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ABSTRACT Due to the physical processor frequency scaling constraint, current computer systems are
equipped with more and more processing units. Therefore, parallel computing has become an important
paradigm in the recent years. This paper presents Parampl, a simple tool for parallel and distributed
execution of AMPL programs. AMPL is a comprehensive algebraic modeling language for formulating
optimization problems. However, AMPL itself does not support defining tasks to be executed in parallel.
Although the parallelism is often provided by solvers, in many cases, it is more efficient to formulate
the problem in a decomposed way and apply various problem specific enhancements. Parampl introduces
explicit asynchronous execution of AMPL subproblems from within the program code. Such an extension
yields a new view on AMPL programs, where a programmer is able to define complex, parallelized
optimization tasks and formulate algorithms solving optimization subproblems in parallel or in a distributed
manner.

INDEX TERMS AMPL, parallel computing, distributed computing, optimization, algebraic modeling

languages.

I. INTRODUCTION

In recent years, due to the physical processor frequency
scaling constraint, the processing power of current computer
systems is mainly increased by employing more and
more processing units. This trend can be observed in the
TOP500 list of the fastest supercomputers [1], [2]. The top
systems reach as much as millions of cores. Similar trend,
on a different scale however, is also present in regular home
computers and server-class hardware. As hardware supported
parallelism has become a standard nowadays, parallel
computing and parallel algorithms are recently much of
interest. In this paper, we focus on solving optimization prob-
lems and defining such problems using AMPL [3]. AMPL
- A Mathematical Programming Language is a comprehen-
sive algebraic modeling language for linear and nonlinear
optimization problems with continuous and discrete vari-
ables. AMPL allows to express an optimization problem in
a declarative way, while constructs like conditional expres-
sions and loops enable the modeler to define a program
flow that specifies the problem or solves multiple prob-
lems in one run. However, parallel processing of the
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subproblems is not supported by AMPL. For individual
problems, the parallelism is often provided by solvers,
which take advantage of multiple hardware processing
units and employ multi-threading when solving optimiza-
tion tasks. However, in many situations, it is more effi-
cient to formulate the problem itself in a decomposed way,
taking advantage of the problem structure and apply various
problem specific enhancements and heuristics, which may
not be obvious for the solvers or impossible to recognize
at all, e.g. applying Benders decomposition or Lagrangian
relaxation [4].

In this paper, we present Parampl, a simple tool for
parallel and distributed execution of AMPL programs.
Parampl introduces a mechanism for explicit parallel execu-
tion of subproblems from within the AMPL program
code. The mechanism allows dispatching subproblems
to separate threads of execution, synchronization of
the threads and coordination of the results in the
AMPL program flow, allowing the modeler to define
algorithms solving optimization problems with parallel
subtasks.
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A preliminary version of Parampl was presented
at a conference and published in the conference
proceedings [5].

The rest of this paper is organized as follows. Section 2 is
a brief introduction to AMPL. Section 3 describes the
related work. Section 4 presents the design of Parampl,
including the information how Parampl can be used
in AMPL programs. Section 5 describes the exten-
sion of Parampl which allows parallel problems to be
solved in a cluster in a distributed way. The evalua-
tion of Parampl and experimental results are presented in
Section 6. Section 7 presents future work, and Section 8
concludes.

il. AMPL
AMPL is an algebraic modeling language that allows to
express an optimization problem in a declarative way, very
similar to its mathematical form. The AMPL problem defi-
nition usually consists of the model (which is a general form
of the problem) and the data (values of the model parameters
that make the model specific).

Let us assume that we would like to solve the following
optimization problem:

max 3x; —2xp
X
—X1+5x<7.5; -2x14+3x>—13; 6 x1—Tx2 <5

2<x1<45; 0<xp <21

The model for general LP problems may be presented in the
following form:

max CTX
1<x<u

Ax <b

In AMPL, the generic model would be defined as below
(model file ak1p.mod):

param n;
param m;

param c{l..n};

param A{l..m, 1l..n};
param b{l..m};

param 1{1..n};
param u{l..n};

# declaration of the vector x of decision variables
# and the box constraints on its coordinates
var x{i in 1..n} >= 1[i], <= ul[i];

# objective function
maximize obj_fun:
sum {i in 1..n} c[i]l*x[i];

# linear constraints
subject to matcon {j in 1..m}:
sum{i in 1..n} A[]j,1]1*x[1] <= bI[]jl;
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And the data making the model specific (data file
aklp.dat):

2; # number of variables
3; # number of constraints

param n :
param m :

# vector of obj. function coefficients
param c :=

1 3

2 -2 ;

# matrix of linear constraints coefficients
param A :

1 2 :=
1 -1 5
2 2 -3
3 6 -7 ;

# vector of right hand coefficients
# for linear constraints

param b :=

.5

w N e
[y
(GRS

’

# left box constraints on variables

param 1 :=
12
2 0 ;

# right box constraints on variables

param u :=

The problem defined in AMPL is then passed to an
external solver (defined using the solver option) by
calling the AMPL command solve. After the solution
is calculated, AMPL will set the values of the deci-
sion variables to their optimal values found by the
solver. The AMPL program would look as follows
(aklp.run):

option solver ipopt;
model aklp.mod;
data aklp.dat;
solve;

display obj_fun;
display x;

The transcript of the session follows:

$ ampl aklp.run

Ipopt 3.11.1: Optimal Solution Found
suffix ipopt_zU_out OUT;

suffix ipopt_zL_out OUT;

obj_fun = 5.76087

x [%x] :=

1 3.36957

2 2.17391

7

Despite being a declarative language, AMPL also allows
constructs present in the procedural languages which allow
to define the program flow - assignments, conditional expres-
sions, loops:
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if vect["abc",2] < 1 then {

let vect2["abc",2] := vect2["abc",2] * 1.1;
}
else {

}

for {a in V} {
let pl[l] := a;
solve;
let profitslal
}

:= obj_£f;

repeat while x >
let x := x % O.
}

0 {
7 - 1;

Thus, AMPL makes it possible to define a program
that solves multiple problems sequentially and calculates
the result based on the solutions of the subproblems.
However, processing of the subproblems cannot be explicitly
parallelized.

An extended overview of AMPL, its interaction with
solvers and implementation techniques can be found in [6].
The book [3] contains the full description and documentation.

Ill. RELATED WORK

There have been several works related to extending algebraic
modeling languages with possibility of solving problems in
parallel. Kestrel [7] is an application that imitates a solver
and submits an optimization job to be executed on a remote
machine (NEOS server [8]). In AMPL program, Kestrel is
chosen as a solver, but Kestrel also supports non-blocking
submission of problems to the NEOS server and solution
retrieval using external AMPL commands, which allows
multiple problems to be solved in parallel. In our opinion,
Parampl is a more convenient alternative to the Kestrel inter-
face, as it allows multiple problems to be solved in parallel
on a local machine or in a user defined cluster.

In [9], AMPLX toolkit is presented. AMPLX relies on the
Everest platform [10] to expose computing services, called
applications as REST services. Everest manages execution
of application tasks on external computing resources, which
can be easily attached to the platform and bound to indi-
vidual applications. The resources run special programs
called agents, which communicate with Everest, making it
possible to run tasks on multiple resources in parallel. To use
AMPLX, it is necessary to modify the original AMPL script,
calling commands to submit tasks to and retrieve solutions
from Everest (in a similar way to Parampl), making it possible
to exchange data with remote solvers during regular AMPL
code execution. AMPLX is provided as a Platform as a
Service (PaaS), and, despite being publicly available online,
like Kestrel, it relies on the existence of the external platform.
With Parampl, it is possible to solve problems in parallel
without dependence on any external services.

Colombo et al. [11] present a structure-conveying alge-
braic modeling language for mathematical and stochastic
programming (SML). The language is an extension of AMPL
which allows definition of the model from sub-models.

49284

Such an extension allows the modeler to express nested struc-
ture of the problem in a natural and elegant way. The solution
is generic as the block structure is passed to the solvers within
the problem definition file, so SML can be used with any
structure-exploiting solver.

SET [12] is another approach which allows defining the
structure of the problem in a separate structure file. Fourer
and Gay [13] prove that AMPL’s declared suffixes can
be used to define the structure of the problem in many
common situations. Furthermore, several approaches targeted
at stochastic programming have been proposed, for example
sMAGIC [14], SAMPL [15], and StAMPL [16].

It is worth mentioning that AMPL itself already provides
APIs to programming languages like C++, Java, Matlab and
Python, making it possible to write multithreathed applica-
tions calling AMPL instances. However, creating such appli-
cations requires some programming skills.

In this paper, we present a different approach (with an inter-
face similar to Kestrel), which enables the modeler to define
a fork-join structure of the program flow, allowing processing
the results of subtasks by a coordination algorithm. Our
solution is solver-independent, parallel solver instances are
run either locally (separate processes) or are distributed to
multiple machines, and the parallel execution and results
retrieval is handled at the AMPL level by the modeler.

Despite the existence of environments like Pyomo [17] or
JuMP [18], we decided to to develop an extension to AMPL
language because of a higher level of abstraction provided
by AMPL and its syntax that is very similar to mathematical
notation. Developing code in the mentioned environments,
based on programming languages (Python [19] and Julia [20]
respectively), is, in fact, developing object-oriented code,
which causes considerable programming overhead (creating
objects, using their handles, method calls) obfuscating the
essence of the problem, i.e. the mathematical formulation,
decreasing legibility and delaying obtaining the first results.
Developing a model in AMPL does not require object
programming knowledge, not even programming knowledge
in general, which makes it easy to use not only for soft-
ware engineers. Fourer [21], [22] discusses the importance of
expressing models in a clear, high-level way, without the need
of real programming. In our opinion, the fork-join execution
flow provided by Parampl is a very intuitive and sufficient
approach for introducing parallelism to AMPL, as it does not
require the modeler to focus on the parallelizing technology
itself. The tool created by us is universal - it may be utilized
both, on machines equipped with multi-core processing units
with shared or local memory (even processing units providing
significant amount of parallelism), as well as in networks of
machines.

IV. DESIGN AND USE OF PARAMPL

Let us consider a very simple AMPL program, which solves
sequentially the same problem for two sets of parameters p1,
p2 and stores the results in one vector res:
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var x{i in 1..3} >= 0;
param res {i in 1..6};
param pl {iter in 1..2};
param p2 {iter in 1..2};
param iter;

minimize obj:
plliter] - x[1]72 - 2%x[2]72 - x[3]72 - x[1]*x[2]
- x[1]1%x[3];

subject to cl:
8xx[1] + 14%x[2] + 7xx[3] — p2[iter] = 0;

subject to c2:
x[1]72 + x[2]72 + x[3]"2 =25 >= 0;

let pl[1] := 1000;
let pl[2] := 500;
let p2[1] = 56;
let p2([2] = 98;

for {i in 1..2} {
# define the initial point
let {k in 1..3} x[k] := 2;
# solve
let iter := i;
solve;
for {j in 1..3} {
# store the solution
let res[(i-1)*3 + 3] := x[J];
}i
}i

display res;

Individual calls of the solve command will block until the
solution is calculated.

Using Parampl, it is possible to solve multiple problems
in parallel. Parampl is a program written in Python program-
ming language [19], which is accessed from AMPL programs
by calling two AMPL commands:

o paramplsub - submits the current problem to be
processed in a separate thread of execution and returns:

write ("bparampl_problem_" & S$parampl_gueue_id);
shell ’'python parampl.py submit’;

o paramplret - retrieves the solution (blocking operation)
of the first submitted task, not yet retrieved:

shell ’'python parampl.py retrieve’;
if shell_exitcode == 0 then {
solution ("parampl_problem_"
& Sparampl_queue_id & ".sol");
remove ("parampl_problem_ "
& S$parampl_queue_id & ".sol");

Before calling these scripts, Parampl must be configured
within the AMPL program - the solver to be used and the
queueld should be set. The queueld is a unique identifier of
the task queue, which is a part of the names of temporary files
created by Parampl, which allows executing Parampl in the
same working directory for different problems and ensures
that the temporary problem, solution and jobs files are not
overwritten. The options for the chosen solver should be set
in the standard way:
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option parampl_options ’solver=ipopt’;
option parampl_queue_id ’"powelltest’;
option ipopt_options ’'mu_init=1le-6 max_iter=10000";

The paramplsub script saves the current problem to a .nl
file (using AMPL command write) and executes Parampl
with the parameter submit. When executed with the parameter
submit, Parampl generates a unique identifier for the task,
the generated .n/ file is renamed to a temporary file, and the
solver is executed in a separate process with the .n/ file passed
to it. Thus, the tasks submitted in this way are executed in
parallel (separate processes). After calculating the solution,
the solver creates a solution (.sol) file with the file name
corresponding to the temporary problem file passed to the
solver upon execution.

Information about the tasks being currently processed by
Parampl is stored in the jobs file - new tasks are appended to
this file upon submission. The file simply stores the list of the
task identifiers being currently executed (jobs that have been
submitted and have not yet been retrieved), e.g.:

2345

The temporary problem (.nl) and solution (.sol) file names
are composed of the queueld and the task identifier. The jobs
file name also contains the queueld, so multiple problems
may be solved using Parampl at the same time, as long as
the queueld value is different for each of them.

The paramplret script executes Parampl with the param-
eter retrieve, which is a blocking call, waiting for the first
submitted task from the jobs file (not yet retrieved) to finish.
The solution file is then renamed to the .sol file known by
the paramplret script and is then passed to AMPL using
AMPL command solution. At this point, the temporary .n! file
is deleted, and the task id is removed from the jobs file.
After calling the script paramplret, the solution is loaded to
the main AMPL program flow as if the solve was called.
Figure 1 presents the execution flow of an AMPL program
using Parampl calls.

When the solver generates the solution file, the paramplret
command does not immediately load the solution back to
AMPL. Depending on the solver and the problem size, the file
generation may take more time, and the file might be incom-
plete if the AMPL solution command is called immediately
after the solution file is created. That is why the blocking
call parampl retrieve does not wait for the solution file itself
to be generated, but for the notification (.not) file which
is created by Parampl after the solver process terminates -
calling Parampl with parameter submit does not directly run
the solver process, but creates another instance of Parampl
(executed in the background) which executes the solver and
generates the notification (.not) file after the solver process
returns. This ensures that writing the solution file is finished
before reading it back to AMPL.

The logic of Parampl is presented in the listing below using
pseudocode:
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AMPL program

paramplsuiV

v \

Parampl Parampl Parampl
submit submit submit
generation of the problem file
Y Y Y
{ problem file / { problem file { problem file ;
Y A \4

Solver execution
in a separate process

Solver execution
in a separate process

Solver execution
in a separate process

/ solution file ;

Y

Parampl
retrieve

reading the solution to AMPL
(blocking call waiting for the solution)

v v

solution file { solution file ;
Y Y
Parampl Parampl
retrieve retrieve
\ 4

AMPL program

FIGURE 1. Execution of an exemplary AMPL program using Parampl calls.

parampl submit:
jobs = loadJobsFromFile ("parampl_jobfile_queueId")
taskId = generateNextTaskId(jobs)
jobs.append (taskId)
saveJobsToFile ("parampl_jobfile_queueId", jobs)
rename ("parampl_problem_queueId.nl",
"parampl_Jjob_queueld_taskId.nl")
# start the solver in a separate process:
executeInBackground (
"parampl executeSolver queuelId taskId")
# "submit" terminates, but "parampl executeSolver"
# is still being executed in the background

parampl retrieve:

jobs = loadJobsFromFile ("parampl_jobfile_queueId")

taskId = jobs.getAndRemoveFirst ()

saveJobsToFile ("parampl_jobfile_queueId", jobs)

# wait for the notification file (blocking):

waitForFile ("parampl_job_queuelId_taskId.not")

# rename the sol file so that AMPL can read it:

rename ("parampl_job_queueld_taskId.sol",
"parampl_problem_gueueId.sol"

# delete the problem and notification files:

delete ("parampl_job_queuelId_taskId.nl")

delete ("parampl_job_queueld_taskId.not")

parampl executeSolver:

# execute the solver and wait

# until the process terminates

execBlocking (
"solver parampl_job_queueId_taskId.nl -AMPL")

# generate notification file

# after the solver returns:

generateNotfiticationFile (
"parampl_Jjob_queueld_taskId.not")
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The sequential problem presented before may now be run in
parallel as follows:

for {i in 1..2} {
# define the initial point.
let {k in 1..3} x[k] := 2;
let iter := i;

# execute solver (non blocking execution):
commands paramplsub;

bi
# the tasks are now being executed in parallel...

for {i in 1..2} {
# retrieve solution from the solver:
commands paramplret;

# store the solution
for {j in 1..3} {
let res[(i-1)*3 + J] := x[J];
}i
bi

In the above scenario, both problems are first submitted to
Parampl, which creates a separate process for solving each of
them (parallel execution of the solvers), while in the second
loop, the solutions for both subtasks are retrieved for further
processing by the AMPL code.

V. DISTRIBUTED PARAMPL

Because a single machine might be not sufficient for solving
very complex problems due to a limited number of processing
cores, and, in practice, memory is often the limiting resource,
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Parampl is also able to execute solvers for subproblems on
remote machines. However, the modeler should be aware
that the subproblems executed on remote machines should
be relatively long compared to the time of sending the tasks
and retrieving the solution to/from the remote machines. Even
within a local network, the overhead is significantly increased
compared to running Parampl locally if the problem solving
time is short. The remote executions were implemented only
for Unix-based operating systems - SSH protocol [23] is used
to reach the remote machines - we use OpenSSH implemen-
tations of ssh [24] and scp [25] programs. It is required that
the users are authenticated using keys (the password does not
have to be provided upon every remote execution and copy
operation). To distribute the execution to remote machines,
two additional AMPL scripts are provided:

o paramplrsub - submits the current problem for execution
on a remote machine and returns:

write ("bparampl problem " & $parampl_gueueld);
shell ’'python parampl.py rsubmit’;

o paramplrret - retrieves the solution (blocking operation)
of the first submitted task from a remote machine, not yet
retrieved:

shell ’'python parampl.py rretrieve’;
if shell_exitcode == 0 then {
solution ("parampl_problem_"
& S$parampl_queuelId & ".sol");
remove ("parampl_problem_ "
& Sparampl_queuelId & ".sol");

Both of the above scripts perform the same opera-
tions as the corresponding paramplsub and paramplret
commands, but Parampl is executed with parameters rsubmit
and rretrieve respectively. Calling Parampl with parameter
rsubmit moves the problem file to the remote machine and
calls Parampl with parameter submit on the remote machine,
whereas parameter rretrieve causes execution of parampl
retrieve on the remote machine and moves the retrieved solu-
tion file to the local machine, which is then ready to be loaded
to AMPL.

The parampl_options, parampl_queue_id options, as well
as the solver options should be set in AMPL, and, addi-
tionally, three configuration files should be prepared for
distributed execution:

o parampl_cluster_queueld (queueld is the identifier of
the task queue) - specifies the machines of the cluster
- the machines are defined in separate lines. Each line
contains three values separated by a white character:
the hostname or the IP address of the remote machine,
the user name on the remote machine, on which behalf
Parampl will be executed and the working directory
on the remote machine - this should be the path
where the Parampl program is located. New tasks are
submitted to the machines according to the round-robin
strategy (it is possible to submit multiple tasks to each
machine). The exemplary cluster definition is presented

below:
VOLUME 6, 2018

#hostname username dir

uxl aolszak /home/aolszak/parampl
ux?2 aolszak /home/aolszak/parampl
ux3 aolszak /home/aolszak/parampl
ux4 aolszak /home/aolszak/parampl
ux5 aolszak /home/aolszak/parampl
ux6 aolszak /home/aolszak/parampl
ux’7 aolszak /home/aolszak/parampl
ux8 aolszak /home/aolszak/parampl

o parampl_remote_queueld - contains three numbers
separated by the space character: the index of the
machine to which the next task will be submitted,
the index of the machine from which the next param-
plrret command should retrieve the solution, and the
number of tasks being currently executed. When absent,
a file with default values will be created automatically:

000

o parampl_envs_queueld - this file should contain the
list of all environment variables (one variable name per
line), which should be copied to the remote machines
before Parampl execution. Copying certain environment
variables to the remote machines is essential because the
environment variables mechanism is used for passing
configuration to solvers, as well as options of Parampl.
That is why this file should always contain the variables
parampl_options, parampl_queue_id and all options
required by the solver. Exemplary file content:

parampl_options
parampl_qgueue_id
ipopt_options

The listing below presents the logic of the distributed

Parampl:
parampl rsubmit:
machines = loadMachinesFromFile (

"parampl_cluster_gueueId")

(nextSub, nextRet, numTasks) =
readTaskInfoFromFile ("parampl_remote_queueId")

# default values (0, 0, 0),

# if the file does not exist

envs = getEnvVarNamesFromFile (
"parampl_envs_queueld)

scp ("parampl_problem_gueueld.nl",
machines[nextSub] + dir)

setEnvs (envs, machines[nextSub])

ssh (machines[nextSub], "parampl submit")
nextSub = mod(nextSub + 1, machines.count)
numTasks = numTasks + 1

saveTaskInfoToFile (nextSub, nextRet, numTasks,
"parampl_remote_gqueuelId")

parampl rretrieve:

machines = loadMachinesFromFile (
"parampl_cluster_queueId")

(nextSub, nextRet, numTasks) =
readTaskInfoFromFile ("parampl_remote_queueId")

envs = getEnvVarNamesFromFile (
"parampl_envs_queueld)

setEnvs (envs, machines[nextRet])

# retrieve the solution remotely (blocking)

ssh (machines [nextRet], "parampl retrieve")

scp (machines[nextRet] + dir
+ "/parampl_problem_gueueId.sol", ".")

nextRet = mod(nextRet + 1, machines.count)

numTasks = numTasks - 1;

saveTaskInfoToFile (nextSub, nextRet, numTasks,
"parampl_remote_queueId")

It is also possible to distribute subproblems to multiple

machines sharing a common file system. In such cases, addi-
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tional time may be saved as the problem file and the solution
file do not have to be copied over the network. Even if the
machines are located in the same local network, and the
physical connection between them is very fast, copying larger
files might cause significant delays, especially if the main
problem is split into many small (in terms of calculation
time) subproblems. In case of running Parampl in a direc-
tory shared between the machines, the shared_fs parameter
should be set to true (if not specified, the default value is
false).

option parampl_options=
"solver=ipopt shared_fs=true’;

In case the value of shared_fs is true, Parampl will not
copy the problem and solution files to the remote machines,
assuming that all the file system operations are immedi-
ately propagated on the remote machines and will only
perform the remote execution of Parampl on the cluster nodes.
Synchronized file systems which introduce delays between
the file system operations and propagating them to other
machines, may cause problems when using Parampl with
shared_fs=true, because the instances of Parampl operate on
the same files.

Remote Non-Blocking Solver Execution - Technical
Details:

By default, the Unix shell (run in the non-interactive
mode) waits for all commands in the pipeline to termi-
nate before returning [26] and, with no tty, ssh connects
to stdin/stdout/stderr of the shell process via pipes (which
are then inherited by the child processes). Depending
on the implementation, ssh may wait for them to close
before exiting, which would result in remote task submis-
sion returning no sooner than the solver process termi-
nates. In such a case, the tasks on the remote machines
would be executed sequentially, not in parallel. Ssh may
force a pseudo-tty allocation (ssh -t) [24], in which case
the shell will return immediately after the remote call
“parampl submit” returns. However, the solver process,
which is supposed to continue running in the background,
would then receive the SIGHUP signal and terminate
(when the parent shell process exits, the kernel sends the
SIGHUP signal to its process group [26]). Parampl may
detach the solver process from the shell (not terminating
“parampl executeSolver ...” process running in the back-
ground) in several ways:

o Detaching “parampl executeSolver . . .” using the screen
program [27]. When screen is used to detach the process
from the shell, it does not matter whether the pseudo-tty
allocation is forced or not.

« Forcing pseudo-tty allocation (ssh -t) and enabling the
monitor mode by calling set —m shell built-in [26]. If the
monitor mode is enabled, all processes are run in their
OWN process groups.

49288

« Forcing pseudo-tty allocation (ssh -t) and wrapping
“parampl submit” execution in the nohup command
call (nohup parampl submit). The nohup command [26]
will prevent sending the SIGHUP signal to the solver
process.

o Redirecting pipes (of the remote call to ‘“‘parampl
submit™) to /dev/null, so that the shell process returns
immediately after ‘“parampl submit” returns.

The method of creating the background process (“parampl
executeSolver ...”) is determined by the value of the
unix_bkg_method Parampl option (option parampl_options),
which may take one of the following values:

e spawn_nowait - creates the subprocess in the back-
ground by calling the Python spawn function [28] with
the parameter os.P_NOWAIT

o screen - executes ‘“‘screen -dm parampl executeSolver
..., and the screen process is created by the blocking
spawn function call (with the parameter os.P_WAIT)

The remote call behavior is configurable by setting the values
of the following Parampl options:

o remote_submit_ssh_allocate_pseudo_tty

o remote_submit_shell_monitor_mode_enabled

o remote_submit_run_with_nohup

o remote_submit_redirect_pipes_to_devnull

By default, the solver process is created without the use of
the screen program, the pseudo-tty is not allocated by ssh,
the monitor mode is not forced, nohup call is not used and
stdin/strout/stderr of the remote call ““parampl submit™ are
redirected to /dev/null.

VI. EVALUATION AND EXPERIMENTS

The evaluation of efficiency of Parampl (local execution) was
performed on a machine equipped with a 4-core Intel Core
i7-2760QM processor (Intel SpeedStep, C-States Control,
Intel TurboBoost and HyperThreading technologies disabled
to make sure all logical cores used operate at the same speed)
with AMPL ver. 20130704, IPOPT [29] solver ver. 3.11.1 and
Python ver. 3.3.2 on Windows 7 64-bit operating system. The
application tested was a decomposed version of the general-
ized problem 20 presented in [30], formulated below:

min 0.5- (7 +5 +... +y2)
yeR?

Virl =k = =05+ (=DF -k, k=1,...
yi—yn=n—0.35

,n—1

The decomposed algorithm divides the vector y € R" into p
equal parts (assuming p is a divisor of even n). Let us denote:

Xij = Y(i~1)ni+js i=1,...,p, j=1,....n;
T
-xi = [xi,lv-xi,zv e a-xi,n[]
T
T T T
I:xl,xZ,...,xp:I =y

whereny =ny = ... =n, = [ﬂ? We may then divide all n
constraints into p + 1 groups: constraints dependent only on
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TABLE 1. Experimental results (decomposed problem 20): 4 cores, n = 6720.

. . max
» sequential sequential parallel speedup overall theoretical
solve [s] Parampl [s] Parampl [s] speedup speedup
1 1126.9 1143.4 — — — —
2 873.7 890.9 5253 1.66 2.15 2
3 580.7 580.9 225.8 2.57 4.99 3
4 793.9 801.4 252.3 3.15 4.47 4
5 707.9 709.0 228.6 3.10 4.93 5
x; subvector foreveryi =1, ..., p: be solved in the simplest case by the steepest ascent gradient

Vil — Yk = —0.5+ (=D -k
where:
k=@G—1) -nj+j,j=1,...,n—1
that is
Xiji1 = Xij = =05+ (=1 k(i j)
where k(i,j) = (i — 1) - n; + j, and p constraints involving
different subvectors x; and x;41:

Vi1 —=vk = =05+(=DF -k, k=i-n, i=1,...,p—1
yi—Yp=>n—0.5
The latter constraints may be written as:
Xmod(i,p)+1,1 — Xi; = Ciy i=1,...,p
where
ci=—0.5+ (=D (i -n)
We define the dual problem as:
Tza())( xi€X, miigl ..... pL(x’ ) M

where
L(x,\) = Z Z 0.5 x7;

i=1 j=1

i (Ci + Xin; — xmod(i,p)-i—l,l)

+ A+ Xin = Amod(p—2+ipy+1 - Xid) FAi - ¢i] ()
The inner optimization in (1) decomposes into p local
problems:
n;
)I(Ilel}’(l 0.5- x,] + Ai Xip; — Amod(p—2+ip)+1 - X1 (3)
1 ]:l
which may be solved independently, if possible, in parallel.
The external, dual problem (the coordination problem), may

VOLUME 6, 2018

algorithm (iterative):

A=+ a - (i + R (W) = Bnodiip+1,10)

i=12,...,p

where « is a suitably chosen step coefficient and X(1) is the
optimal vector built of solutions of local problems (3). The
algorithm terminates when no significant change of the result
vector is achieved.

During the experiments, three variants of the algorithm
were tested - sequential (solving p subproblems by calling the
blocking solve command), sequential Parampl (using param-
plsub and paramplret calls), and parallel (in every iteration,
paramplsub was first called for the subproblems, after which
the results were retrieved by calling paramplret - p execution
threads). The results of the experiment for n = 6720 are
presented in Table 1. The column ““‘speedup” presents the
speedup achieved compared to the sequential execution of
the decomposed algorithm, while “overall speedup” is the
speedup in comparison to the calculation time for the original
problem. The values presented are the averages for 5 runs.

In the presented results, the effect of employing the paral-
lelism is clearly visible. The larger the number of subtasks,
the larger speedup was achieved. The values of speedup
are lower than their upper limit (Amdahl’s law'), which is
caused by the differences of solving times for individual
subproblems (which is a typical load balancing problem).
It is, however, worth mentioning that the overall speedup
reached (compared to the original problem calculation time)
is even greater than the number of cores, which was achieved
by applying a problem specific heuristic.

To verify Parampl running in the distributed mode,
we tested a simple AMPL program finding the minimum m
of the Griewank function [31]:

; _ncos( )

in the area restricted to a hypercube —600 < x; <
600,i = 1,...,n. The function has a complex structure

f()—m 2

1t B is the proportion of execution time that the part benefiting from
parallel execution originally occupied (max. 1), the speedup S with respect to
the sequential execution time equals 7 =D where p is the minimum

(A=p)+5

of two values: number of threads and the number of computing cores.
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TABLE 2. Experimental results (Griewank): local execution (8 cores).

. max
sequential parallel speedup theoretical
solve [s] Parampl [s] speedup
2 133.07 69.48 1.92 2
4 271.99 72.81 3.74 4
6 418.05 126.18 3.31 6
8 418.53 84.15 4.97 8
10 626.71 102.06 6.26 10
12 760.70 150.30 5.06 12
14 784.19 129.57 6.05 14
16 819.29 141.83 5.78 16
32 1790.47 2862.34 0.63 32
TABLE 3. Experimental results (Griewank): cluster of 8 machines.

sequential distributed speedu ?lllzzretical

solve [s] Parampl [s] p P speedup
2 95.86 50.83 1.89 2
4 198.21 56.17 3.53 4
6 298.87 93.89 3.18 6
8 297.72 60.82 4.90 8
10 460.17 72.73 6.33 10
12 543.38 102.32 5.31 12
14 559.38 70.27 7.96 14
16 587.72 75.10 7.83 16
32 1270.80 244.28 5.20 32

with numerous regularly distributed local minima. For our
needs, the domain was partitioned into p regions (split in
one dimension & into p equal intervals), and, for each region,
the local minimum was calculated:

m= min X
7600§x;§600f( )
i=1,..., n
= mi min X 4
j=1,ep —600<x;<600, i=1,...,n,ik e @

— 600+12% j— 1) < <—600+ 120,

The inner optimization problems were solved in parallel
(p subtasks), after which the results were gathered and the
minimum of the results was calculated.

In the experiments, we tested parallel job execution
(run locally on a single machine with an 8-core processor
and 64-bit Lunux operating system) and in a distributed
mode (in a cluster of 8 machines equipped with Intel
Core 2 Duo E8400 processors running 64-bit Linux oper-
ating system). For both experiments, we used AMPL
ver. 20160325, KNITRO [32] solver ver. 10.0.1 and Python
ver. 2.7.3. p subproblems were solved sequentially using
solve command, as well as using Parampl to sumbit
the subproblems for parallel/distributed processing (param-
plsublparamplrsub and paramplret/paramplrret commands).
The results of the experiment for n = 4000 and
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p € {2,4,6,8,10, 12, 14, 16, 32} are presented in Table 2
(local execution) and Table 3 (distributed execution).

The results of the experiments verified that we benefit
from running tasks in multiple threads and distributing tasks
to multiple machines. For certain values of p, the speedup
values are slightly higher for the local execution. This is
because in the distributed mode, a greater portion of time is
spent on transferring the problem and solution files to/from
the remote machines. The difference is, however, not signif-
icant for larger problems, where the calculation time for
individual subproblems is long. Moreover, our test program
requires large amount of memory, and, when run in parallel
locally, 20GB memory limit causes extensive page swapping,
resulting in significantly longer calculation times (which can
be seen in the results presented in Table 2 for p = 16 and
p = 32). By using distributed Parampl, we are able to
overcome the memory limitation, dispatching subproblems to
multiple physical machines.

VII. FUTURE WORK

While implementing Parampl, we did not focus on the load
balancing, as in our solution, we are relying on the operating
system scheduler to distribute the load (processes created
by Parampl) to the hardware cores. However, when Parampl
is used in the distributed mode, it might happen that a
problem is scheduled to a machine still solving the previous
problem, while there is another machine that already finished
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performing its tasks. Although in many use cases, the tasks
are scheduled at the same time (at which point there is no
knowledge of the expected execution time), after which the
results are collected, this could be a potential area of future
development of Parampl, including a possibility of taking
advantage of the information about computing power of indi-
vidual nodes.

VIIl. CONCLUSION

In this paper, we presented Parampl, a parallel and distributed
task submission extension for AMPL. The experimental
results obtained proved that Parampl equips AMPL with a
possibility of defining complex parallel algorithms solving
optimization problems. It is able to take advantage of multiple
processing units while computing the solutions, as well as to
distribute the calculation load to multiple machines. Parampl
is very easy to use and deploy into existing AMPL programs,
and its implementation in Python programming language
makes it platform independent.
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