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ABSTRACT Due to its ultrathin feature, graphene has been recently proposed as diffusion barrier
layer for Cu wires. This paper is geared toward developing an equivalent single-conductor (ESC)
transmission-line (TL) model for analysis of Cu-graphene interconnects, i.e., Cu wires encapsulated with
graphene barriers. Based on the ESC TL model, electrical performances of Cu-graphene interconnects are
examined and evaluated. It is shown that the time delay and temperature rise can be reduced by replacing
the conventional diffusion barriers in the Cu/low-k interconnect with the graphene barriers.

INDEX TERMS Cu-graphene interconnect, diffusion barrier layer, equivalent single-conductor (ESC)
model, transfer function, time delay.

I. INTRODUCTION
Unlike transistors, the scaling of interconnect dimensions into
the nanometer regime leads to a dramatic rise in Cu resistivity
and a concomitant performance degradation [1], [2]. At the
current technology node, the Cu effective resistivity is several
times higher than its bulk value, and the interconnect delay is
dominant over the gate delay.

To cope with the dominant interconnect effects, alter-
native materials and technologies have been continu-
ously explored. For instance, graphene was proposed as
a promising candidate, and efforts on the development of
graphene interconnects were exerted on the aspects of either
modeling or fabrication [3]–[7]. In order to reduce the
graphene resistance, few- and multi-layer graphene materials
(FLG and MLG) were used for building on-chip intercon-
nects [8]. However, the thickness of MLG, even produced by
the state-of-the art technologies, cannot satisfy the require-
ments, in particular, for global levels. Moreover, graphene
tends to behave more like graphite as the number of layer
increases [9], [10]. As these innovative solutions are imma-
ture, the conventional Cu/low-k interconnect technology may
be still the most foreseeable choice for the near future tech-
nology nodes [11].

It is known that a highly resistive diffusion barrier layer
can adversely reduce the effective area of conduction, and
this negative impact worsens with shrinking dimensions.

Hence, the barrier layer has a growing influence on the Cu
effective resistivity and ultimately on the chip perfor-
mance [1]. It is essential to fabricate low resistivity and
ultrathin barrier layer around the Cu interconnect [12]. How-
ever, depositing an ultrathin barrier layer remains a critical
challenge, and currently, the related materials and techniques
to fabricate a barrier layer with thickness less than 2 nm are
still challenging.

Two-dimensional (2-D) materials, including graphene,
hexagonal boron nitride and molybdenum disulfide, were
proposed as excellent candidates for ultimate Cu diffusion
barrier layer [13]–[18]. It was experimentally found that
tri-layer graphene barrier layer exhibits excellent thermal
stability up to 750 ◦C [14]. Furthermore, the intrinsic barrier
performance of 1-3 layer graphene was investigated by time-
dependent dielectric breakdown (TDDB) tests [15], [18].
A lumped-element resistance network model of the Cu wire
encapsulated with graphene barriers (i.e., the Cu-graphene
interconnect) was presented in an earlier work [19]. Such
interconnects were successfully realized [20], and it was
demonstrated that the performances and reliability of the
Cu wire can be enhanced by employing the graphene bar-
riers [21]–[23]. More recently, a transfer-free and low tem-
perature plasma-enhanced chemical vapor deposition process
was developed in [24] to deposit graphene barrier directly on
dielectrics, which greatly promotes this interconnect scheme
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in the practical applications. As the low-temperature deposi-
tion techniques for producing graphene on Cu and dielectric
have been developed [20], [17], [24], the fabrication of the
Cu-graphene interconnects can be presumably compatible to
the CMOS technology. In order to obtain in-depth under-
standing of the Cu-graphene interconnect, the electrical and
thermal performance evaluation and the signal transmission
analysis are needed, which is the main motivation behind this
study.

The rest of this paper is organized as follows. Section II
briefly describes the Cu-graphene interconnect, and an equiv-
alent single-conductor (ESC) transmission line (TL) model
is developed. Section III examines the effective resistivity
of the Cu-graphene interconnect in comparison with its Cu
counterpart. Then, comparative analyses of delay and band-
width of the Cu-graphene interconnects with various physical
parameters are carried out by virtue of a driver-interconnect-
load (DIL) system. Section IV focuses on the signal trans-
mission performance of coupled Cu-graphene interconnects.
The electrothermal characteristics of the Cu-graphene inter-
connects are captured and investigated in Section V. Finally,
Section VI draws some conclusions.

II. CIRCUIT MODEL
Fig. 1(a) shows a typical interconnect structure. In this figure,
w and t represent the interconnect width and thickness,

FIGURE 1. (a) Cross section of a typical interconnect structure.
(b) Schematic of Cu-graphene interconnect.

respectively, s is the spacing between adjacent interconnects,
and h is the interlayer dielectric (ILD) thickness. The rel-
ative permittivity of the medium surrounding the conduc-
tor is denoted by εr . Here, it is assumed that s = w.
Fig. 1(b) shows the schematic of Cu-graphene interconnect,
i.e., Cu wire encapsulated with graphene layers. Herein,
wCu (= w−2tg) and tCu (= t−2tg) are the effective width and
thickness of the central Cu wire, respectively. Without loss
of generality, the layer number of the surrounding graphene
barriers is set as N , and the graphene thickness is tg = Nδ,
where the interlayer spacing δ is 0.34 nm, i.e., van der Waal’s
gap.

The resistance network of Cu-graphene interconnect has
been established in an earlier work [19], with the contact
resistance between the central Cu wire and the graphene
barriers being treated appropriately. It was demonstrated that
the graphene barriers can help electrical conduction. With the
increasing length, the contact resistance between Cu and
the graphene barriers decreases. Once the length is beyond
several tens of micrometers, the central Cu wire and the
graphene barriers can be treated as being parallel connected
at both ends. Hence, the impacts of length and contact on
the electrical conduction are negligible. Under such circum-
stances, the Cu-graphene interconnect can be modeled with
an ESC TL model, as shown in Fig. 2. In Fig. 2, Rd and Cd
represent the driver resistance and the driver capacitance
respectively, CL is the load capacitance, Vin and Vout are
the input and output voltages respectively, and RESC, LESC,
and CESC are the per-unit-length (p.u.l.) ESC equivalent
resistance, inductance, and capacitance of the Cu-graphene
interconnect respectively.

FIGURE 2. A driver-interconnect-load (DIL) system.

At any abscissa, the voltage and current in the ESC TL
model satisfy [25]

VESC = VCu = V j (i) , j = t, b, l, and r (1)

IESC = ICu +
∑

j=t,b,l,r

∑
i∈[1,N ]

I j (i) (2)

where VCu and ICu are the voltage and the current of the
central Cu respectively, and the superscripts t , b, l, and r
represent the respective corresponding quantities when the
graphene barrier layers on the top, bottom, left, and right
surfaces of the Cu wire are considered. According to the mea-
surements [26], [27], the central Cu wire and the graphene
barriers can be assumed to be decoupled.
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A. ESC RESISTANCE
The p.u.l. ESC resistance can be calculated by

RESC =

(
1
RCu
+ N

∑
j=t,b,l,r

1

Rjgr

)−1
(3)

where RCu and Rjgr (j = t , b, l, and r) are the p.u.l.
resistances of the central Cu and the surrounding graphene
barriers, respectively. The interactions between the edges of
the graphene barriers are neglected in the model as graphene
is a typical anisotropicmaterial, and its out-of-plane electrical
conductivity is usually 1000 times lower than its in-plane
value.

The resistance of the central Cu wire can be calculated by

RCu =
ρCu

wCutCu
(4)

ρCu is the effective Cu resistivity, and it can be described by
the Mayadas-Shatzkes model [2]

ρCu = ρ0

{[
1− 1.5α + 3α2 − 3α3 ln

(
1+

1
α

)]−1
+ 0.45λCu (1− pCu)

wCu + tCu
wCutCu

}
(5)

where ρ0 is the Cu bulk resistivity, α = λCuRf /
[
dg
(
1− Rf

)]
is a dimensionless parameter, pCu is the specularity parameter
of the Cu wire (0 for fully diffusive and 1 for fully specular
surfaces), λCu is the electron mean free path (MFP) of the
Cu wire, dg is the average grain size, and Rf is the grain-
boundary reflection coefficient. TheCu bulk resistivity ρ0 can
be written as [28]

ρ0 = A
(
1+

BT
θ − CT

+ D
(
θ − CT
T

)m)
ϕ

(
θ − CT
T

)
(6)

where T is the temperature, m = 1.84, θ = 310.8K, A =
1.809×10−8� ·m, B = −5.999×10−3, C = 0.0456×10−3,
D = −6.476× 10−4, and the function ϕ is specified as

ϕ

(
θ − CT
T

)
=4

(
θ−CT
T

)−5 ∫ θ−CT
T

0
x5ex

(
ex−1

)−2 dx
(7)

The electron mean free path (MFP) of the Cu wire can be
determined by λCu = 6.6×10−16/ρ0 according to the theory
of the electron gas.

For the graphene barriers with fully specular edges,
i.e., the specularity parameter of the graphene pgr is 1,
the p.u.l. resistance can be given by [8]

Rgr =
h
2e2

1
Nch

(
1
lCu
+

1
λeff

)
(8)

where h is the Planck’s constant, e is the electron charge,
λeff is the effective electron MFP in the graphene, Nch is
the number of conducting channels, and lCu denotes the
wire length. Note that the quantum contact resistances of

the graphene barriers have been considered in (8). However,
λeff decreases as pgr decreases. For the graphene barriers with
pgr < 1, the p.u.l. resistance can be calculated by

Rgr =
h
2e2

1
Nch

[∑
i

(
1
lCu
+

1
λi,eff

)]−1
(9)

where λi,eff denotes the effective electron MFP of the
ith conduction channel in graphene. The number of conduct-
ing channels Nch can be obtained by adding the contributions
of each conduction or valence subband [3]

Nch =
∑

i

(
1+ e

Ei−EF
kBT

)−1
+

∑
i

(
1+ e

Ei+EF
kBT

)−1
(10)

where EF is the Fermi energy and kB is the Boltzmann’s con-
stant. Note that n-type doping and a shifted |EF | of ∼0.5 eV
were experimentally observed in the graphene grown on
Cu [29], [30]. Although EF decreases with the distance
from the Cu-carbon interface due to the interlayer screening
effect [31], several doping techniques (e.g., edge doping [32])
have been continuously developed and therefore, |EF | is kept
as 0.5 eV unless otherwise stated.

The effective MFP of the graphene barrier highly depends
on the defects, substrate, and graphene edges. According to
theMattheissen’s rule, the electronMFP of the ith conduction
channel can be obtained by [4]

λi,eff =

(
1

λi,edge
+

1
λac
+

1
λop
+

1
λci
+

1
λSPP

+
1
λrs

)−1
(11)

The edge scattering limited MFP λi,edge can be given by [3]

λi,edge =
wgr

1− pgr

√(
2wgrEF
ihvF

)2

− 1 (12)

where wgr is the width of the graphene barrier and vF is the
Fermi velocity. Herein, fully diffusive edges (i.e., pgr = 0)
are assumed for the graphene barriers. The electron MFP in
graphene due to acoustic phonons λac is given as [33]

λac =
ρm (}vFvs)2

kBTD2
ac
√
πNs

(13)

where ρm (= 7.66 × 10−7kg/m2) is the 2-D mass density
of graphene, vs is the speed of acoustic phonons, Ns is the
concentration of 2-D electron gas in graphene, and Dac is the
acoustic deformation potential.

The effect of the optical phonons on the electron MFP can
be calculated according to [33]

λop =
}ωopρmv2F

2NopD2
op
√
πNs

(14)

where }ωop (= 160meV) is the optical phonon energy,
Dop (= 2.24 × 109eV/m) is the effective electron-optical
phonon coupling, and Nop is the phonon occupation numbers
given by Bose-Einstein statics.
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The electron MFP due to the charged-impurity scatterings
is given by [4], [35]

λci =
16
√
πNs

Nci

(
}vFε0ε
Ze2

)2 (
1+

e2

π}vFε0ε

)2

(15)

where ε0 is the permittivity in vacuum, ε is the average
between the relative permittivity of the substrate and vacuum,
Ze is the net charge of the impurity, and Nci is the density of
the impurity.

The electron MFP due to the surface polar phonon (SPP)
scatterings is approximated by [4], [33]

λSPP =

(∑
i=1,2

1
λSPP,i

)−1

=

∑
i=1,2

(√
β

Ei

}vF4πε0
e2

evF
F2
i

ek0z0

NSPP,i

}
√
π

e

)−1−1
(16)

where β ≈ 0.153 × 10−4eV, z0 = 0.35nm is the
separation between the graphene sheet and the substrate, k0 ≈√
[2Ei/ (}vF )]2 + αNs, α ≈ 10.5, and NSPP,i and F2

i are the

Bose-Einstein filling number and Froehlich constant of the
ith mode respectively. Assuming the silicon dioxide dielectric
is employed, vs, Ns, Dac, ε, NciE1 (E2), and F2

1 (F2
2 ) are

17.3km/s, 1012cm−2, 7.1eV, 2.4, 1.5× 1011cm−2, 58.9meV
(156.4meV), and 0.237meV (1.612meV), respectively [34].

The electron MFP due to the scatterings with resonant
scatterers is given by [33]

λrs =

√
πNs

π2Nrs

[
ln
(
2a
√
πNs

)]2
(17)

where Nrs = 1010cm−2 is the concentration of the resonant
scatterers and a is the bond length of graphene. Due to the
charged impurity and scatterings, the net electron MFP of the
graphene placing on SiO2 substrate at 300 K is calculated
to be 100.83 nm, which is much smaller than the MFP of
suspending graphene (∼1 µm).

B. ESC CAPACITANCE/INDUCTANCE
Fig. 3 shows the p.u.l. equivalent capacitance and induc-
tance networks of the Cu-graphene interconnect. Taking the
graphene barriers placed on the top surface for example,
the parasitic circuit elements in Fig. 3 are summarized
in Table 1. The elements for the other surfaces can be calcu-
lated similarly. A separation of δ1 = 0.155 nm is considered
between the carbon and Cu atoms according to [36].

The p.u.l. electrostatic capacitance Ce can be given by

Ce = Cplate + 2Clowerterminal

+ 2Cfringe + 2Cupperterminal (18)

where Cplate, Clowerterminal, Cfringe and Cupperterminal are the
four major components defined in [37]. The p.u.l. magnetic
inductance can be obtained by Le = µ0ε0εr/Ce. For the

FIGURE 3. Per-unit-length (a) capacitance and (b) inductance networks of
Cu-graphene interconnect..

TABLE 1. Distributed circuit parasitic elements in Fig. 3.

Cu-graphene interconnect, the p.u.l. equivalent capacitance
CESC and equivalent inductance LESC can be calculated by

CESC =

[(∑
j=t,b,l,r

C j
rec

)−1
+

1
Ce

]−1
(19)

LESC =

(∑
j=t,b,l,r

1

L jrec

)−1
+ Le (20)

As given in (1), the Cu wire and graphene layers are assumed
to be at the same potential. Crec and Lrec can be obtained by
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applying the recursive scheme as follows [8], [25],

C j
rec = CN

rec (21)

C1
rec = C j

m1 + C
j
q (22)

C i
rec =

[
1

C i−1
rec
+

1

C j
m

]−1
+ C j

q, i ∈ [2,N ] (23)

L jrec = LNrec (24)

L1rec =

(
1

L jm1
+

1

L jk

)−1
(25)

L irec =

[
1

L i−1rec + L
j
m
+

1

L jk

]−1
, i ∈ [2,N ] (26)

FIGURE 4. Per-unit-length ESC capacitance and ESC inductance versus
barrier layer thickness at the 22 nm node.

Fig. 4 shows the p.u.l. capacitance and inductance of
the Cu and Cu-graphene interconnects as functions of the
barrier thickness. Here, the interconnect width and the ILD
thickness are 22 nm and 39.6 nm, respectively. It is found
that the capacitance is almost unchanged with the barrier
thickness, while the effective inductance of the Cu-graphene
interconnect appears a trend of rise with the increasing barrier
thickness due to the influence of graphene kinetic inductance.

III. SIGNAL TRANSMISSION ANALYSIS
A. EFFECTIVE RESISTIVITY
Fig. 5(a) depicts the effective resistivity of the Cu-graphene
interconnects versus the temperature under various barrier
thicknesses in comparison to their Cu counterparts. In this
figure, the used parameters are as follows: w = 22 nm,
t = 44 nm, h = 39.6 nm, and lCu = 1000 µm. According
to the ITRS prediction, as the interconnect width scales down
to 22 nm, the barrier thickness of the Cu wire should reach
1.3 nm [12]. However, as the ITRS predictions for the barrier
thickness are usually too optimistic and too challenging to
achieve, the Cu wires with barrier thicknesses of 1.3 nm and
2×1.3 nm are considered as references [38]. As experimen-
tally demonstrated in [20], by growing the graphene barrier
thickness, the specularity parameter pCu of the Cu wire can
increase from 0 to 0.23. In addition to reducing the surface
scatterings, the capping of the graphene barriers on Cu can
also increase the grain size [20], [22]. Yet it is not the main
focus of the present work, dg is herein assumed as wCu.

FIGURE 5. Effective resistivity of Cu and Cu-graphene interconnects
versus (a) temperature and (b) technology nodes.

It can be observed from Fig. 5(a) that both the effective
resistivities of the Cu and Cu-graphene interconnects increase
linearly with the temperature. By introducing the graphene
barriers, the effective resistivity can be significantly reduced.
Although graphene can provide more conduction channels,
increasing the graphene thickness would reduce the effective
conduction area of the central Cu wire, thereby leading to
increased resistivity. Furthermore, the effective resistivities
of the Cu and Cu-graphene interconnects versus the technol-
ogy node are plotted in Fig. 5(b). In this figure, the barrier
thickness tg at each technology node is selected from the
ITRS prediction [12]. It can be seen that the advantage of the
Cu-graphene interconnects over the conventional Cu wires
become more salient as the technology is scaling down.

B. TIME DELAY
After extracting the circuit parameters in Fig. 2, 50% time
delay of the DIL system can be calculated by [8]

τ =
(
1.48ξ + e−2.9ξ

1.35
)√

LESClCu (CESClCu + CL) (27)

where

ξ =
1
2

[
LESC

(
CESC +

CL
lCu

)]−0.5
×

[(
1
2
RESClCu+Rd

)
CESC+

(
RESC+

Rd
lCu

)
CL

]
(28)
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FIGURE 6. Time delay ratios of the Cu-graphene interconnects to their Cu
counterparts.

Note that the driver capacitance is not considered in (27).
Fig. 6 shows the time delay ratios of the Cu-graphene inter-
connects to their Cu counterparts. The parameters are the
same as those used for producing Fig. 5(a). It can be seen
that the time delay can be significantly reduced by employing
the graphene barriers, and such enhancement can be further
strengthened by reducing the graphene barrier thickness.

C. FREQUENCY RESPONSE
Based on the DIL system in Fig. 2, the input and output
parameters can be expressed as [39][

Vin
Iin

]
=

[
A B
C D

] [
Vout
Iout

]
(29)

with[
A B
C D

]
=

[
1 Rd
0 1

]
·

[
1 0
sCd 1

]
·

[
cosh (γ lCu) Z0 sinh (γ lCu)

sinh (γ lCu) /Z0 cosh (γ lCu)

]
(30)

γ =
√
(RESC + sLESC) sCESC (31)

Z0 =

√
RESC + sLESC

sCESC
(32)

where s = jω is the complex frequency. As Iout = sCLVout,
the transfer function can be given as

H (s) =
Vout
Vin
=

1
A+ BIout/Vout

=
1

A+ sBCL
(33)

Fig. 7 shows the (absolute) frequency responses of the
Cu-graphene interconnects with various geometrical param-
eters. The reference parameters are as follows: w = 22nm,
t = 44nm, lCu = 1000 µm, tg = 1.3 nm (i.e., N = 4),
h = 39.6 nm, and all the other parameters are the same
as those used for producing Fig. 5(a). It is found that the
frequency response of the DIL system behaves like a low-
pass filter, and the bandwidth is determined by the resistance-
capacitance product [39]. As shown in Fig. 7(a), the increase
in the length leads to increases in both resistance and capac-
itance, thereby significantly reducing the bandwidth. With
the decreasing width, as shown in Fig. 7(b), the resistance

FIGURE 7. Frequency response of Cu-graphene interconnect.

of the Cu-graphene interconnect increases, thereby reducing
the cut-off frequency and bandwidth. As illustrated in Fig. 5,
the resistance of the Cu-graphene interconnects increases
with the temperature. Therefore, the cut-off frequency and
bandwidth are degraded at higher temperature.

D. TRANSIENT RESPONSE
After some mathematical manipulations, (33) can be
written as

H (s) =
(
1+

∑6

i=1
aisi

)−1
(34)

where the coefficients ai (i = 1, 2, . . . , and 6) can be obtained
from [40]. Hence, the step response in the Laplace domain
can be obtained by

Vout (s) = V0

(
1
s
+

∑6

i=1

ki
s− si

)
(35)

and the transient step response is given as

Vout (t) = V0

(
1+

∑6

i=1
kiesit

)
(36)

FIGURE 8. Transient step response of Cu-graphene interconnect.

Fig. 8 shows the transient step responses of the
Cu-graphene interconnects, computed with various temper-
atures and lengths. Here, the used parameters are as follows:
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w = 22 nm, N = 4, and h = 39.6 nm. It is found that, when
the temperature and length increase, the signal transmission
performance degrades, thereby resulting in longer time delay.

IV. ANALYSIS OF COUPLED CU-GRAPHENE
INTERCONNECTS
Fig. 9 shows the schematic of the coupled Cu-graphene inter-
connects. Based on the input signals between the coupled
interconnects, two phase modes including k = 1 and k = −1
(i.e., commonmode and differential mode) can be decoupled.
The ABCD matrix of the coupled Cu-graphene interconnects
can be written as (29) with the propagation constant and
characteristic impedance being expressed as

γ =
√
RESC + s (LESC + kLc)

·

√
s [CESC + (1− k)Cc] (37)

Z0 =

√
RESC + s (LESC + kLc)
s [CESC + (1− k)Cc]

(38)

FIGURE 9. (a) Cross section and (b) schematic of coupled Cu-graphene
interconnects.

where Lc and Cc are the coupling inductance and capaci-
tance between the coupled interconnects, respectively [37].
Figs. 10 and 11 show the transfer gain and transient wave-
forms of the coupled Cu-graphene interconnects for different
modes. It can be seen that for the k = −1 mode, the capaci-
tance increases to CESC+2Cc, thereby decreasing the cut-off
frequency and bandwidth.

V. ELECTROTHERMAL CHARACTERIZATION
In this section, the electrothermal responses of the Cu
and Cu-graphene interconnects are captured and compared.

FIGURE 10. Transfer gain of coupled Cu-graphene interconnect.

FIGURE 11. Transient waveforms of output voltages of the coupled
Cu-graphene interconnects for k = 1 and k = −1 mode.

As shown in Fig. 12, an interconnect is placed above the
SiO2/Si substrate. Here, the tantalum nitride (TaN) is selected
as the barrier layer for the conventional Cu interconnect to
prevent atom diffusion into the surrounding dielectric mate-
rial [41]. A human-metal electrostatic discharge (ESD) cur-
rent is injected into the interconnect, and its waveform is
expressed as [40]

i (t) = I1
(
1− e−t/τ1

)p
e−t/τ2 + I2

(
1− e−t/τ3

)q
e−t/τ4

+ I3
(
1−e−t/τ5

)r
e−t/τ6+I4

(
1−e−t/τ7

)s
e−t/τ8 (39)

where the coefficients from the quadrinomial of pulse func-
tion are referred in TABLE 2. The simulation is carried out by
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FIGURE 12. (a) Schematic of on-chip interconnect made of (b) Cu-TaN
interconnect and Cu-graphene interconnect.

TABLE 2. Parameters of the pulse function.

TABLE 3. Physical parameter properties of the materials involved in the
simulation [41], [43]–[45].

using the COMSOL Multiphysics. The bottom temperature
of the Si substrate and the initial temperature are set as
300 K. The physical properties of the materials involved are
listed in TABLE 3. For the Cu-TaN interconnects with barrier
thicknesses of tg and 2tg, the electrical conductivities are
calculated as 1.58×107 S/m and 1.44×107 S/m, respectively,
while it is 1.73×107 S/m for the Cu-graphene interconnect.
The electrical conductivities of the horizontal and vertical
graphene barriers are 4.77×106 S/m and 6.29×106 S/m,
respectively. As reported in [42], the electrical resistivity of
TaN ranges from 100µ�·cm to 6×106µ�·cm, and is chosen
to be 106 S/m in the simulation herein.

Fig. 13 shows the maximum temperature responses of the
Cu and Cu-graphene interconnects in the presence of the
ESD pulse. The waveform of the ESD current density is also
depicted in Fig. 13 (i.e., the dot-line curve). Here, the inter-
connect width and thickness are 22 nm and 44 nm, respec-
tively, and the barrier thickness is approximately 1.3 nm.
As aforementioned, the ITRS predictions are quite optimistic.
Hence, the Cu wire with twice of the ITRS predicted barrier
thickness is considered. It is found that the maximum temper-
atures of the Cu wires with barrier thicknesses of 1.3 nm and
2.6 nm reach 428.7K and 481.4 K, respectively. By utilizing
the graphene barriers (N = 4), the maximum temperature

FIGURE 13. Transient maximum temperature of Cu and Cu-graphene
interconnects injected with the ESD pulse.

can be reduced to 406.2K. Therefore, it can be concluded
that the Cu-graphene interconnects possess superior thermal
performance in comparison with the conventional Cu-TaN
interconnects. This is attributed to the decreased effective
resistivity.

VI. CONCLUSIONS
The Cu-graphene interconnect, which utilizes graphene as the
diffusion barrier layer due to its ultrathin nature, was modeled
and analyzed. The equivalent single-conductor (ESC) trans-
mission line (TL) model of the Cu-graphene interconnect was
proposed, with appropriate treatment of the capacitive and
inductive couplings between adjacent graphene layers. The
ESC equivalent capacitance and inductance can be extracted
by using the recursive scheme. It was found that, after grow-
ing the graphene barriers, the capacitance remains almost
unchanged, while the inductance slightly increases. Never-
theless, the implantation of the graphene barriers can improve
the grain size and the specularity parameter of the central Cu
wire, thereby resulting in significant reduction in the effective
resistivity. Based on the ESC TL model, the time delays of
the Cu-graphene interconnects with various physical and geo-
metrical parameters were obtained and compared with those
of their Cu counterparts. It was demonstrated that the time
delay can be reduced by replacing the conventional diffusion
barriers with the graphene barriers. Such trend can be further
strengthened by improving the graphene quality and reduc-
ing the barrier thickness. The frequency- and time-domain
analyses of the Cu-graphene interconnects were carried out
subsequently. Finally, the electrothermal responses of the Cu
and Cu-graphene interconnects in the presence of an ESD
pulse were captured and studied. By utilizing the graphene
barriers, the decreased effective resistivity leads to less Joule
heat, thereby significantly reducing the temperature rise.
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