
Received May 13, 2018, accepted July 25, 2018, date of publication September 13, 2018, date of current version September 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2865626

Robust Adaptive Beamforming Based on Desired
Signal Power Reduction and Output Power
of Spatial Matched Filter
DENIS IGAMBI , XIAOPENG YANG , (Senior Member, IEEE),
AND BABUR JALAL , (Student Member, IEEE)
School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
Key Laboratory of Electronics and Information Technology in Satellite Navigation, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China

Corresponding author: Xiaopeng Yang (xiaopengyang@bit.edu.cn)

This work was supported in part by the 111 Project of China under Grant B14010 and in part by the National Natural Science Foundation
of China under Grant 61671065 and Grant 31727901.

ABSTRACT The performance of the conventional beamformers degrades in the presence of desired signal
in the data samples and array steering vector (ASV) mismatch. Many beamformers have been proposed to
improve the performance of standard Capon beamformer. However, the performance of these beamformers
is affected by a number of factors, such as a number of data samples or sensors and signal-to-noise ratio.
Moreover, the existing beamformers are also sensitive to the ASV mismatch of desired signal. In this paper,
two robust adaptive beamformers are proposed to overcome the problems associatedwith these beamformers.
The proposed beamformers have two pre-processing steps. First, the ASV of desired signal is estimated by
computing the correlation between the nominal ASV and the eigenvectors corresponding to the dominant
eigenvalues. Second, the power of desired signal in the sample covariance matrix is reduced by estimating
the desired signal covariance matrix from the output power of spatial matched filter and noise covariance
matrix. Subsequently, the matrix regularization is used to estimate the desired sample covariance matrix.
In the first beamformer, the desired sample covariance matrix is constructed from the sample covariance
matrix with the reduced desired signal power and the diagonal loading based on the output power of spatial
matched filter, whereas in the second beamformer, the desired sample covariance matrix is constructed from
the sample covariance matrix with the reduced desired signal power and the reconstructed interference-plus-
noise matrix loaded with the output power of spatial matched filter. The proposed beamformers can provide
a good performance in the presence of desired signal in the data samples and ASV mismatch as shown in
the simulation results.

INDEX TERMS Steering vector estimation, spatial matched filter, matrix regularization, diagonal loading,
covariance matrix reconstruction.

I. INTRODUCTION
Adaptive beamforming has been of great interest in array
processing for the past couple of decades. It plays an impor-
tant role in radar, sonar, satellite navigation, medical imaging
and arraymicrophone speech processing.Many beamformers
have already been developed for adaptive beamforming. The
standard Capon beamformer (SCB) [1] is one of the renown
adaptive beamformers with good resolution and interference
suppression capabilities. SCB is based on the covariance
matrix computation using the received signal samples tomax-
imize the array output signal-to-interference-plus-noise ratio
(SINR). However, with finite number of snapshots, desired

signal in the data samples and in presence of ASV mismatch,
the performance of SCB degrades significantly. Therefore,
a number of robust adaptive beamformers (RAB) [2]–[9] have
been proposed to improve the performance of SCB.

Diagonal loading (DL) is one of the widely used approach
to enhance the robustness of SCB. The performance of the
beamformers based on DL is highly dependent on the selec-
tion of the optimal DL-factor. Most of them suffer from
performance degradation in the presence of ASV mismatch
and when the desired signal power is greater than interference
power in the sample covariance matrix. The conventional DL
beamformer [2] is based on a fixed DL-factor which can
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be taken as the noise power or the normalized constraint of
weight vector. These parameters are hard to determine. There-
fore, parameter free DL beamformers have been proposed
to solve this problem. Hoerl, Kennard, and Baldwin (HKB)
beamformer [5] based on the generalized sidelobe canceler
re-parameterization of SCB. Spatial matched filter (SMF)
beamformer [6] based on the output power of the spatial
matched filter associated with the ASV obtained through
eigen-analysis of the beampattern. General linear combina-
tion (GLC) based robust Capon beamformer [3], which is a
shrinkage based beamformer utilizing the knowledge aided
space time adaptive processing in [10]. Some other shrinkage
based beamformers can also be found in [7] and [9].

The performance of these parameter free DL beamformers
is dependent on the adaptation of their DL-factors. DL-factors
should decrease as the number of snapshots increases for a
fixed number of array elements, and increase as the number of
array elements increases for a fixed number of snapshots [7].
However, the performance of HKB beamformer degrades
when the number of snapshots increases, because of the DL
factor increases with the increasing of snapshots [3]. On
the other hand, GLC beamformer’s performance degrades
with the increasing number of snapshots, since its DL-factor
rapidly converges to zero. In addition, both HKB and GLC
as well as SCB suffer from signal self-cancellation when
the desired signal is presence in the received snapshots.
The problem of self-cancellation is however solved by the
SMF beamformer. But its performance may degrade when
the number of snapshots is very large since its DL-factor
oscillates about the output power. Moreover, the performance
of SMF beamformer is also affected by the number of antenna
elements.

One of the general shortcomings of the DL beamformers
is that the performance also degrades in the presence of
the desired signal ASV mismatch. In the presence of ASV
mismatch, it results into the array beam pattern distortion.
A number of beamforming approaches have been investi-
gated in conjunction with estimating the actual desired sig-
nal ASV [7]– [9], [11], [12]. The worst case beamformer
(WCB) [12] is also a DL based beamformer that uses a
convex second-order cone (SOC) programming approach to
estimate the ASV and computing the weight vector. However,
the computational complexity of optimization approach is
huge and the algorithm is based on unknown deterministic
variables. In [11], an approach to determine the desired signal
ASV based on estimating the desired signal subspace was
presented. This is achieved through finding the intersection
between the signal-plus-interference subspace and a refer-
ence space covered by the angular region of the desired signal.
In [9], the oracle approximating shrinkage (OAS) method is
iteratively used to estimate the signal ASV in a set desired
signal reference space. However, the iterative process in this
algorithm increases the computation.

Therefore, two robust adaptive beamfomers are proposed
to enhance the performance of SCB by reconstructing the
sample covariance matrix. The proposed beamformers have

two pre-processing steps. Firstly, the ASV of desired signal is
estimated by computing the correlation between the nominal
ASV and the eigenvectors corresponding to the dominant
eigenvalues of the sample covariance matrix. This approach
has also been employed for instance in [13] to eliminate
the mainlobe interference through eigen decomposition. Sec-
ondly, the power of desired signal in the sample covariance
matrix is reduced by estimating the desired signal covariance
matrix from the output power of spatial matched filter and
noise covariance matrix. Then, both the proposed beamform-
ers use the matrix regularization to estimate desired sam-
ple covariance matrix as introduced in the knowledge aided
space time adaptive processing [10], which is also adopted
in [3] and [4]. In the first beamformer, the desired sample
covariance matrix is constructed by the desired signal power
reduction matrix and diagonal loading (DL) based on the
output power of the spatial matched filter. In the second
beamformer, the desired sample covariance matrix is com-
puted by the desired signal power reduction matrix and the
reconstructed interference-plus-noise (INC) matrix loaded by
the output power of spatial matched filter. In INC-matrix
reconstruction, the direction of arrival (DOA) [17]–[19] of
the interferences are required. The proposed beamformers
can provide good performance in the presence of desired
signal in the data samples and ASV mismatch as shown in
the simulation results.

The rest of the paper is organized as follows. The signal
model and background are given in section II. The formula-
tion of the proposed beamformers are described in section III.
The performance of the proposed beamformers is analyzed in
section IV. The simulation results and analysis are provided
in section V. Finally, the paper is concluded in section VI.

II. SIGNAL MODEL AND BACKGROUND
Consider one desired signal andP uncorrelated sidelobe inter-
ferences incident on an antenna array withM elements, where
P + 1 ≤ M. Both the desired signal and interferences are
narrowband signals. The nth snapshot of the received signal
x(n)∈ CM×1 is expressed as

x(n) = a(θ0)s0(n)+
P∑
i=1

a(θi)si(n)+ n(n), (1)

where si(n)[i = 0, 1, · · ·P] is the corresponding complex
envelope of the desired signal and the interferences. θi is
the direction of arrival (DOA) of the incident signal. n(n) ∈
CM×1 is a zero mean, uncorrelated spatially white noise.
a(θi) ∈ CM×1 (with ‖a(θi)‖22 = M) is the nominal ASV of
the ith signal. ‖ · ‖2 denotes the L2-norm. The array output
is linearly combined by the beamformer to form the desired
output

y(n) = wHx(n), (2)

where w ∈ CM×1 is the complex weight vector of the
beamformer and (·)H denotes the conjugate transpose. In this
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implementation, the main aim is to maximize the signal-to-
interference-plus-noise ratio (SINR)

SINR =
σ 2
0 |w

Ha(θ0)|2

wHRIPNw
, (3)

where σ 2
0 is the desired signal power and RIPN is the

interference-plus-noise covariance matrix. Capon proposed
an optimal beamformer in [1] with a true covariance (TC)
matrix R ∈ CM×M given by

R = σ 2
0 a(θ0)aH (θ0)+ RIPN, (4)

where its optimal weight vector is obtained by optimization
of the linearly constrained quadratic equation in (5)

min
w

wHRw,

subject to: wHa(θ0) = 1. (5)

The optimal weight vector of the optimization problem in (5)
with accurate knowledge of the desired ASV a(θ0) is given
by

wOPT =
R−1a(θ0)

aH (θ0)R−1a(θ0)
, (6)

where (·)−1 denotes the matrix inverse. Since in practice the
true covariance matrix R is not known, it is normally replaced
with the sample covariance (SC) matrix R̂X given by

R̂X =
1
N

N∑
n=1

x(n)xH (n), (7)

where N denotes the total number of snapshots. The weight
vector of SCB is given by

wSCB =
R̂
−1
X a(θ0)

aH (θ0)R̂
−1
X a(θ0)

, (8)

Assuming that the nominal ASV a(θ0) is perfectly known,
the SC-matrix R̂X of SCB converges to the TC-matrix
R in (4). Therefore, the corresponding SINR value will
approach the optimal value when the number of snapshots
N → ∞ under stationary assumptions [8]. On the other
hand, the performance of SCB severely degrades when few
snapshots are used and there exists a mismatch in the ASV of
the desired signal [3]–[7]. Therefore, different beamformers
based on DL have been employed to solve SCB’s shortcom-
ings. The complex weight vectors of the DL beamformers
take the form

wDL =

(
R̂X + ρDLI

)−1
a(θ0)

aH (θ0)
(
R̂X + ρDLI

)−1
a(θ0)

, (9)

where ρDL is the DL-factor to be estimated and I is the
identitymatrix. A constant ρDL approachwas proposed in [2].
The DL-factor ρDL is taken to be a small loading factor e.g
0dB of noise power. However, the constant diagonal loading
method is limited to how best ρDL value is chosen. There-
fore, a number of parameter-free RABs have been proposed
including the GLC, SMF, HKB and WCB beamformers.

A. GENERAL LINEAR COMBINATION-BASED (GLC)
BEAMFORMER
GLC beamformer in [3] is a parameter-free RAB which is
based on reconstructing the sample covariance matrix using
the matrix regularization approach. The weight vector of the
GLC beamformer is given by

wGLC =

(
R̂X +

β0
α0
I
)−1

a(θ0)

aH (θ0)
(
R̂X +

β0
α0
I
)−1

a(θ0)
, (10)

where β0
α0

is the DL-factor which can be denoted by ρGLC. The
optimal regularization parameters α0 and β0 are determined
as

α0 =
γ

ε + γ
, (11)

β0 = ν (1− α0) = ν
ε

ε + γ
. (12)

where ε , E{‖R̂X − R‖22}, ν = tr(R)/M and γ = ‖νI− R‖22.
E{·} denotes the expectation operator and tr(·) denotes the
trace of a matrix. Therefore, the regularization parameters
α0 and β0 depend on the unknown TC-matrix R. A GLC
based robust Capon beamformer is developed in [3] using
parameters α0 and β0 estimated without the knowledge of R.
The derivation of the parameters can be found in [4].

B. HOERL, KENNARD AND BALDWIN (HKB)
BEAMFORMER
HKB beamformer in [5] is another parameter-free RAB with
weight vector given by

wHKB =

(
R̂X + ρHKBI

)−1
a(θ0)

aH (θ0)
(
R̂X + ρHKBI

)−1
a(θ0)

, (13)

where ρHKB is the DL-factor expressed by

ρHKB =
(M − 1)σ̂ 2

LS

‖ηLS‖
2
2

. (14)

with

σ̂ 2
LS = QηLS −

(
R1/2
X a(θ0)
M

)
. (15)

The standard least squares estimator is used to obtain ηLS as

ηLS = (QHQ)−1QH

(
R1/2
X a(θ0)
M

)
, (16)

where Q = R1/2
X B. B ∈ CM×(M−1) is the semi-unitary

blocking matrix which satisfies the constraints BHa(θ0) = 0
and BHB = I. The columns of B can be computed as the
eigenvectors corresponding to theM−1 non-zero eigenvalues
of I − a(θ0)aH (θ0)/M as used in [7].
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C. SPATIAL MATCHED FILTER-BASED (SMF)
BEAMFORMER
The spatial matched filter SMF beamformer [6] is a recently
proposed robust adaptive beamformer. The weight vector of
the SMF beamformer is given by

wSMF =

(
R̂X + ρSMFI

)−1
a(θ0)

aH (θ0)
(
R̂X + ρSMFI

)−1
a(θ0)

. (17)

where the DL-factor ρSMF of the beamformer is obtained
through the eigen-analysis of the beam pattern. ρSMF was
taken to be the output power of the SMF associated with the
ASV a(θ0).

ρSMF =
1
N

∥∥∥∥ a(θ0)
‖a(θ0)‖2

X
∥∥∥∥2
2
, (18)

where X ∈ CM×N is the received signal matrix.

D. WORST CASE BEAMFORMER (WCB)
The worst case beamformer [12] is based on estimating the
ASV of desired signal by solving the problem of ASV mis-
match between the nominal and the actual signal ASVs. i.e.
â(θ0) = a(θ0) +1 6= a(θ0). Where 1 is an unknown deter-
ministic norm of the ASV distortion bounded by ‖1‖2 ≤ ε.
ε > 0 is the bound mismatch vector.

For robustness, the actual desired signal ASV is assumed
to belong to the set

A(ε) , {c|c = a(θ0)+ e, ‖e‖2 ≤ ε}, (19)

it is assumed that, if e = 1, then c = â(θ0) since â(θ0) can be
any vector in (19). The beamformer is intended to minimize
the following minimization problem

min
w

wH R̂Xw,

subject to: |wHc| ≥ 1, c ∈ A(ε). (20)

The complex weight vector of WCB is given by

wWCB =
λo(R̂X + λoε

2I)−1a(θ0)

λoaH (θ0)(R̂X + λoε2I)−1a(θ0)
, (21)

where λo is the Lagrange multiplier. Therefore, wWCB
in (20) is iteratively computed using the SOC programming
approach employed in [12].

III. PROPOSED BEAMFORMING ALGORITHMS
In this section, two beamformers are proposed to improve
the performance of SCB in terms of convergence rate and
SINR. The beamformers are based on the output power of
the SMF associated with the ASV of desired signal direc-
tion [6], estimation of ASV of the desired signal, the sig-
nal power reduction and the matrix regularization [10].
The proposed method formulation is described firstly, and
followed by the estimation of the signal steering vector
through ASV mismatch compensation, then proceeded with
the desired signal power reduction in SC-matrix. Finally,

the two proposed beamformers based on diagonal loading
(SMF1-DL) and interference-plus-noise-covariance-matrix
reconstruction (SMF1-INC) are introduced.

A. ALGORITHM FORMULATION
In order to reconstruct the SC-matrix R̂X, a matrix regu-
larization form in (22) is utilized to compute the desired
covariance matrix R̆X. As introduced in [4], [9], and [10], R̆X
is calculated by linearly combining the SC-matrix R̂X and its
initial guess R0.

R̆X = αR̂X + (1− α)R0, (22)

where α ∈[0,1] is a regularization parameter. Assuming
R0 = I, the beamformer is considered to be the SCB
when α = 1 and a delay-and-sum beamformer (DSB) when
α = 0. In this work, the performance of SCB is improved
thus, parameter α is considered to be less than but close
to 1 (α →1). According to [10], R0 is obtained from the
physical cluttering model in which previous knowledge of
clutter (interferences in this case) is used. The mathematical
model of R0 is given as

R0 =
1
P

P∑
i=1

σ 2
i a(θi)aH (θi), (23)

where σ 2
i is the interference power for a given previous scan.

When (23) is substituted into (22) with no DOA mismatches
and parameter α set to 0, the beamformer becomes the opti-
mal one. However, due to the dynamic nature of the inter-
ferences, using their previous information to approximate R0
may not be a good choice in practice, as it may result into low
performance due to DOA mismatches and power variations.
The current received signal data X is therefore utilized to
estimate R0.
The performance of the RABs also depends on the selec-

tion choice of the regularization parameter α in (22). There-
fore, a variable αx is also proposed given by

αx = 1−
1
KN

. (24)

where K [1 < K ≤ M ] is a constant integer that adds one
degree of freedom [15], [16].

B. DESIRED SIGNAL ASV MISMATCH COMPENSATION
In practice, the actual ASV of the desired signal is usually
hard to obtain by just using the nominal DOA. This is due
to the complexity of the signal propagation environment [8].
Therefore, there is need for the compensation of the nominal
ASV mismatch that may occur. This is achieved by employ-
ing correlation between the nominal ASV a(θ0) and the
eigenvectors corresponding to the dominant eigenvalues of
the desired signal and interference (SI) subspace. The eigen-
values with their corresponding eigenvectors are obtained
through eigen-decomposition of the SC-matrix R̂X.

R̂X = UX3XUH
X , (25)
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where Ux ∈ CMxM is a square matrix having columns
corresponding to eigenvectors um[m = 0,1,· · · ,M − 1] of
R̂X. 3X ∈ CMxM is a diagonal matrix. That is to say, 3x =

diag{µ0, µ1, · · · , µD−1, · · · , µM−1}with elementsµm>0 in
descending order are eigenvalues of R̂X.D is the total number
of the detected interferences plus the desired signal, obtained
as the m that maximizes the coefficient [11]

η(m) = max
m

∣∣∣∣µm−1µm

∣∣∣∣ , (26)

form = 1, · · · ,M−1. The correlation coefficient of any two
column vectors v1 and v2 is generally computed [13]

ψ(v1, v2) ,
vH1 v2

‖v1‖2‖v2‖2
. (27)

Therefore, the correlation coefficients of the nominal ASV
a(θ0) and the eigenvectors um[m=0,· · · ,D−1] are calculated
as in (28). The maximum correlation coefficient is achieved
when um is the eigenvector of the desired signal ud.

|ψ(ud,a(θ0))| = max
um
|ψ(um,a(θ0))|, m=0, · · · ,M−1,

= max
um

∣∣∣∣ uHma(θ0)
‖um‖2‖a(θ0)‖2

∣∣∣∣. (28)

Therefore, the estimated desired signal ASV â(θ0) is obtained
by

â(θ0) =
√
M

ud

‖ud‖
. (29)

C. DESIRED SIGNAL POWER REDUCTION IN SC-MATRIX
To reduce the signal power in SC-matrix, the desired sig-
nal covariance (DSC) matrix has to be eliminated from the
SC-matrix R̂X as described below.

R̄X = R̂X − R̄0. (30)

R̄0 is the DSC-matrix estimated as

R̄0 = σ̂ 2
0 â(θ0)â(θ0)H , (31)

where σ̂ 2
0 is the estimate of desired signal power derived as

follows.

• Considering the received signal matrix X =

[x1, x2, · · · , xN ] written in the form as in (1)

X = a(θ0)s0 +
P∑
i=1

a(θi)si + N, (32)

• Introducing the normalized ASV associated with the
DOA of the desired signal on both sides of (32). For
convenience we let a0 = a(θ0).

aH0
√
M

X =
aH0
√
M

a0s0 +
aH0
√
M

P∑
i=1

a(θi)si +
aH0
√
M

N.

(33)

• On assumption that the a0 is uncorrelated with the inter-
ferences [9], the interference component in (33) can be
approximated to zero.

aH0
√
M

X =
aH0
√
M

a0s0 +
aH0
√
M

N. (34)

In practice, the assumption in (34) may not hold
for small array sized structures. By considering the
above assumption, this desired signal power estimation
approach will be very sensitive to the ASV mismatch
of the desired signal. Therefore, the nominal ASV a(θ0)
in (34) with a mismatch is replaced with the estimated
ASV â(θ0) of the desired signal in (29) to overcome this
shortcoming.

• We then normalize (34) to obtain the output power of the

SMF as 1
N

∥∥∥ â(θ0)H√
M

X
∥∥∥2
2
. The output power of the SMF can

be denoted by, PSMF and for convenience, we consider
â0 = â(θ0).

PSMF =
1
N

∥∥∥∥∥ âH0
√
M

â0s0 +
âH0
√
M

N

∥∥∥∥∥
2

2

,

=
1
N

∥∥∥∥∥
(

âH0
√
M

â0s0 +
âH0
√
M

N

)

×

(
âH0
√
M

â0s0 +
âH0
√
M

N

)H∥∥∥∥∥∥
2

. (35)

• Assuming the desired signal and the noise are statisti-
cally independent, (35) can be manipulated and solved
as

PSMF =

1
N

s0sH0︸ ︷︷ ︸
σ̂ 20

∣∣∣∣∣ â
H
0 â0
√
M

∣∣∣∣∣
2

+
âH0
√
M

(
1
N

∥∥∥NNH
∥∥∥
2︸ ︷︷ ︸

σ̂ 2n

)
â0
√
M



=

 1
N

s0sH0︸ ︷︷ ︸
σ̂ 20

∣∣∣∣∣ â
H
0 â0
√
M

∣∣∣∣∣
2

+
âH0 RNâ0

M

. (36)

• By substituting for PSMF, multiplying M on both sizes
and reforming the left hand size of (36), it is obtained

âH0 R̂Xâ0 =
1
N

s0sH0︸ ︷︷ ︸
σ̂ 20

∣∣∣âH0 â0

∣∣∣2 + âH0 RNâ0. (37)

• With straight forward manipulation, the estimated
desired signal power σ̂ 2

0 is obtained as

σ̂ 2
0 =

âH0 R̂Xâ0 − âH0 RNâ0∣∣∣âH0 â0

∣∣∣2 . (38)

The derivation is based on one used in [9]. RN is the noise
covariance (NC) matrix which can be estimated from the
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TABLE 1. SMF1-DL beamformer.

noise powers in the noise subspace of the eigen-decomposed
SC-matrix in (25) as

RN =

(
1

M − D

M−1∑
m=D

µm

)
.I. (39)

D. PROPOSED SMF 1−DL BEAMFORMER
The SMF1-DL beamformer is based on SMF and DL.
From (22), R̆X is computed by replacing R̂X with R̄X in (30),
and R̂0 is estimated as an identity matrix I loaded with output
power of the SMF as given in (40). The output power is
computed using the L1-norm concept.

R̂0 =
1
N

∥∥∥∥ â(θ0)
√
M

X
∥∥∥∥2
1
.I,

= σ 2
SMF1I, (40)

where σ 2
SMF1

is the L1-norm output power of SMF associated
with the normalized ASV of the desired signal DOA given by
â(θ0)√
M
. ‖·‖1 denotesL1-norm of a matrix. ReplacingR0 in (22)

with R̂0 in (40) and α with αx, the following expression is
obtained

R̆X = αxR̄X + (1− αx)σ 2
SMF1I. (41)

By substituting (24) into (41), the proposed SMF1-DL based
beamformer weight vector is given by

wSMF1-D =

(
R̄X +

σ 2SMF1
KN−1 I

)−1
â(θ0)

âH (θ0)
(

R̄X +
σ 2SMF1
KN−1 I

)−1
â(θ0)

, (42)

where
σ 2SMF1
KN−1 is the loading factor which is denoted by

ρSMF1-D. A summary of the proposed SMF1-DL beamformer
is given in Table 1.

E. PROPOSED SMF 1−INC BEAMFORMER
The second proposed beamformer is based on SMF and
INC-matrix reconstruction. Considering the regularization
form in (22), R̆X is constructed as

R̆X = αxR̄X + (1− αx)R̂IPN, (43)

where the interference-plus-noise (IPN) matrix R̂IPN is com-
puted as R0 in (23). But the system noise is added to R0. The
reconstructed R̂IPN is given by

R̂IPN =
1
P

P∑
i=1

µ0a(θi)aH (θi)+ RN, (44)

where µ0 is the maximum power of the signals obtained
through the eigen-decomposition of the SC-matrix in (25).
a(θi) is the ASV of the ith interference. The power of the

signals can also be obtained as µ0 = 1/(aH (θi)R̂
−1
X a(θi)) to

overcome the effects of mismatches in the DOA of the inter-
ferences but with a higher computation complexity. There-
fore, the reconstructed covariance matrix of the proposed
SMF1-INC beamformer is given by

R̆X = αxR̄X + (1− αx)σ 2
SMF1 R̂IPN. (45)

The output power σ 2
SMF1

is introduced in (45) to avoid the

convergence of the covariance matrix R̆X very fast before
reaching the TC-matrix, which is also analyzed in the next
section. This is due to the tendency of the parameter (1−αx)
to converge to a very small value as N increases. Mean-
while, the DOAs θi[i = 1, · · · ,P] of the interferences are
determined using any DOA estimation method e.g Root-
MUSIC [17], MUSIC-Like [18], as well as DOA estimation
based on the concept of nulling antenna using the LMS
algorithm [19]. To reconstruct R̂IPN, the desired signal DOA
θ0 has to be removed from the estimated DOAs. Angle θ0
should lie within the first null beam-width (FNBW) range.
FNBW is estimated as

FNBW = 2
(
π

2
− cos−1

(
λ

Md

))
. (46)

Therefore, the desired DOA θ0 uncertainty is bounded in the
upper and lower bounds of θ0+1θ0, with1θ0 limited by the
inequality in (47) when d

λ
= 0.5

− sin−1
(

2
M

)
≤ 1θ0 ≤ sin−1

(
2
M

)
. (47)

The weight vector for the proposed SMF1-INC beamformer
is given as

wSMF1-I =

(
R̄X +

σ 2SMF1
KN−1 R̂IPN

)−1
â(θ0)

âH (θ0)
(

R̄X +
σ 2SMF1
KN−1 R̂IPN

)−1
â(θ0)

. (48)

where the loading factor
σ 2SMF1
KN−1 is denoted by ρSMF1-I, which is

the same as the DL-factor ρSMF1-D of the proposed SMF1-DL
beamformer. A summary of the proposed SMF1-INC algo-
rithm is given in Table 2.
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TABLE 2. SMF1-INC algorithm.

IV. PERFORMANCE ANALYSIS OF THE
PROPOSED BEAMFORMERS
In this section, the performance of the proposed SMF1-DL
and SMF1-INC beamformers is analyzed in terms of the
convergence and computational complexity, and compared
with the GLC, HKB, SMF and WCB beamformers.

A. CONVERGENCE ANALYSIS OF THE PROPOSED
BEAMFORMERS
The convergence analysis of the proposed SMF1-DL and
SMF1-INC beamformers is based on minimizing the mean
square error (MSE) cost function J(R̆X) of the reconstructed
covariance matrix R̆X.

min
αx

{
J(R̆X)

}
= min

αx
E
{∥∥∥R̆X − R

∥∥∥2
2

}
. (49)

Substituting R̆X with the reconstructed covariance matrix
in (41) or in (45) for the SMF1-DL and SMF1-INC beam-
formers respectively.

min
αx

{
J(R̆X)

}
= min

αx
E
{∥∥∥αxR̄X+(1−αx)σ 2

SMF1 T̂0−R
∥∥∥2
2

}
,

(50)

where T̂0 represents the identity matrix I in (41) or the
INC-matrix R̂IPN in (45). By substituting αx = 1 − 1/(KN )
into (50), we obtain

min
N

{
J(R̆X)

}
= min

N
E


∥∥∥∥∥
(
1−

1
KN

)
R̄X +

σ 2
SMF1

KN
T̂0 − R

∥∥∥∥∥
2

2

. (51)

The limits of (51) are determined when N →∞.
lim
N→∞

J(R̆X)

= lim
N→∞

E


∥∥∥∥∥
(
1−

1
KN

)
R̄X +

σ 2
SMF1

KN
T̂0 − R

∥∥∥∥∥
2

2

,
= lim

N→∞
E


∥∥∥∥∥R̄X −

R̄X

KN
+
σ 2
SMF1

KN
T̂0 − R

∥∥∥∥∥
2

2

,
= lim

N→∞
E
{∥∥∥R̄X − R

∥∥∥2
2

}
→ 0, (52)

where R̄X is the SC-matrix R̂X with reduced desired signal
power as given in (30). Therefore, the above inequality sat-
isfies the convergence theorem in which the SC-matrix R̂X

of SCB will only converge to the TC-matrix R i.e. R̂X → R
when the ASV â(θ0) is perfectly estimated [8]. The output
power of the SMF σ 2

SMF1
controls the loading factor from

converging to zero when few snapshots are used. Therefore,
the optimal solution will be attained even faster due to the
reduced desired signal power in the SC-matrix. Thus, the con-
vergence of the proposed beamformers is dependent on their
loading factors ρSMF1-D in (42) and ρSMF1-I in (48), where the
loading factors tends to zero as N →∞. With the minimum
values ofK = 2 andN = 1, the solutions of ρSMF1-D= ρSMF1-I

=
σ 2SMF1
KN−1 are tightly bounded by

0 ≤ ρSMF1-D | ρSMF1-I ≤ σ 2
SMF1 (53)

B. COMPUTATIONAL COMPLEXITY OF THE
PROPOSED BEAMFORMERS
In this subsection, the computational complexities of the
proposed SMF1-DL and SMF1-INC beamformers are ana-
lyzed in comparison with the GLC, HKB, SMF and WCB
beamformers. The computation cost of the SMF1-DL beam-
former is divided into three parts: a) Desired signal ASV
compensation in (29), which involves eigen-decomposition
of SC-matrix with O(M3) complexity, and the estimation of
the maximum correlation coefficient in (28) to obtain the
eigenvector corresponding to the desired signal ASV with a
complexity of O(DM ) subject to ‖a(θ0)‖2 = ‖um‖2 =

√
M .

b) DSC-matrix R̄0 estimation in (31), which involves the
estimation of the desired signal power with a computational
complexity of O(M2). c) Estimating the DL-factor ρSMF1-D
with O(MN ) complexity. However, the computation cost of
the SMF1-INC beamformer is divided into four parts: a)
Compensation of the ASV of the desired signal and estima-
tion of the maximum correlation coefficient in (28) to obtain
the eigenvector corresponding to the desired signal ASVwith
a total complexity ofO(M3

+DM ). b) Estimation of the DSC-
matrix R̄0 in (31) with a complexity of O(M2). c) Estima-
tion of the loading factor ρSMF1-I with O(MN ) complexity.
d) Reconstruction of R̂IPN with O(PM ). The computational
complexities of Proposed SMF1-DL and SMF1-INC are sum-
marized in Table 3, and compared with GLC, HKB, SMF and
WCB.
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TABLE 3. Computational complexity of the beamformers.

It is found from table 3 that the proposed SMF1-DL and
SMF1-INC beamformers have lower computational complex-
ities than HKB, WCB and GLC beamformers for a given
number of array elements and snapshots. However, SMF
beamformer has the least computational complexity, since
it only employs the low complex sample matched filter to
compute the diagonal loading factor.

V. SIMULATION RESULTS
In this section, the simulation results of the proposed
SMF1-DL and SMF1-INC beamformers are analyzed with
parameter K set to the minimum value of 2. The performance
of the proposed beamformers is compared with the GLC,
HKB, SMF andWCB beamformers. A ULA with 20 antenna
elements having half-wavelength spacing between adjacent
elements are considered. Four (D = 4) far-field narrowband
signals are considered to incident onto the ULA from 2◦, 30◦,
45◦ and 60◦. The signal incident from 2◦ is considered as the
desired signal and the rest of the signals are considered as
interferences. Both the desired signal, interferences and the
noise are assumed to be spatially Gaussian random processes.
Firstly, the loading factor of the proposed SMF1-DL and
SMF1-INC in comparison with those of GLC, HKB and SMF
are analyzed. Secondly, the SINR output performances with
number of snapshots N and array elements M are evaluated.
Also, the performance of the beamformers is analyzed when
the SNR of desired signal is varied until SNR � INR.
Thirdly, the effect of imprecise estimation of D is analyzed
for the estimation of the desired signal power σ̂ 2

0 in (38).
Finally, the effect of the desired signal DOAmismatch on the
SINR output is analyzed. The SeDuMi convex optimization
MATLAB toolbox [14] is used to solve the SOC program-
ming problems of WCB. The constant parameter ε and the
loading factor in WCB are set to 3 and 10 respectively.

The experiments are performed under two conditions such
as the ASV of desired signal is perfectly known or not. The
imprecise ASV of desired signal is considered mainly due
to the DOA mismatch and sensor element position pertur-
bations. The DOA error is assumed to be uniformly dis-
tributed in [−2◦, 6◦] and the element position perturbations
are uniformly distributed in [−0.05, 0.05]. In the INC-matrix
reconstruction of SMF1-INC, theDOAs of three interferences
are randomly and uniformly distributed in [26◦, 34◦], [41◦,
49◦] and [56◦, 64◦], respectively. All the angular sectors
are sampled with the same angular interval of 1θ = 0.1◦.
The SNR of the desired signal is set to 10dB and the

FIGURE 1. Loading factors the number of snapshots N with M = 20,
SNR = 10dB and INR = 20dB. Where ρSMF1-DI is for the proposed
SMF1-DL and SMF1-INC (a), ρSMF is for SMF (b), ρHKB for HKB (c), and
ρGLC for GLC (d ).

interference-plus-noise ratio (INR) of interferences is set
to 20dB. The SINR output is computed over an average
of 100 independent Monte Carlo trials. Note that the optimal
SINR obtained from the TC-matrix R is included for refer-
ence.

A. NUMERICAL ANALYSIS OF LOADING FACTORS
As already discussed in section IV, the loading factors of
the proposed SMF1-DL and SMF1-INC beamformers are the
same.i.e. ρSMF1-D = ρSMF1-I = σ

2
SMF1

/(KN − 1). Therefore,
the loading factor is denoted as ρSMF1-DI for the both pro-
posed methods. The effects of the number of snapshots and
array elements on the loading factors for the proposed, GLC,
HKB and SMF beamformers are analyzed. In this section,
the ASV mismatch is not considered.

1) EFFECT OF NUMBER OF SNAPSHOTS ON
LOADING FACTOR
The loading factor ρSMF1-DI of the proposed beamformers
and ρGLC of the GLC beamformer decrease as N increases
as shown in Fig.1(a) and Fig.1(d) respectively. However,
the loading factor ρSMF1-DI of SMF1-DL and SMF1-INC
tends to be much larger than that of GLC beamformer as
N increases. This increases the possibility of proposed algo-
rithm to converge to the optimal beamformer as N → ∞.
On the other hand, the loading factor of SMF beamformer
tends to be constant as shown in Fig.1(b). The loading factor
of HKB beamformer gradually increases with the increasing
snapshots N as illustrated in Fig.1(c), which reduces the
performance of HKB beamformer.

2) EFFECT OF NUMBER OF ANTENNA ELEMENTS ON
LOADING FACTOR
The loading factors of the proposed SMF1-DL and
SMF1-INC as well as SMF beamformer increase with
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FIGURE 2. Loading factors versus the number of array elements M with
N = 1000, SNR = 10dB and INR = 20dB. Where ρSMF1-DI is for the
proposed SMF1-DL and SMF1-INC (a), ρSMF is for SMF (b), ρHKB for
HKB (c), and ρGLC for GLC (d ).

increasing number of antenna elements M as shown
in Fig. 2(a) and Fig. 2(b) respectively. This is due to their load-
ing factors being dependent on the output power of the spatial
matched filter, which increases with the increasing of number
of antenna elements. The loading factor of GLC beamformer
decreases with increasing M as shown in Fig. 2(d). Also the
loading factor of HKB beamformer decreases with increasing
M as shown in Fig. 2(c).

B. EFFECT OF NUMBER OF SNAPSHOTS
The effect of number of snapshots on output SINR is analyzed
under the two scenarios. i.e. in absence and presence of ASV
mismatches of the desired signal and the interferences as
shown in Fig. 3 and Fig. 4 respectively. ThemismatchedDOA
of the desired signal is randomly selected as 0◦, and the DOAs
of three interferences with mismatches are randomly selected
as 30.1◦, 42.0◦, 58.9◦, respectively. The SNR and INR are set
to 10dB and 20dB respectively.

It is found from Fig. 3 that the proposed SMF1-DL and
SMF1-INC SMF and WCB beamformers generally give
larger output SINRs than the SCB, GLC andHKB beamform-
ers, and SCB gives the smallest output SINR. The proposed
SMF1-INC beamformer gives the largest output SINR versus
the number of snapshots. On the other hand, in presence
of ASV mismatch as shown in Fig.4, the performance of
SCB and GLC severally degrades. While, WCB gives better
performance than SCB, GLC, HKB and SMF as the ASV
mismatch is compensated at a certain extent. Meanwhile,
the proposed SMF1-DL and SMF1-INC beamformers main-
tain a good performance due to the better compensation
ability of the ASV mismatch.

C. EFFECT OF NUMBER OF ANTENNA ELEMENTS
The effect of the number of array elements on the output
SINR is analyzed as shown in Fig. 6 and Fig. 6, respectively.

FIGURE 3. Output SINRs of the beamformers versus the number of
snapshots with M = 20, SNR = 10dB and INR = 20dB in absence of signal
and interference ASV mismatches.

FIGURE 4. Output SINRs of the beamformers versus the number of
snapshots with M = 20, SNR = 10dB and INR = 20dB in presence of the
mismatched signal DOA of 0◦, and the mismatched DOAs of the
interferences are 30.1◦, 42.0◦ and 58.9◦.

The number of snapshots is 150, with SNR and INR at 10dB
and 20dB respectively. In the presence of ASV mismatch,
the DOA of desired signal with mismatch is given as 0◦ and
those of interferences are given as 30.1◦, 42.0◦ and 58.9◦.

It is found from Fig. 6 that GLC and HKB beamform-
ers give lower SINR outputs than SMF, SMF1-DL and
SMF1-INC as M increases. This is because when the num-
ber of elements increase, so does the loading factors of
the proposed SMF1-DL and SMF1-INC as well as SMF as
depicted in Fig. 2. SCB has a severe degradation because
of the increasing deviation between its SC-matrix and the
TC-matrix.WCB gives the same output SINRwith increasing
array elements as in SMF1-DL and SMF, but low for fewer
array elements. The proposed SMF1-INC beamformer shows
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FIGURE 5. Output SINRs of the beamformers versus the number of
antenna elements with N = 150, SNR = 10dB and INR = 20dB in absence
of ASV mismatches.

FIGURE 6. Output SINRs of the beamformers versus the number of
antenna elements with N = 150, SNR =10dB and INR = 20dB in presence
of the mismatched signal DOA of 0◦, and the mismatched DOAs of the
interferences are 30.1◦, 42.0◦ and 58.9◦.

a better performance. Considering with the presence of ASV
mismatch as shown in Fig. 6, the performance of GLC, HKB,
SMF and WCB beamformers severely deteriorates as SCB.
While the proposed SMF1-DL and SMF1-INC beamformers
maintain good performances.

D. EFFECT OF INPUT SNR
The effect of the input SNR on the output SINR of the beam-
formers is analyzed as shown in Fig. 7 and Fig. 8, respectively.
The number of snapshots is 150, and INR is 20dB.

From Fig. 7 and Fig. 8, the proposed SMF1-DL and
SMF1-INC beamformers as well as SMF and WCB give
better performances compared to SCB, GLC and HKB beam-
formers. The output SINR of SCB, GLC and HKB beam-
formers decrease with input SNR when input SNR is larger

FIGURE 7. Output SINRs of the beamformers versus input SNR with
N = 150 in of absence of signal and interference ASV mismatches.

FIGURE 8. Output SINRs of the beamformers versus input SNR values
with N = 150. In presence of mismatched signal DOA of 0◦, and
mismatched DOAs of the interferences are 30.1◦, 42.0◦ and 58.9◦.

than some values, because of desired signal self-cancellation.
It can be found that the proposed SMF1-INC beamform-
ers give the best performances regardless of ASV mis-
match or not as shown in Fig. 7 and Fig. 8.

E. EFFECT OF IMPRECISE ESTIMATION OF NUMBER OF
SIGNAL SOURCES
During the estimation of the desired signal, the estimation of
the number of signal sources is key, which can be reflected
in the estimation of NC-matrix RN and in the mismatch
compensation of desired signal ASV â0 in (38). The effect
of imprecise estimation of the number of signal sources on
the performance of the proposed SMF1-DL and SMF1-INC
beamformers are analyzed in Fig. 9 and Fig. 10 in terms
of output SINR versus the number of snapshots, where the
estimated number of signal sources D0 is assumed to be 2, 3,
4, 6 and 10 compared with the 4 actual signal sources.
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FIGURE 9. Output SINRs of the proposed SMF1-DL beamformer versus
the number of snapshots and the estimated number of signal sources D0
with M = 20, SNR = 10dB and INR = 20dB.

FIGURE 10. Output SINRs of the proposed SMF1-INC beamformer versus
the number of snapshots and the estimated number of signal sources D0
with M = 20, SNR = 10dB and INR = 20dB.

From Fig. 9, the imprecise estimate of number of signal
sources barely affects the performance of proposed SMF1-DL
beamformer. However, it can be found in Fig. 10 that when
D0 <D, the performance of proposed SMF1-INC beamformer
degrades. Meanwhile, when D0 > D, the beamformer con-
verges to the optimal performance ofD0 =D= 4. Therefore,
it is better to overestimate than underestimate the number of
signal sources for the proposed SMF1-INC beamformer.

F. EFFECT OF DESIRED SIGNAL DOA MISMATCH
The presence of the ASV mismatch of desired signal has a
great impact on the performance of beamformers as analyzed
in the previous sections. Therefore, the effect of DOA mis-
match of the desired signal on the output SINR is illustrated
in Fig. 11 and Fig. 12. The absence and presence of the
interference DOA mismatches are also investigated.

FIGURE 11. Output SINRs of the beamformers versus desired signal DOA
mismatches with N = 150, M = 20, SNR = 10dB and INR = 20dB in
absence of interference DOA mismatches.

FIGURE 12. Output SINRs of the beamformers versus desired signal DOA
mismatches with N = 150, M = 20, SNR = 10dBand INR = 20dB in
presence of interference DOA mismatches in the SMF1-INC beamformer.

From Fig. 11 and Fig. 12, it can be found that the pro-
posed SMF1-DL and SMF1-INC beamformers are robust
against ASV mismatches. On the other hand, SMF and WCB
beamformers show better performances than GLC and HKB,
whereas SCB has the worst performance in the presence of
the desired signal ASV mismatch.

VI. CONCLUSION
In this paper, two robust adaptive beamformers have been
proposed to improve the performance of the standard
Capon beamformer and other existing adaptive beamformers.
The proposed beamformers have two pre-processing steps.
Firstly, the ASV of desired signal is estimated by computing
the correlation between the nominal ASV and the eigenvec-
tors corresponding to the dominant eigenvalues. Secondly,
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the power of desired signal in the sample covariance matrix
is reduced by estimating the desired signal covariance matrix
from the output power of spatial matched filter and noise
covariance matrix. Then, the matrix regularization is used
to estimate the desired sample covariance matrix. In the
first beamformer, the desired sample covariance matrix has
been constructed from the sample covariance matrix with
the reduced desired signal power and the diagonal loading
based on the output power of the spatial matched filter.
In the second beamformer, the desired sample covariance
matrix has been constructed from the sample covariance
matrix with the reduced desired signal power and the recon-
structed INC-matrix loaded with the output power of the
spatial matched filter. The performance of proposed adaptive
beamformers has been investigated by simulations. It has
been found that the proposed beamformers can provide supe-
rior performance compared with others existing adaptive
beamformers in the absence and presence of desired signal
ASVmismatches.Moreover, the proposed beamformers have
also comparatively low computational complexities.
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