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ABSTRACT In this paper, we propose a generalized minimum-sum decoding algorithm using a linear
approximation (LAMS) for protograph-based low-density parity-check (PB-LDPC) codes with quasi-
cyclic (QC) structures. The linear approximation introduces some factors in each decoding iteration, which
linearly adjust the check node updating and channel output. These factors are optimized iteratively using
machine learning, where the optimization can be efficiently solved by a small and shallow neural network
with training data produced by the LAMS decoder. The neural network is built according to the parity check
matrix of a PB-LDPC code with a QC structure which can greatly reduce the size of the neural network.
Since, we optimize the factors once per decoding iteration, the optimization is not limited by the number of
the iterations. Then, we give the optimized results of the factors in the LAMS decoder and perform decoding
simulations for PB-LDPC codes in fifth generation mobile networks (5G). In the simulations, the LAMS
algorithm shows noticeable improvement over the normalized and the offset minimum-sum algorithms and
even better performance than the belief propagation algorithm in some high signal-to-noise ratio regions.

INDEX TERMS Iterative decoding, parity check codes, neural networks, optimization, machine learning.

I. INTRODUCTION
Low-density parity-check (LDPC) codes have been aroused
much attention during the past decades. Protograph-based
LDPC (PB-LDPC) codes [1] gradually become a main-
stream encoding technology for various communication sys-
tems. The landmark event is that the enhanced mobile
broadband (EMBB) scenario in 5th generation mobile net-
works (5G) adopts two sets of PB-LDPC codes defined by
the parity check matrices, BG1 and BG2 [2]. The BG1 and
the BG2 matrices are constructed from the raptor-like pro-
tographs [3] with quasi-cyclic (QC) structures, which can
support the rate compatible coding and scalable information
transmission from dozens to thousands.

Although the belief propagation (BP) algorithm can
achieve near-optimal performance for the 5G LDPC codes,
the simplified versions of the BP algorithm, such as the
minimum-sum (MS), normalized MS (NMS), and offset
MS (OMS) algorithms, are widely used in practical applica-
tions thanks for their easy hardware implementation [4]–[6].

Here, the NMS and the OMS algorithms can achieve
noticeable performance improvement on the MS decoding
with the normalized and the offset factors, respectively.

Since the tanh functions are replaced by the comparison
operations in the calculations of the check node updating,
there are substantial performance losses for the simplified
algorithms compared with the BP algorithm, especially for
the low rate, moderate and short length, and finite iterations
conditions.

Usually, these BP-based simplified algorithms involve
many factor settings which are optimized by the threshold
analysis or simulations. In [4] and [6]–[11], the threshold
analysis is used to optimize the factors under the assumptions
of infinite code length and cycle-free, which is not in line with
actual conditions. In Xu et al. [10], Oh and Parhi [12], and
Wu et al. [13] also optimize the factors by simulations,
but that makes the optimization very time consuming and
inefficient.

Recently, machine learning provides a new perspective
for decoding optimization. In [14]–[16], the BP and the MS
decoders for short length high-density parity-check (HDPC)
codes are optimized by deep recurrent neural networks. The
standard decoders are significantly improved by optimizing
different factors for the output of each variable node and
check node in each iteration. However, the size of the network
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is increasedwith the code length and themaximum number of
the iterations. For the longer code length and more iterations,
the network may be too complicated to be optimized. In [17],
the idea of using deep neural networks for decoding of the
random and the polar codes is revisited. In [18], a method
from the field of machine learning is applied to construct the
discrete message passing decoders for regular LDPC codes.
In [19], a joint quantizer is optimized by a neural network
for the BP decoder. In [20], the authors extend the syndrome
decoding and propose two deep neural network architec-
tures for decoding of linear codes. In [21], a novel itera-
tive architecture concatenating a trained convolutional neural
network with a standard BP decoder for channel decoding
is proposed.

In this paper, we propose a method based on machine
learning to optimize the simplified BP-based algorithms.
Firstly, we propose a generalized MS algorithm using a lin-
ear approximation (LAMS), where the magnitudes of the
check node output are modified not only by a normal-
ized or an offset factor like the NMS or the OMS algo-
rithm but by a linear function containing both the factors.
Besides, the LAMS algorithm also modifies the output
from the channel with a similar linear function. Then,
we build a neural network through the graph of a PB-LDPC
code with a QC structure and configure the parameters of
the LAMS algorithm into the corresponding network for
optimization.

Our neural network is not deep because it only runs one
iteration process of decoding and gets the corresponding
optimized factors. When the current iteration is finished,
the optimized factors are saved to calculate the input of the
network for the next iteration. The optimization of the next
iteration is started when the neural network is reinitialized
and the input is sent back. We use the local optimal solution
of each iteration instead of the global optimal solution of
all iterations to reduce the network depth and computational
complexity. With help of the QC structures of 5G LDPC
codes, the complexity of our neural network will not signifi-
cantly increase with the code length, where multiple bits can
be processed in parallel. The number of operation units in
each layer of the neural network is also directly proportional
to the scale of a protograph which is much smaller than that
of the parity-check matrix.

Since the neural network is not too much complex, we can
optimize the LAMS decoder for LDPC codes with thou-
sands of code lengths and dozens of iteration numbers.
We use the LAMS algorithm on the 5G BG2 matrix and
perform the simulations for different code lengths, code
rates, and numbers of the iterations. The simulation results
show that the LAMS algorithm has obvious advantages
over the NMS and the OMS algorithms. As the signal-to-
noise ratio (SNR) increases and the block error rate (BLER)
decreases, the gap between the LAMS and the BP algorithms
gradually decreases. For some conditions with high SNRs,
the BLER performance of the LAMS algorithm exceeds that
of the BP algorithm.

II. GENERALIZED MS DECODING USING
A LINEAR APPROXIMATION
An LDPC code is defined by a parity-check matrix H, which
has M parity-check constraints among the N coded bits.
The matrix H is an M × N sparse binary matrix, where
the number of the 1-elements is J � MN . The matrix can
be represented by a bipartite graph, which is formed by N
variable nodes vn, n ∈ N = {0, 1, · · · ,N − 1}, M check
nodes cm,m ∈ M = {0, 1, · · · ,M − 1}, and J edges
ej, j ∈ J = {0, 1, · · · , J − 1}. The j-th edge connects the
m-th check node and the n-th variable node if the m-th row
and the n-th column of the matrix H is a 1-element, which is
the j-th 1-element from left to right and from top to bottom
in H. The neighbors of the variable node vn are the check
nodes cm,m ∈ A(n), whereA(n) is the index set of the check
nodes connected to the node vn. Similarly, the neighbors of
the check node cm are the variable nodes vn, n ∈ B(m), where
B(m) is the index set of the variable nodes participating in the
check node cm.

The K information bits are coded by the matrix H, and N
coded bitswn, n ∈ N are generated. Among theN coded bits,
Ñ coded bits are BPSK modulated and transmitted, which
meansN−Ñ coded bits are punctured. The Ñ bits are sent to a
receiver through an additive white Gaussian noise (AWGN)
channel with the mean 0 and the variance σ 2. The receiver
takes the Ñ received signals andN−Ñ zero signals as channel
outputs, defined by rn, n ∈ N , into an LDPC decoder, where
the N − Ñ zero signals are corresponding to the punctured
bits that are not transmitted through the channel.

The BP decoder gets the channel output signal rn and cal-
culates the corresponding log-likelihood ratio (LLR), defined
as lchn , for the n-th coded bit wn (or the variable node vn) as
follows,

lchn = log
Pr(wn = 0|rn)
Pr(wn = 1|rn)

=
2rn
σ 2 (1)

where Pr(wn = 0|rn) and Pr(wn = 1|rn) are conditional prob-
abilities of wn = 0 and wn = 1 given rn, respectively.
The channel LLR lchn represents how likely the coded bit wn
is 0 or 1. The larger the magnitude of lchn , the higher the
certainty of that the code bit wn is 0 or 1. If lchn ≥ 0, that
Pr(wn = 0|rn) ≥ Pr(wn = 1|rn), the original code bit is more
likely 0, otherwise, 1 is more likely for the code bit. Based on
the channel LLRs lchn and the parity-check matrix H, the BP
decoder iteratively updates the LLRs between the variable
nodes and the check nodes in each iteration to obtain the LLR
output for each bit.

At the beginning of the BP decoding, the 0-th iteration,
the LLR sent from the variable node vn, n ∈ N to the
neighbor check node cm,m ∈ A(n) is denoted as follows,

l0n→m = lchn (2)

For each iteration i = 0, 1, · · · , I − 1, the check node
cm,m ∈ M receives l in→m from its neighbors vn, n ∈ B(m)
and gives backward LLRs to the corresponding variable
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nodes, which can be formulated as follows,

l im→n = 2tanh−1

 ∏
n′∈B(m)\n

tanh

(
l in′→m

2

) (3)

where B(m)\n is the index set of the variable nodes B(m)
excluding n.

When l im→n comes back to the variable node vn, the output
LLR for current iteration, denoted as l in, can be formulated as
follows,

l in = lchn +
∑

m∈A(n)

l im→n. (4)

Here, l in can be used to obtain the tentative hard decision of
coded bit win for the i-th iteration, where the N coded bits win
form a column vector wi. If all the tentative hard decision
of LLR outputs match the check equations in H, namely
Hwi
= 0 in the Galois field GF(2), the decoding is successful,

otherwise, the BP decoding is carried out for the next iteration
until the maximum number of iteration I is reached.
For the next iteration i + 1, the updated LLR should be

sent from the variable node vn, n ∈ N to the check node
cm,m ∈ A(n) again, which is different from the beginning of
the decoding in Equation (2). It can be represented as follows,

l i+1n→m = l in − l
i
m→n (5)

where l im→n and l
i
n are the outputs of the check nodes and the

variable nodes in the previous iteration, respectively. Then,
the iterative decoding is carried on until the decoding is
finished.

To reduce the complexity of the BP algorithm, a simpli-
fied BP-based decoding, the MS algorithm, is widely used
in many practical applications. The tanh function in Equa-
tion (3) can be approximately replaced with the min-sum
simplification as follows,

l im→n =

 ∏
n′∈B(m)\n

sign
(
l in′→m

)· min
n′∈B(m)\n

(∣∣∣l in′→m

∣∣∣) (6)

where the function sign() gets the sign of the parameter. Note
that sign(0) is defined as 0.

Since the MS decoding only includes the additions and
the comparisons, it is unnecessary to estimate the channel
variance σ 2. The initialization of the channel LLR is changed
from Equation (1) as follows,

lchn =
Pr(wn = 0|rn)
Pr(wn = 1|rn)

= rn (7)

where the noise variance σ 2 is omitted in the calculation
and the MS decoding is free from the estimation error of the
variance.

However, the MS approximation incurs considerable per-
formance loss compared with the BP algorithm, especially
for the low-rate LDPC codes. To enhance the performance

of the MS algorithm, the normalized MS (NMS) algorithm is
proposed as follows,

l im→n = α ·

 ∏
n′∈B(m)\n

sign
(
l in′→m

) · min
n′∈B(m)\n

(∣∣∣l in′→m

∣∣∣)
(8)

where the normalized factor α is introduced to minimize the
approximation error of the min-sum simplification.

Similar with the NMS algorithm, the OMS algorithm
improves the performance of the MS algorithm by an offset
factor shown as follows,

l im→n =

 ∏
n′∈B(m)\n

sign
(
l in′→m

)
·max

(
min

n′∈B(m)\n

(∣∣∣l in′→m

∣∣∣)+ β, 0) (9)

where β is the offset factor and the function max() is for
guaranteeing the sign of the check output.

The two factors, α and β, only make multiplicative and
additive corrections to the amplitude

∣∣l in′→m

∣∣, which lacks
room for approximation. Combining the two factors, we pro-
pose a linear approximation of the amplitude

∣∣l in′→m

∣∣, which
introduces the factors αi, βi for each iteration. Based on Equa-
tion (8) and (9), the approximation is described as follows,

l im→n =

 ∏
n′∈B(m)\n

sign
(
l in′→m

)
·max

(
αi · min

n′∈B(m)\n

(∣∣∣l in′→m

∣∣∣)+ βi, 0) (10)

where the factors αi, βi only have a linear impact on the
magnitude of the LLR and do not change the sign of that.

Besides, the factors αchi , β
ch
i are also used for linear adjust-

ing the magnitude of the channel LLR as follows,

l in = sign
(
lchn
)
·max

(
αchi

∣∣∣lchn ∣∣∣+ βchi , 0)+ ∑
m∈A(n)

l im→n

(11)

where the equations are changed from Equation (4). The
channel LLR lchn is calculated by Equation (7). Here, we keep
the sign of the channel LLR and only linearly change the
magnitude of that.

The complete LAMS algorithm is shown in Algorithm 1,
where the channel output rn is processed to get the final coded
bits w = wi. Sine the four factors are very difficult to be
optimized for each iteration by the traditional methods of
threshold analysis and simulations, we use machine learning
for optimization in the next section.

III. THE DECODING OPTIMIZATION
BY MACHINE LEARNING
The factors αi, βi, αchi , and βchi of each iteration i = 0,
1, · · · , I − 1 in the LAMS algorithm can be optimized
iteratively using machine learning as shown in Fig. 1 (a).
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Algorithm 1 The LAMS Decoding Algorithm
1: {Initialization:}
2: for all n ∈ N do
3: for all m ∈ A(n) do
4: Set l0n→m = lchn = rn
5: end for
6: end for
7: Set i = 0
8: repeat
9: {Check Nodes Update:}
10: for all m ∈M do
11: for all n ∈ B(m) do
12: Get l im→n by Equation (10)
13: end for
14: end for
15: {Output Calculation:}
16: for all n ∈ N do
17: Get l in by Equation (11)
18: Get win = (1− sign(l in))/2
19: end for
20: Get wi

= [wi0,w
i
1, · · · ,w

i
N−1]

T

21: {Variable Nodes Update for Next Iteration:}
22: for all n ∈ N do
23: for all m ∈ A(n) do
24: Get l i+1n→m by Equation (5)
25: end for
26: end for
27: Get i = i+ 1
28: until i = I or Hwi

= 0
29: return wi

The machine learning uses a neural network with only three
layers in Fig. 1 (b), which is fed by a database of LLRs for
training. In the first layer, called the input layer, the received
LLRs of the neural network are assigned to the next layer
like the message passing from variable nodes to check nodes.
In the second layer, called the hidden layer, the LLRs are
calculated and passed forward to the last layer, where the
procedure is like the check node updating by Equation (10) in
the LAMS algorithm. In the last layer, called the output layer,
the LLRs are finally updated according to Equation (11).
Similar with one iteration of the LDPC decoding, the neural
network controls the flow of LLRs and optimizes the four
factors in the second and last layer. With large amounts of
the LLR data, the neural network can train the factors in the
i-th iteration, αi, βi, αchi , βchi , to minimize the gap between
the output and the target codes by the stochastic gradient
descent. When the optimization of the factors is finished,
the four optimized factors are saved and used to calculate the
LLRs for the next iteration by the LAMS decoder described
in Algorithm 1. Then, the LLRs are sent back as the training
data to start the optimization for the next iteration, where the
neural network should have been initialized.

Since the LDPC codes in 5G new radio (NR) belong to the
family of PB-LDPC codes with QC structures, an operation

FIGURE 1. (a) The procedure of the optimization using the neural network
and the LAMS decoder iteratively (b) The neural network for optimization
with the input, the hidden, and the output layers which own Ĵ , Ĵ , and N̂
operation units connected according to the protograph, respectively.

unit of the neural network in Fig. 1 (b) can deal with a set of
Z bits simultaneously, where Z is the lifting factor of a QC
matrix. That makes the number of operation units equal to the
number of edges or nodes in a protograph. The protograph is
usually considered as a small bipartite graph containing N̂
variable nodes and M̂ check nodes which are interconnected
by Ĵ edges. To form a derived graph corresponding to an
LDPC code, the protograph should be lifted Z times, where
each edge is copied Z times and permuted in the same edge
type across the Z different copies of the variable nodes and the
check nodes in the same node type. In one edge type or one
node type, Z edges or Z nodes form an edge set or a node set
in the derived graph, which is corresponding to an edge or a
node in the protograph. Therefore, the type or the set numbers
of the edges, the variable nodes, and the check nodes in the
derived graph are also Ĵ , N̂ and M̂ , respectively.

Note that, the PB-LDPC codes in our paper are all con-
sidered to be QC-LDPC codes, where the cyclic permuta-
tion is used in the lifting process. Since the graphs of the
PB-LDPC codes are lifted from a small protograph with
cyclic permutations, the parity check matrix of a PB-LDPC
code can be represented with a QC structure as follows,

H =


H0,0 H0,1 · · · H0,N̂−1
H1,0 H1,1 · · · H1,N̂−1
...

...
. . .

...

HM̂−1,0 HM̂−1,1 · · · HM̂−1,N̂−1

 (12)

where Hm̂,n̂, m̂ = 0, 1, · · · , M̂ − 1, n̂ = 0, 1, · · · , N̂ − 1
is a Z × Z binary circulant permutation matrix (CPM) with
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only one non-zero element in each row or the all-zero sub-
matrix. In the CPM, each row is cyclically right shifted by
one position compared with the previous row. If the non-zero
element in the first row is the p-th element with p = 0,
1, · · · ,Z − 1, the shift value of this CPM is defined as p.
The matrix H with M = M̂Z rows and N = N̂Z columns
are divided into M̂ × N̂ blocks formed by the CPMs and the
all-zero sub-matrices, which can be reduced to a simplified
matrix P of the shift values. The matrix Pwith the size M̂×N̂
is filledwith the values of p and−1which represent the CPMs
and the all-zero sub-matrix in the matrix H, respectively.
According to the matrix P, we can easily build the matrix H.

With help of the QC structures in the PB-LDPC codes,
we can process a block of data of the size Z in an operation
unit of the neural network. Furthermore, considering the
batch size S in the training step, we set the tensors in the
neural network with the shape of the first dimension S and
the second dimension Z .
The output of the operation unit in the input layer with the

shape size 2 from the n̂-th variable node set to the m̂-th check
node set, defined by yInn̂→m̂, can be described by a matrix as
follows,

yInn̂→m̂ =


y0,0 y0,1 · · · y0,Z−1
y1,0 y1,1 · · · y1,Z−1
...

...
. . .

...

yS−1,0 yS−1,1 · · · yS−1,Z−1

 (13)

where ys,z, s = 0, 1, · · · , S − 1, z = 0, 1, · · · ,Z − 1 is the
abbreviated form of the symbol yInn̂→m̂(s, z) representing the
z-th element from the n̂-th variable node set to the m̂-th check
node set in the s-th sample of the batch for the optimization
in the input layer. Note that, the operation unit yInn̂→m̂ corre-
sponds to the ĵ-th operation unit yIn

ĵ
, ĵ = 0, 1, · · · , Ĵ−1 of the

neural network with the size Ĵ in Fig. 1 (b). When training,
the input layer is fed by the corresponding LLR in the i-th
iteration as the equation yInn̂→m̂(s, z) = l in̂→m̂(s, z).
In the hidden layer, the elements of the tensor from the

input layer should be circularly shifted along the second axis
to make them conducted in parallel. The shift function with
the right shift value p for the matrix yInn̂→m̂ is defined as
Roll(yInn̂→m̂, p), where each element of the shifted matrix is
denoted by yps,z. The relationship between y

p
s,z and ys,z can be

formulated as follows,

yps,z = ys, mod (z−p,Z ) (14)

where ys, mod (z−p,Z ) is the s-th row and mod (z−p,Z )-th col-
umn element in yInn̂→m̂. For example, the matrix after circular
right shift with the value p = 1 can be described by ys,z as
follows,

Roll
(
yInn̂→m̂, 1

)
=


y0,Z−1 y0,0 · · · y0,Z−2
y1,Z−1 y1,0 · · · y1,Z−2
...

...
. . .

...

yS−1,Z−1 yS−1,0 · · · yS−1,Z−2


(15)

where all the columns of the matrix are circularly shifted one
place to the right. Suppose that the shift values of the ĵ′-th
edge set from n̂′ to m̂ and the ĵ-th edge set from n̂ to m̂ are
p′ and p, respectively, the elements of the tensor from the
input layer should be circularly right shifted as the following
equation,

yIn,Rln̂′→m̂ = Roll
(
yInn̂′→m̂, p− p

′

)
(16)

where the right shift p−p′ is equivalent to the left shift p′−p.
Then, the output of the ĵ-th operation unit in the hidden

layer from the m̂-th check node set to the n̂-th variable node
set, defined as yHdm̂→n̂, can be calculated by processing the
corresponding elements in the matrix yIn,Rln̂′→m̂ in parallel.
Each element of yHdm̂→n̂ is formulated as follows,

yHdm̂→n̂(s, z) =

 ∏
n̂′∈B(m̂)\n̂

sign
(
yIn,Rln̂′→m̂(s, z)

)
·max

(
α · min

n̂′∈B(m̂)\n̂

(∣∣∣yIn,Rln̂′→m̂(s, z)
∣∣∣)+β, 0)

(17)

where yIn,Rln̂′→m̂(s, z) is the s-th row and z-th column element in
the matrix yIn,Rln̂′→m̂. Here, the variables α and β in the neural
network will be optimized by training data and assigned to
αi and βi in the i-th iteration of the LAMS decoder when the
training is finished.
The final output yOtn̂ in the last layer is an S × Z tensor

matrix for the n̂-th variable node set. With the data from the
hidden layer, the result of each element in the output yOtn̂ is as
follows,

yOtn̂ (s, z) = sign
(
lchn̂ (s, z)

)
·max

(
αch ·

∣∣∣lchn̂ (s, z)
∣∣∣+ βch, 0)

+

∑
m̂∈A(n̂)

yHdm̂→n̂(s, z) (18)

where lchn̂ (s, z) is the s-th row and z-th column element of the
corresponding channel LLR matrix with size S × Z for the
n̂-th variable node set. Similar with αi and βi, αchi = α

ch and
βchi = β

ch are assigned when the training are finished.
The output of the third layer is the estimation of the neural

network for the N̂ variable node sets. Before a loss function
is calculated, they should be preprocessed as follows,

on̂ =
1
SZ

S−1∑
s=0

Z−1∑
z=0

1

1+ e−y
Ot
n̂ (s,z)

(19)

where we use the sigmoid function sigmoid (x) = 1
1+e−x to

process each element of yOtn̂ , and then, the mean function

mean(x) = 1
SZ

S−1∑
s=0

Z−1∑
z=0

x(s, z), x = [x(s, z)]S×Z to output a

value averaging them.
The loss between the estimation and the target should be

minimized. The loss function uses the cross entropy function
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shown as follows,

Loss = −
1

N̂

N̂−1∑
n̂=0

(gn̂ log (on̂)+ (1− gn̂) log (1− on̂)) (20)

where gn̂ is the target of the output and set to 1 for conve-
niences [16].

To minimize the loss function, we use the stochastic gra-
dient descent to train the four factors, α, β, αch, and βch.
When Equation (17) and (18) are non-differentiable at some
points, the sub-gradient is chosen during back-propagation.
Finally, the optimized values of the four factors are assigned
to the factors in the i-th iteration of our LAMS algorithm, αi,
βi, αchi , and βchi . For the optimization of the next iteration
i+ 1, the neural network is initialized and fed with the LLRs
calculated by equation (5). In the first iteration with i = 0,
the neural network is fed with the LLRs from channel shown
as Equation (7).

TABLE 1. The table of the normalized and the offset factors optimized by
the neural network for each iteration.

IV. SIMULATION RESULTS
We use Tensorflow to train the neural network with the learn-
ing rate 0.1, the number of training 500, the batch size 500.
The initial values of the four factors, α, β, αch, and βch are
set to 0.7, 0, 1, and 0, respectively. To make the factors more
practical for implementation, we set the precision of the four
factors to 0.1, which means we round the value after training.
The neural network is built according to the rate-1/3 parity
check matrix of BG2 [2] with the lifting size Z = 52 and
the information length K = 520. The initial training data of
LLRs are collected by taking the BPSK modulated signals
from the all-zero coded bits through the AWGN channel with
the SNR, Es/N0 = −4.0 (dB), where the first 2Z = 104
bits of the codeword are punctured. If a large number of
intermediate variables do not have sufficient memory space to
store, we will use a binary file to read and write the variables
on the hard disk. The training results are shown in Table 1,

FIGURE 2. The BLER performance of the 5G codes with the information
length K = 520, the code rate R = 1/3, and the different iterations
I = 10, 15, 30.

where the four factors are listed according to the iteration
i = 0, 1, · · · , 29.

We use the BG2 [2] of 3GPP as the parity-check matrix
of the decoder. We compare different decoders, the BP,
the NMS, and the OMS decoders, to illustrate the advantages
of our optimized LAMS decoder. The NMS and the OMS
algorithms set the normalized and the offset factors to 0.7
and −0.2, respectively, which are optimized by simulations
within 0.1 accuracy range like the factors of the LAMS algo-
rithm. The coded bits aremodulated byBPSK and transmitted
through the AWGN channel.

In Fig. 2, four decoding schemes, the BP, LAMS, OMS,
and NMS algorithms, with the different iterations I = 10,
15, 30 are simulated. The decoding performance gaps
between the LAMS algorithm and the BP algorithm with
more iterations are narrower than that with fewer iterations.
When the number of the iterations is I = 10, the performance
of the LAMS algorithm is similar to that of the OMS algo-
rithm and does not show significant advantages. However,
for the iteration I = 15, our LAMS decoder is obviously
better than the OMS and the NMS algorithms.When the SNR
is larger than −2.5 (dB), the LAMS algorithm even shows
better performance than the BP algorithm, which may result
from the better error floor of the LAMS algorithm. A similar
situation can be observed when the number of the iterations
is 30. The result that the LAMS algorithm performs better
in the high SNR region is not surprising, because the BP
algorithm is not optimal for short code lengths and limited
numbers of iterations, which is caused by the increasing cor-
relations during message passing [4]. Hence, by reducing the
negative effect of correlations, the optimized LAMS decoders
can outperform the BP decoder in some specific cases.

Fig. 3 shows the performance of the rate-1/3 codes with
different information lengths for the four decoders, where the
maximum number of the iterations is set to I = 15. As can be
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FIGURE 3. The BLER performance of the 5G codes with the code rate
R = 1/3, the number of iterations I = 15, and the different information
lengths K = 260, 520, 2080.

seen from the figure, our LAMS algorithm performs better
at short information lengths. For the information lengths
K = 260 and K = 520, the LAMS decoders even exceed
the BP decoders, when the SNRs are larger than about
−2.2 (dB) and −2.5 (dB), respectively.

FIGURE 4. The BLER performance of the 5G codes with the information
length K = 520, the number of iterations I = 15, and the different code
rates R = 1/3, 1/4, 1/5.

As shown in Fig. 4, we also compare the four algorithms for
the LDPC codes with different code rates. Although the pro-
tographs of the LDPC codes with lower rates 1/4 and 1/5 are
quite different for the rate 1/3 code, the LAMS decoding uses
the same optimized factors in each iteration shown in Table 1.
For these three code rates, the LAMS algorithm can achieve
better performance than the NMS and OMS algorithm. The
higher the code rate, the more the advantage of the perfor-
mance for the LAMS decoder. As the SNR increases, the gap
between the LAMS decoder and the BP decoder is gradually

narrowing. Compared with the OMS algorithm, the LAMS
algorithm has better robustness to maintain excellent perfor-
mance under the same optimized factors for different code
rates.

V. CONCLUSION
Inspired by the simplified BP-based algorithms, we propose
the LAMS algorithm, which uses a linear approximation
instead of a single normalization or offset to modify the
check node updating. Moreover, we also modify the LLR
calculation from the AWGN channel with the linear approx-
imation. We use a small and shallow neural network to train
the corresponding factors of each iteration, where the factors
are set to the same values for all the message passing edges
in the decoder. Using QC structures, we make the size of
the neural network comparable to the size of the protograph.
Since we only optimize the parameters of one iteration at a
time, the neural network has only three layers, which allows
the training to be done without requiring extensive computing
resources. Finally, we train a set of factors for 30 iterations
and conduct simulations for the LAMS decoder. The sim-
ulation results show that the proposed LAMS decoder can
perform better than the NMS and OMS decoders and even
at high SNR than the BP decoder.
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