

where we recall that N is the number of samples in
the considered segment [f4,7p] and B () is the the
generalized Beta function [28]. The terms B,; =

[Bix(D)...,Bix(@), ... Bik(Q)] act as model hyperparam-
eters: here, these are the expected deviation counts, for cell &,
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FIGURE 4. (a) Example of 2 CSQ segmented anomalous sequences
Styitg,1 for occupied (y; - top) and unoccupied (y,- bottom)
environments extracted from the camped cell with k = 1. Green and blue
colors correspond to different CIDs; (b) CSQ (normalized) features

f1,q0/ Zq 1 f1,¢- for the same camped cell k = 1, Q = 6 bins and
vq ranging between 15 dB and —10dB (bin size is AQ = 5 dB). Training
data D; are collected from 4 WWAN-enabled devices of different vendors.

obtained from training data D and normalized by uniform
prior, therefore by setting min ; x(¢) = 1. In addition to
training, virtual, or simulated, counts can be also obtained
analytically using the body model detailed in Appendix C.
DCM distributions (11) are used to model word burstiness
in text recognition [29] while here the same model allows
to capture the burstiness of the CSQ deviations induced
by true environment changes. Fig. 4.(a) shows 2 example
sequences from the data-base Dy and D;, corresponding to
body occupancy events of 500 s and 400 s, respectively.
The (normalized) counts for camped cell k = 1, namely

’f],Q/ Z[?:lf],q, are also reported in Fig. 4.(b) for both

sequences. Burstiness of CSQ sequences are clearly visible
in Fig. 4.(a): in fact, considering body motion, the subject
might be standing or wandering inside the detection area X’
for some time, and then changing its posture. Other examples
can be found in our open repository [30] featuring 98 different
features with Q = 13 bins.

In the pseudo-code fragment sketched in the Algorithm 2
for discrimination of occupied and empty environment,
namely y; = +1 and yo = —1, the decision about body
occupancy y; is obtained by evaluating the log-ratio (10)
for each cell k € K using (11) and then by thresholding.
The sensitivity threshold 7o ; is optimized for the desired
performance as shown in Sect. V. Extension of Algorithm 2 to
multiclass classification is addressed in Sect. IV-C using a
decision-tree policy.

2) SVM CLASSIFIER

The SVM is trained using the same CSQ deviation counts
used for Bayesian-DCM. Sequential minimal optimization
(SMO) is adopted with regularization parameter C = |1
while the other options can be found in [31]. Focusing on
binary classification, detection of true and false changes is
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conveniently done by assigning the values yp = —1 and
v1 = L. The classifier

3;\’. = sgn |:a)0 + Z Za)mK(fk’Q,E{’fg)} (12)

kel m

uses a Gaussian kernel function K(fk,Q,?‘;{%) with 64 support

vectors E(mé for which w; > 0. sgn(-) is the sign function.
Multiclass extension of SVM is investigated in Sect. VI and
it is based on an error-correcting output codes (ECOC) model
that reduces the problem of multiclass classification to a set
of binary classifiers [32]: coding design is one-versus-one.

3) LSTM CLASSIFIER

LSTM is a specific recurrent neural network (RNN) archi-
tecture designed to model temporal sequences. Differently
from hidden Markov models, it also captures medium/long-
term temporal dependencies. LSTM architectures have been
thus explored for large scale acoustic modeling in speech
recognition, language translation, and handwriting recogni-
tion. Focusing on the proposed motion detection problem,
LSTM is used to track long and short-term dependencies
on the segmented temporal sequences of CSQ. Therefore,
unlike Bayesian and SVM tools, LSTM takes CSQ deviation
sequences As; x in (7) as inputs for all the monitored cells
and for segmented intervals ¢ € [z4, tg]. Considering an
embedded device as target for a practical implementation,
the proposed LSTM network is characterized by a limited
the number of hidden units and layers. The pre-trained clas-
sification network consists of two LSTM layers of 100 and
50 units, respectively, and it is followed by one fully con-
nected (FC) layer, a soft-max and an output classification
layer. The first layer weights are pre-trained using a database
of CSQ sequences obtained in different settings (see Sect. V)
while the second layer weights are trained according to
the specific application and the selected number of classes
(see Sect. VI). Finally, transfer learning can be also applied
on this last layer by freezing the weights of the first LSTM
layer. In both cases, learning of weights in each layer is based
on the ADAM algorithm [33].

C. DECISION TREE CLASSIFIER FOR BODY PROXIMITY
DETECTION

The binary classification of occupancy proposed in the previ-
ous section is here reframed into a multi-class detection prob-
lem, where true changes from the safe/empty environment
scenario (y; = yp) might be now indicative of environmental
changes (y; = y1) or a more critical body proximity (y; = y3).
We refer to Sect. VI for the description of the specific usage
scenario. Multi-class detection is rephrased into a sequence
of binary decisions using a decision tree model. This model
adopts the Bayesian-DCM tool as a building block to recur-
sively partition the input data space into regions that can be
represented by a tree. Similarly to (10), the belief function set

Lin = Lrerclog (FLp2pl) ¥ h = 0, 1, 2is selected
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Algorithm 2 Pseudo-Code Fragment of the Anomaly Classi-
fier
1: procedure classification of sequence [S;,.;, {7k, k € K};

Bixl

2: for k 1S K do<« all cells in the
ranking list

3: forg=1:Qdo

4: ASt g = Stk — Tk

5: Jea = 2ictim | (Bsek = vq) < fi0

¢ end for B(B1.«+r.0)B(Box) .

7: AC()J = £0,1 + log (—B(ﬂljk)B(ﬂO,k“‘fk:Q)) <«~in
(10) and (11)

8: end for

9: &i zf[:o_l,to,l <« false &i = Yo if fLO,lyTO.l =

0 otherwise true y; =y
10: end procedure

here as decision tree attributes, while we perform branching
on the values of these attributes using the binary decision
function Iejngn = {0, 1} in (9) for the class pair (¥}, yz)
according to the optimized threshold set 7 ;. As the result of
such branching operation, the output regions provide a distri-
bution over the class labels Pr(y; lfﬁj,h,rj,h) Vi=0, 1, 2, from
which a corresponding decision/alert can be generated simi-
larly as for the binary classification case. Classification trees
models are usually easy to implement, in addition, they can
efficiently handle heterogeneous data. Decision tree growing
and pruning are based here on the C4.5 algorithm (see [34]
for a review) while optimization of splitting and thresholds
7j 5 are based on the entropy minimization (or information
gain) criterion. Figure 5 shows the actual decision tree gen-
erated by C4.5 from training data. It selects Lo,1, £12 and
Lo,7 as attributes and the corresponding optimized thresholds
70,1,71,2 and 797 are highlighted.

V. EXPERIMENTAL VALIDATION
In order to verify the performances of the proposed approach,
we conducted a one-month case study in an indoor site,
using 4 different smartphones with SIM cards from two
different mobile operators. The study is meant to compare
the CSQ data processing tools for motion detection con-
sidering various environment alterations ranging from body
motions to long-term changes of the environment surround-
ing the smartphone. We also address the sensitivity area
size d [21], [22] and CUSUM interval T, that rules the time
resolution for anomaly detection (Sect. IV-A). For all cases,
we used COTS devices with WWAN modem chips from
different manufacturers. Considering each UE, the system is
able to track CSQ data measured from 3 neighboring cells,
being k = 1 the camped cell, while k = 2, 3 are the 2nd and
3rd strongest cells in the ranking list, respectively.

As highlighted in Sect. IV-A, the CUSUM interval T serves
as an adjustable control parameter that can be tuned to adapt
the anomaly detection capability and resolution. Fig. 6 shows
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FIGURE 5. Detection and classification of /) body proximity (y,), i.e., for
detection of possible tampering attempts; ii) environment alterations (y;)
in the surrounding of the smartphone and jii) empty (unoccupied)
environment (y,). Decision tree, thresholds zq 1, 7g 5 evaluation and
threshold 7, , optimization using training data are shown.

two selected CSQ data-sets. The first one (case #1 on the
left) considers the detection of body motions, the second
one (case #2 on the right) consider the detection of long-
term space utilization. The first case addresses the detec-
tion capability of individual body motions of short-time,
between 2 + 6 min. This is relevant in applications that
require an accurate estimation of the entrance time #4 of the
subject. Space utilization addressed in the second case refers
to the detection of the occupation time Tp_p = tp — t4
to determine how often a space is occupied. Detection of
such events is typically important in a variety of smart living
applications, including access, intrusion [35] and behavioral
routine monitoring, energy-efficient heating ventilation, and
lighting [36], [37].

Considering the above scenarios, in Fig. 6 the correspond-
ing CUSUM g; outputs (3) for T = 60 and T = 190
are compared. Detected anomalies, for which gx > hyo,
are highlighted in gray. For target moving close to the UE
(d < 0.5 m), body-induced effects on CSQ data are, in many
cases, evident (case #1) while detection of short occupation
times, above 2 min, is possible provided that the detectable
interval, i.e., T = 60, is kept small enough to minimize false
negatives. For more distant subjects (d = 0.5 = 1 m) body
effects are less evident, but still observable when the subject
moves around for longer time (> 10 min, see case #2 at
bottom). A small CUSUM interval T provides an accurate
estimation of the entrance time t4 of the subject into the
detection area, in exchange for a less precise evaluation of the
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occupation time, namely T4_p = tp — t4. A larger interval,
T = 190 in the example, should be therefore preferred for
more accurate estimation of 74_p intervals, when needed for
the specific application. This tradeoff is further explored in
the following sections.

A. INITIALIZATION: LEARNING AND CLASSIFICATION

The proposed proof-of-concept approach for body motion
detection combines an anomaly identification method with
a classification stage to discriminate body movements from
other network-related effects. For anomaly detection, learn-
ing of device-specific propagation parameters ®g and CFAR
value ¢ is required, from which the threshold level hg =
ho(g) can be obtained. On the contrary, training data for
classification is based on labeled example features D of
typical CSQ deviations (measured or simulated), indicating
body motions in the surroundings of a UE. These features
D are pre-configured, independent of the device and can
be retrieved from the cloud repository [30] so to implement
transfer learning approaches.

1) ON-LINE LEARNING OF CHANGE DETECTOR
PARAMETERS

AR parameters ® describe the dynamics of the cell signals
for unoccupied detection area and depend on the UE location.
For the considered case study, the initial calibration of ® is
carried for approx. 1 h (i.e., during night-time). Notice that a
new calibration should be carried out when moving the UE
to a different location (e.g., a new room or building) or when
the cell ranking list contains new sites, unless these sites are
excluded from the list. According to Sect. IV-A, the CFAR
¢ determines the threshold /( above which an anomaly can
be considered relevant for body detection. For an assigned
CFAR value ¢, threshold hg(¢) is computed locally by the
UE as ho(¢) = {ho: Pr[g; > hp] = ¢ } and based on the
CUSUM g; (3) obtained from the same training CSQ data
used for parameter ®¢ estimation. As analyzed in the follow-
ings, CFAR values are optimized for detection of long/short
events.

2) MODEL SPACE AND FEATURES FOR CLASSIFICATION
Defined in Sect. IV-B, the Bayesian-DCM classifier uses
the hyperparameters B; , that are the CSQ deviation counts
obtained from the training data D. The database D is available
online [30] and consists of M = 98 training sequences with
QO = 13 bins (—15 = 9 dB) and bin size AQ = 2 dB. The
same features are used to train the SVM classifier. The hyper-
parameters computed from training can be also combined
with simulations obtained by electromagnetic (EM) body
modelling (Appendix C). Training of the LSTM network is
based on the same CSQ deviation sequences As; x of length
T4—p used to compute the above mentioned counts.

B. MONITORING OF SPACE UTILIZATION
In the field of assisted living (and working), it is often impor-
tant to quantify the utilization of space and occupation times,
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FIGURE 6. Effect of the CUSUM interval T on the anomaly detector. From top to bottom: measured CSQ data from device A (cell reselections are
omitted for clarity), corresponding CUSUM g; functions for the same CSQ data but with different T setting equal to T = 60 and T = 190. Different
occupancy events are considered: case #1 (left) highlights 3 short occupancy events of 2 + 4 min, case #2 (right) focuses on a long occupation time
(1 hour). Estimated subject entrance time t4 and occupation (T;_g = tg — t,) for each detected anomaly are superimposed. The corresponding true

occupancy time 4 1,ye and duration T4_g e are reported on top.

FIGURE 7. ROC curves for the Bayesian-DCM classifier using (a) devices
A, B and (b) devices C, D for varying CFAR values ¢: the optimized value
for FPR< 0.3 is shown in bold. These curves are computed based on

15 day tests for devices A, B and 12 days for devices C, D. The layout for
all tests is depicted on the right. Performances of the random detector are
also shown for comparison.

especially if they are unusually long [36], [37]. For example,
in social interaction sensing applications [38], information
about long/frequent occupations can be used for optimiza-
tion of physical spaces or even to profile the interest of an
object (i.e., in smart retail applications). A proof-of-concept
is developed in this section to address the detection capability
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using cellular signals under such requirements. In particular,
32 different occupancy scenarios were tested over a period of
30 days with 1-2 occupancy events per day, characterized by
aminimum time of 30 min and maximum of 2 h. Ground truth
videos as well as corresponding timestamps are recorded for
each event to allow for correct data labeling. Considering
such events, CSQ samples are here retrieved with sampling
time At = 4 sec. and detectable interval equal to 7 = 192
(corresponding to T x At = 13 min). The Receiver Operating
Characteristic (ROC) curves [26] are depicted in Fig. 7 for
the Bayesian-DCM classifier. They compare sensitivity vs.
False Positive Rate (FPR) for all tests. These are analyzed for
varying CFAR values ¢. Performance of the random binary
detector (i.e., trivial detector) is also shown. In Fig. 7.(a),
the devices A, B monitor the same area (a) depicted on
the right, where the target moves at a maximum distance d
equal to 0.5 m, 1 m and 2 m from each UE, respectively.
In Fig. 7.(b), the devices C, D sense a different area where the
target moves at a distance d up to 1 m and 0.5 m, respectively.
Optimal CFAR values for each case are highlighted in bold
and are chosen here to maximize sensitivity subject to a
maximum FPR equal to 0.3 (see the corresponding markers).
Optimal CFAR values fall within the same interval 0.3 +-0.35
depending on the device position, but they map to different
threshold values. According to the above choice, anomaly
detector threshold is set to iy = 2.

Figure 8 compares accuracy, precision and recall (sensitiv-
ity) rate for varying detection interval values T by consider-
ing, for all devices, the same CFAR configuration (¢ = 0.3).
Results for Bayesian-DCM classifier (solid lines) and SVM
tool (dashed lines) are compared. Considering both methods,
precision (counting false positives) remains high (> 0.85)
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TABLE 2. Motion detection performances vs. body distance d for
device A and B.

Body distance [m] <05 | 0.5=+1 1+2
Accuracy 0.91 0.66 0.47
Negative Predictive Value (NPV) 0.96 0.85 0.74

Detection of space utilization (30min-2h)

Rate

m— A ccuracy -Bayesian
—8B— Precision - Bayesian | |
—O— Recall - Bayesian
--O-- Recall - SVM

--B-- Precision - SVM N

== == Accuracy - SVM

T
i I . I L

0 f;O 100 150 200 250 300
T: detectable change time (At = 4s.)
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FIGURE 8. Bayesian-DCM classifier (solid lines) vs. SVM tool (dashed
lines) results in terms of accuracy, precision and recall (sensitivity) rate
for varying detectable change time T expressed in number of samples
(notice that At = 4 s). Devices A, B, and C, D are considered with
configuration parameters ¢ = 0.3 (corresponding anomaly

thresholds hg are in Fig. 7) and hg ; =2.

for the considered intervals 7. However, sensitivity drops for
T < 100 (i.e., 10 min) as caused by a large number of false
negatives.

Tab. 2 highlights the motion detection capability for vary-
ing distance d = 0.5 =2 m of the body from the smartphone.
For d > 1 m, accuracy, counting both true-positives and
negatives out of total calls, drops below 50% thus posing
an upper-limit of d = 2 m on the detection range. Body
movements in close proximity to the UE (d < 0.5 m) can be
detected with average accuracy of 0.91, while accuracy falls
to 0.66 for distances 0.5 < d < 1 m. Notice that the detec-
tor still correctly identifies false anomalies as evident from
the corresponding Negative Predictive Value (NPV) [26],
counting true-negatives out of total negative calls: this prop-
erty is promising for applications related to proximity-based
localization.

Finally, for current 3G/4G devices, it is already possible
to exploit lower CSQ sampling intervals At in the range of
200 ms and this limit will be exceeded in future low-latency
5G networks. In this case, it will be theoretically possible to
detect short occupancy events below the 30 sec. limit. In the
following section, we explore this scenario by developing an
ad-hoc Android app and the related computing platform.

VI. A CASE STUDY: IS SOMEONE APPROACHING MY
SMARTPHONE?

The possibility of turning a smartphone into a virtual motion
sensing device through the sole use of the cellular modem has
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several potential applications that can benefit from the pro-
posed configuration and the ubiquitous diffusion of WWAN
devices. For example, the availability of such paradigm gives
off-the-shelf smartphones the ability to sense its surrounding
space and, in turn, enable proximity based services.

Motivated by the above results, we now focus on an
application-specific case study. The UE signals are here mon-
itored to transform the smart-device into a flexible sensor for
detecting and discriminating body motions in close proxim-
ity to the device, from environmental changes happening at
larger distance form the UE. The case study is relevant in the
field of intrusions [38] and detection of tampering attempts.
The CSQ processing tools analyzed in the previous sections
serve here as basic building blocks to provide a finer grained
classification of the environmental alterations surrounding
the smartphone. In fact, the purpose is now to estimate
the presence of a body in close proximity d < 0.25 m
as possibly indicating a malicious tampering attempt on
the device and then discriminate this situation from other
body-induced changes of the surrounding environment
(d > 0.25 m). In some cases, this might be indicative
of a side channel attack [39]. To address such problem,
177 ““‘tampering attempts” scenarios were simulated and
tested with real CSQ data over a period of 3 days using the
same devices A, B shown in Sect. V. Out of these tests,
59 tests represent side channel attack attempts where a person
is moving around the UE and traversing the detection area
from different directions while 59 sets refer to an empty/safe
area. Finally, the last 59 tests represent a potential attacker in
close proximity d < 0.25 m to the device so to raise critical
alerts.

Based on such measurements, we developed a demon-
strator of the system® based on an Android application.
In particular, the system triggers an alert (y;) when a person
is approaching the target device, i.e., the UE itself, or a
device located nearby. On the contrary, a more critical body
proximity alert (y;) is raised in correspondence with the
identification of a prolonged alteration of the scene surround-
ing the target device (d < 0.25 m), where the attacker
might take physical control of the device [40] (e.g., by
installing malicious applications, compromising the boot-
loader, or extracting sensitive information about recent user
inputs). This situation might also cause unusual cell network
activity (i.e., frequent reselections). The scenarios, including
the empty/unoccupied space (yo) are represented visually
in Fig. 9 using selected snapshots from the demonstrator.
Video records of the demonstrator are further described in the
following sections.

A. DEMONSTRATOR: REAL-TIME PROCESSING

OF CELL DATA

As depicted in Fig. 9, the body motion alerts are made
accessible remotely by an end-user application running
on a portable device and interfacing with a cloud server.

3Video records available at https://youtu.be/8tk8zxWO0g8c, 27 June, 2018.
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FIGURE 9. Top: computing architecture and cell data retrieval model. Bottom: real-time demonstrator snapshots for detection of unoccupied room (y,),
environment change (y;) and body proximity (y,) using two smartphones (Device A and B). For each device, the classifier output is represented visually

by posterior probabilities Pr [y;| D].

The cloud platform exposes a set of REST APIs (Repre-
sentational State Transfer) that are used by 2 smartphones
(devices A, B) to send the monitoring data encoded in a
JSON (JavaScript Object Notation) format. Real-time mea-
surements of CSQ are done by each smartphone individually:
they are based on the Radio Interface Layer (RIL) that pro-
vides an interface between the upper-layer telephony services
and the radio hardware layer. Focusing on a typical Android
platform implementation, android.telephony provides APIs*
and abstract base classes for monitoring the basic cellphone
information, including CSQ, network type and CID informa-
tion by communicating with the RIL daemon (RILd). The
RIL adopts both standard and proprietary AT commands
to interact with the modem functions, via a virtual serial
line interface (UART) port. As depicted in Fig. 9 (on top),
the 3GPP command AT+ECSQ [20] can be used by the
RIL driver to retrieve the received signal strength indication
(see also Tab. 1) measured from the current camped cell
by controlling the Mobile Termination (MT) vendor-specific
functions from the Terminal Adapter (TA) interface.

The data set obtained from the RIL and used for anomaly
detection and classification contains the list of surround-
ing cells, and for each cell: the CID information, the LAC
code, the CSQ s; x measured in dBm and the selected RAT.
Currently, the demonstrator supports GSM, UTRA and LTE
cells (when available) requiring a level of Android API
greater or equal to 18. Considering UTRA and LTE cells,
CSQ measurements are reported to the RIL with Ar =
200 ms measurement period (see Appendix A). This small
reporting period is used to capture fast motions, still with

4 Similar APIs are provided by other platforms i.e., i0S, Windows Mobile,
although not considered here.
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good resolution. Processing of CSQ is based on adjustable
control parameters (interval 7, CFAR ¢), that should be
tuned to capture application-specific events. For the specific
case study, the CFAR for anomaly detection is increased to
¢ = 0.4, while according to the analysis in Sect. V, setting
T = 100 provides a good tradeoff between accuracy and time
resolution.

Selected snapshots of the video records are depicted
in Fig. 9. The system is configured to discriminate between
unoccupied room (yp), environment change (y;) and body
proximity (y2) using 2 devices. Detected anomalies are
fed back to the cloud platform through the REST API
"POST /api/postRadioData’ for classification. The video
shows two simulations of body proximity and environmen-
tal changes that involve two different people. In particular,
environmental changes are due to a person moving around
the smartphones and/or moving objects (i.e., a keyboard or a
computer). Body proximity alerts are generated in corre-
spondence of a person sitting at a desk and attempting to
extract information from device B. From the video records,
the time delay (latency) between a true body movement and
its corresponding detection time ranges between 15 sec. and
20 sec.: notice that, beside anomaly detection and classifica-
tion time, JSON object serialization/deserialization processes
add a small but not negligible delay.

B. VALIDATION: ENSEMBLE MODEL AND

COMPARATIVE ANALYSIS

We use an ensemble method to combine different models with
the goal of improving the robustness over a single estimator.
The proposed ensemble model exploits the output of 3 clas-
sification algorithms, namely Bayesian-DCM, SVM and
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Bayesian-DCM classifier (decision-tree)
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FIGURE 10. Confusion matrices for decision-tree classifier (based on Bayesian-DCM modelling) and comparison with SVM and Long Short-Term Memory
(LSTM) classifiers. Matrices are computed over 477 tests and using a time interval of T = 100 samples (corresponding to 20 sec., being At = 0.2s).
Average accuracy, precision and recall for all classes yj, y;, y, are also highlighted.

LSTM to generate alerts (Sect. IV-C). The model outputs a
measure of the posterior probabilities Pr [y;| D] for each class,
such that Pr [y;| D] = § (Ji.svM + Ji,Bayesian—DCM + P, LsT™ )
where J; svM, Ji,Bayesian—DcM and $;1.sTm are the outputs of
the individual classifiers, respectively. A decision about a spe-
cific alert can be made by maximizing over the posterior y; =
argmax,Pr [y;|D]. Other models, i.e., sequential- or boosting-
based, can be also applied as well [41]. To highlight the
comparative analysis among different devices, posteriors are
obtained using CSQ data from device A and B, first separately
and then jointly.

The three classifiers are now analyzed separately using
the CSQ data collected from 3 different people. In Fig. 10,
we analyzed and compared the performance of the three
selected classifiers in terms of precision, recall and total
accuracy. In particular, the Bayesian-DCM classifier is now
based on the decision tree structure optimized in Sect. IV-C.
Fig. 10 compares the confusion matrices obtained for device
A and B separately assuming 7 = 100 samples as min-
imum detectable change time (corresponding to 20 s for
At = 200 ms). The decision tree classifier, based on
Bayesian-DCM modelling, is characterized by an average
accuracy of 90% that is comparable with the LSTM classifier.
Observed accuracy of the SVM detector is slightly lower
(80%). Body proximity involve a prolonged alteration of the
scene in close proximity to the device with d < 0.25 m;
classifiers are thus characterized by better precision and recall
performance. As confirmed by the tests of Sect. V, Bayesian-
DCM can correctly discriminate between body movements
(classes y1,y2) and unoccupied environment (yp) with accu-
racy larger than 83% considering both devices. Separation
of specific movements (y1) from proximity (y;) of the sub-
ject can benefit from the use of an ensemble classifier that
combines individual weak learners. Notice that, as expected,
the classifiers running on device B, target of the tampering
attempts during the tests, gives better performances than
device A (that is not directly tampered).

VII. CONCLUDING REMARKS

This research aims to introduce the use of cellular radios for
human sensing, to detect body occupancy and movements in
a confined space as well as their evolution in space and time.

51496

Techniques for CSQ analysis are thus proposed to map dis-
tinctive anomalous CSQ footprints onto potential movements
of people in the surrounding of the smartphone. A proof-of-
concept real-time demonstrator has been developed to check
the system feasibility. Experiments have been carried out
over a period of one month of continuous usage, considering
from 2 to 4 cellular devices and different body occupancy
configurations over long and short occupation times. The
system is able to detect specific body motions, as indicators of
possible tampering attempts on device. In particular, the paper
addressed the discrimination of body proximity from environ-
mental changes made in the surroundings of a smartphone
(d <0.5m).

Based on the developed demonstrator, CSQ analysis can be
implemented inside the UE (i.e. for decision tree and binary
classification) while more complex computations can be also
carried out on a back-end (or cloud) component and then
retrieved by the end user on demand. All application based on
CSQ inspection can run in the background to enable always-
on sensing without any explicit user intervention (as far as the
smartphone is turned on, mainly in idle mode) and with less
significant stress on the battery life compared to conventional
solutions that often require supplementary sensors or long
sleep periods [37].

With the improved processing power of current evolved
cellular devices, as well as denser networks and multi-
ple RATSs, new, even unexpected, applications could also
emerge by exploiting this novel opportunity. For example,
the adoption of large-scale cell signal fluctuation analysis
from multiple smartphones might be explored for the local-
ization of movements (e.g., moving people) and crowd sens-
ing/counting applications, combining the multitude of radio
signals exchanged by the cellular radio devices. Other classi-
fiers might be also designed on top of the proposed anomaly
detection tool to discriminate more specific body motions,
such as friction-less body gestures, user habits, frequent activ-
ities or social interactions. Devices supporting dual-sim in
full active mode can be also employed to increase the number
of monitored links and thus the precision. Furthermore, it is
useful to mention that the CSQs are also signaled to the
network for mobility management by a (large) population
of UEs. Therefore, all functionalities highlighted in this paper
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for UE-centric system can be carried out at network level with
some straightforward adaptations.

APPENDIX A

CELL RESELECTION

For normal service in idle mode, the UE regularly and
autonomously monitors the BCCH to receive system infor-
mation from the public land mobile network (PLMN): this
include any updated reselection parameters that are published
on SIB 1, 2, 3,4, 7, and 11. The number of cell reselections
over time can be controlled by the network operator through
time-to-trigger and a hysteresis parameters. These parameters
are typically unique for the serving cell. The UE compares the
CSQ measurements performed on the applicable frequencies
according to a ranking criterion in order to select the best
cell. Finally, it autonomously reselects to the chosen cell
according to reselection criteria and the network parameters
after having verified the cell accessibility. Notice that, when
engaged in communication sessions (i.e., in the active mode
state), the UE is under the full control of the network, and the
handover procedures are applied for reselection. In this case,
decisions are thus taken only by the network according to the
CSQ measurements collected by the UE.

Considering the relevant case where the UE is capable of
communicating with multiple RATs and in the area where the
UE is camped there are multiple networks, cell reselection
is based in general on intra-frequency, inter-frequency and
inter-RAT selection criteria. The UTRA and E-UTRA cases
are summarized in the following paragraphs (see [14] for
GERAN networks).

UTRA (UMTS) case. The received signal strength level is
estimated according to the RSCP value that denotes the power
measured by a receiver on a particular physical communica-
tion channel (or spreading code). At least 2 measurements
must be used for the received signal strength estimate. The
UE shall scan all RF channels in the UTRA bands according
to its capabilities to find available PLMNs. Focusing on
typical FDD cell, the UE selects the PLMN that has measured
primary CPICH RSCP value greater than or equal to -95 dBm.
Once a PLMN has been selected, the UE must choose an
acceptable or suitable cell to camp on. The method adopted
for cell selection is based on the S-criterion that exploits
the measured cell quality Qguaimeas and the measured cell
receiver level Q,yjevmeas Values [17]. These measurements are
based on the CPICH E./Iy and CPICH RSCP, respectively.
When camped, the UE decodes the applicable SIB values
and performs all relevant signal measurements in order to
execute the cell reselection procedure. The ranking method
adopted for cell reselection is based on the R-criterion [17].
It uses the results obtained from the S-criterion to select a new
cell that has a ranking greater than the servicing cell during
the assigned time interval Tyegelecrion- The UE is capable of
monitoring [16] up to 32 intra-frequency cells and 32 inter-
frequency cells given in the cell information lists found in
the SIB. Up to 8 neighboring cell measurements are reported
to the higher layers with a 200 ms measurement period.
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E-UTRA (LTE) case. CSQ measurements are based on the
computation of the RSRP and RSRQ values of the serving
and neighboring cells that are periodically obtained by UEs
via detection of reference signals [14]. As already shown for
the UTRA case, the UE scans all RF channels of the E-UTRA
bands to select a high quality PLMN that has the measured
RSRP value greater or equal to -110 dBm. When camped on
a cell and in idle state, the UE tries to detect, synchronize and
collect at least 2 RSRP and 2 RSRQ samples to compute the
power measurements from intra- and inter-frequency neigh-
boring cells. The cell reselection procedure is similar to the
one already described for the UTRA case: however, Qguaimeas
and Q;yjeymeas are now based on the RSRP and RSRQ values,
respectively [19]. The cell reselection timer TjeselectionRAT
used by the S-criterion is chosen according to the used RAT
(e.g., TreselectionEuTRA foOr the E-UTRA case). This value, and
all other parameters used by the UE, are specified in the
system information set that is broadcast by the serving cell.
Finally, the UE performs ranking of the cells according to the
R-criterion [19] that exploits the RSRP values only. The best
ranked cell is then used for reselection.

APPENDIX B

CHANGE-POINT DETECTION

The sufficient statistics for the specific detection problem is
the generalized likelihood ratio defined as

Prg, (s/.klS—1:0—g—1.k)

4x(@o) = sup |In
0,0, PrOOVke@o (Sl,k|st—1:t—q—1,k)
(13)

being the supremum computed over the (unknown) param-
eter set #; € ©; and function of the change time. In(-) is
the natural logarithm function. The movements of the body
in the surroundings of the UE cause small changes of the
CSQ dynamics @ ; observed for the empty environment, and
modeled as

01~ 00k +vu; (14

with v > 0 and u; being a unit vector indicating any prior
information (if available) of the predominant direction of
the change. Using this local hypothesis assumption [25], the
likelihood ratio simplifies as

n[ Pro, (st.klSi—1:1—g—1.k) }

Kt,k

&
E
X
L

Prg, coo (S.klSi—1:1—g—1.k)

01=00 «

0InPrg, (s7k|Sr—1:1—g—1,k
= vulT X ! ( . a— )
001

01=00«

= vu] x 2 4(004) (15)
where the score function z; ; is defined in Sect. IV Eq. (5).
In absence of any prior information about the vector uy, as

assumed in this paper, it can be selected to give more impact
on changes whose direction is orthogonal i.e., ulTuo =0, to
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the change direction ug observed in the empty environment
(that would result in false positives):

ug = argminu’te[,fr’ p (g1)
s.t. g < ho (16)
APPENDIX C
EM MODELLING OF DCM PARAMETERS
We consider an analytical model to be used as prior infor-
mation for body presence recognition and for evaluation of
the DCM hyperparameters B; ;. Considering body motions
as target for classification, we first evaluate numerically the
probabilities Pr (As,’k € [vq_ 1, Vq] X, yi) of observing the
CSQ deviations As; ; for random body postures in x € X.
An EM body model is considered [21], [22]: the human body
is approximated as a 3D homogeneous absorbing cylinder
placed on the floor, with height # = 1.8 m and having an
elliptical base with semi-axes ay, = 0.55 m and ay, =
0.25 m. The 3D cylinder could rotate along the vertical axis
by the angle ¥ to mimic a person standing in a specific
position x € X but changing its orientation. To simplify
the complete 3D model, the cylinder is sketched as an EM
equivalent 2D knife-edge absorbing surface that can be easily
modeled according to the scalar Fresnel-Kirchoff diffraction
theory. For a downlink path of length Dy >> d connecting the
UE to the cell tower antenna k, the CSQ deviations As; x can
be simulated numerically, since they depend, in first approx-
imation, on the geometrical size of the person, its position
x € X and the posture/orientation ¥, with respect to the
UE and the downlink path [22]. Posture information includes
also small movements Ax around the nominal position X.
In the repository, probabilities Pr (As; x € [Vg—1, vq] X, i)
are evaluated numerically by exploiting Monte Carlo sim-
ulations for uniformly distributed posture set values 0 <
[AX]] < 0.1 mand —7 < ¢ < m. The simulated area
size is d = 1 m for simulation of body movements, y; and
d = 0.25 m for simulations of body proximity to the UE,
2 (see the case study in Sect. VI). The path length, namely
the distance between the k-th cell tower and the UE is set to
Dy = 500 m.
The Dirichlet hyperparameter B; ;(¢) is computed as

Bi@) = / Pr(Bsic e [y vl o) dx ()

and can be replaced in (11) or augment an existing training
database.
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