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ABSTRACT Geographical dispersion and output power fluctuations are the major barriers to efficient
utilization and grid connection of building attached photovoltaic (BAPV). To eliminate these negative factors,
a reliable energy management system and an accurate power forecasting model are necessary. In this paper,
we first design an energy management micro-grid based on the energy Internet, which aims to tackle
the problems faced by the grid-connected BAPV through the effective dual-flow management of energy
and information. In the context of the proposed micro-grid, we propose a deep power forecasting model
that employs a convolutional neural network to find the nonlinear relationship between meteorological
information and BAPV power, while the data fed to themodel are obtained through the 2-D Fourier transform
of meteorological data. We evaluate the proposed model based on real-world meteorological and power data
sets. Numerical results highlight the superiority of our forecasting model in terms of accuracy and reliability.

INDEX TERMS Building attached photovoltaic, power forecasting, convolutional neural network, energy
Internet, two-dimensional Fourier transform.

I. INTRODUCTION
The booming of residential areas with a large number of
high-rise buildings brings with it huge increases in energy
consumption and greenhouse gas emissions [1]–[3]. To effec-
tively achieve energy conservation and emission reductions,
renewable energy technologies are being applied to the build-
ing energy system, among which photovoltaic (PV) is most
widely used because of its advantages of cleanliness, suf-
ficiency and universality, and the building attached pho-
tovoltaic (BAPV) generation system [4] is installed on a
large number of buildings. More and more new residential
buildings in China are being equipped with the PV system,
as shown in Fig. 1. The BAPV system can directly feed
generated energy to buildings, which is not only clean from
a green energy perspective, but also has a lower degree of
transmission loss [5].

However, similar to other renewable energy generation
systems (REGS), geographical dispersion and low yield hin-
der the grid connection of BAPV systems [6], [7]. More-
over, due to the uncertainty of the weather the output
power of PV is stochastic and uncontrollable, which also

FIGURE 1. High-rise buildings equipped with the PV in a north
China-based residential area.

limits the development of this clean energy [8]. To address
these issues, our work focuses on two aspects of BAPV
systems.

In the first study, we attempt to change the traditional
energy management model of the BAPV system based on
the Energy Internet (EI) [3] scenario. The EI integrates
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renewable energy and IT technologies to enable the efficient
utilization and intelligent management of the REGS. In [7],
an EI architecture with hierarchical integration is proposed,
which provides a feasible method for REGS grid connection.
Inspired by its infrastructure and design ideas, this paper
proposes a BAPV managed micro-grid (BEMG) that aims to
control several BAPV systems efficiently and overcome the
challenges PV generation faces in local load supply and grid
connection as much as possible. Moreover, for the internal
energy scheduling or external energy interaction of themicro-
grid, the controllability and stability are dependent on not
only the infrastructure but the accurate output estimation
for a large number of BAPV systems, and a reliable power
forecastingmodel is one of the important conditions to ensure
the effective implementation of the proposed BEMG. In the
context of the proposed infrastructure, we conduct the second
study of this paper which is the key point of our work.

Due to the inherent properties of PV, the impact of a large
number of grid-connected BAPV systems on the operation
of power systems cannot be ignored. Therefore, to elimi-
nate the negative factors of the grid-connected BAPV sys-
tems and then take corresponding technical measures to
suppress or compensate the fluctuations caused by them,
an accurate day-ahead planning for the output power is neces-
sary. Compared to the fossil energy-based power generation
systems (such as various types of thermal power plants),
whose output power can be artificially controlled, the REGS
has obvious randomness and fluctuation due to the natural
factors. For the BAPV system, the various meteorological
elements (MEs) are the most critical among the nonlinear
factors affecting power [9]. With the increasing accuracy
of numerical weather prediction (NWP), the statistics-based
power forecasting approach, which combines the historical
ME information related to PV systems with a mathematical
model, has become the most reliable approach available at
present [10]. However, due to the variety and complexity
of meteorological data, selecting the MEs that are highly
related to PV power and preprocessing them according to the
forecasting model structure are the primary problems to be
solved.

The model employed completely deconstructs the complex
coupling in the processedMEs by analyzing a large amount of
data. Therefore, to correctly characterize the nonlinear rela-
tionship between input and output, a competent mathematical
model is essential. With the development of hardware and
algorithms, deep learning [11] has been successful in many
areas [12]–[14]. For REGS power forecasting, deep neural
networks have been applied to some scenarios [15], [16].
These deep-based models leverage multiple hidden layers to
enable them to better deal with multi-variable input cases
without excessive manual extraction of data features. Such an
advantage makes them capable of taking into account more
factors that influence the output, thus guaranteeing a lower
error rate.

In view of this, we propose a deep power forecast-
ing model for BAPV based on a convolutional neural

network (CNN) [17] architecture, in an attempt to address
the issues caused by the uncertainty of PV systems through
reliable pre-estimation. We first selected and normalized the
key MEs that influence power as input data, and put them
into a matrix. Then, we refined the meteorological features
in the matrix using the Fourier transform before feeding it
to the CNN-based model. Finally, we trained and tested the
forecasting model based on real-world data.

The contributions of our work are summarized as follows:
• We design a micro-grid, or BEMG, that can effectively
manage several BAPV systems, while also eliminating
the negative impacts BAPV systems face in local load
supply and grid connection as much as possible.

• To overcome the heterogeneity of the MEs as forecast
input data, we normalize the selected MEs in a uniform
matrix format, and then we further enhance the features
of the matrix through the Fourier transform.

• In accordance with the characteristics of the generated
input data, we explore and build the CNN-based power
forecasting model for the BAPV system and train the
model in exploiting the data collected from the real
world.

• We evaluate the proposal based on real-world data
sets, and find that the results meet expectations. The
performance comparison with other statistics-based
approaches also highlights the superiority of our model.

The remaining of the paper is organized as follows.
Section II describes the related work. Section III designs a
management micro-grid for the BAPV system. Section IV
introduces the method of producing forecast input data.
Section V builds and trains the CNN-based power fore-
casting model. In Section VI, the evaluation results based
on real-world data are given. Conclusions are summarized
in Section VII.

II. RELATED WORK
How to efficiently and stably utilize renewable energy such
as PV, wind energy has been drawing a lot of attention
from industry and academia. Under the scenario with a high
penetration of REGS, designing a stable management infras-
tructure and establishing an accurate power forecastingmodel
are the most direct and effective measures against the uncer-
tainty of renewable energy [18]. Aiming at these two aspects,
researchers have made some valuable explorations.

Architecture design for the REGS, including the BAPV
management infrastructure, is included in the research field
of EI in general. The idea of EI has been proposed for more
than a decade, but its related research is still in the pilot
phase [3], [19]. In the background of large-scale REGS grid
connection, Bui et al. [20] studied the issues of improving
energy efficiency and optimizing distribution and proposed
a planning for energy management based on the concept of
Internet. Wang et al. [3], [21] studied the dual-flow man-
agement, architecture and communication standards for grid-
connected renewable energy, and explored the design of EI
information systems that take into account data security.
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FIGURE 2. Energy management micro-grid for the BAPV system.

In [7], we designed a management architecture for the bottom
renewable energy unit, and a hierarchically integrated EI
architecture was proposed to provide reliable and efficient
dual-flow management. However, although these contribu-
tions provide a good inspiration for this study, they lack
a more targeted solution for BAPV systems, and we will
attempt to tackle the problem.

According to the principle, the power forecasting of
PV, or BAPV, can be roughly divided into physical methods
and statistical ones. The physical methods [22], [23] do not
rely on historical data but require detailed information on the
physical facilities of the generation systems. The accuracy of
such methods is greatly affected by the established model,
the influencing factors and internal mechanisms of the PV
modules, however, are complex, leaving accurate models
difficult to build. Therefore, the physical methods are not
widely used in practical project due to their accuracy and gen-
eralization. The statistics-based methods capture the intrinsic
relationship between PV output and various influencing fac-
tors through the analysis of relevant historical information,
by which to achieve power estimation. Models employed
for statistical analysis include Markov chain [24], support
vector regression (SVR) [9] and artificial neural networks
(ANN) [25], as well as hybrids models [10], etc., while histor-
ical data are generally meteorological and power information.
Sanjari and Gooi [24] took temperature, irradiance and his-
torical power as input data, and proposed a prediction model
of 15-min ahead output probability distribution for PV based
on the high-order Markov chain. However, the work did not
consider the impact of different climate as an important factor
on power. Yang et al. [10] proposed a hybrid method based
on NWP and SVR, which trained input data using models
that correspond to different weather types. Although the work
fully considered the impact of climate on power andwasmore
practical, theMEs selectedwere fewer and the time resolution
was also lower (1 hour). Similar shortcomings appeared in [9]
as well. In addition, some schemes based on MEs and ANNs
either did not refine the features of input data [26] or did

not optimize the model used accordingly [27], resulting in
unsatisfactory accuracy.

Deep learning has been successfully applied in various
fields [13], [17], [28], which has inspired researchers engaged
in REGS power forecasting to start experimenting with this
advanced technology. Zhang et al. [15] applied deep belief
network (DBN) to short- and long-term wind speed predic-
tions to provide a reliable reference for wind power gen-
eration. Gensler et al. [16] used the historical power data
of 21 PV facilities and the corresponding NWP data to test
four deep neural networks employed for power forecasting,
and the evaluation results showed the superiority of the
deep-based models. Wang et al. [29] proposed a PV power
prediction model that combines CNN and wavelet decompo-
sition, which used historical power data as training input and
achieved significantly better results than the other three mod-
els. The aforementioned studies indicate that the deep-based
models can exactly find the nonlinear relationship between
input and output. Accordingly, in this work, we will fully
explore the relationship between meteorological information
and BAPV power by leveraging the nonlinear fitting ability
of deep convolutional network, and attempt to provide a new
approach for the research on BAPV power forecasting.

III. BEMG FRAMEWORK
Similar to most REGS, PV generation also has the disad-
vantages of geographical dispersion and output uncertainty.
Thus, the traditional centralized and unified management
structure is difficult to adapt for the grid connection and
efficient exploitation of large-scale BAPV systems, and only
by informatizing the energy system, and thus controlling the
energy flow through the information flow, can we overcome
the problems caused by the inherent properties of REGS.

In this section, from the point of view of ‘‘using and storing
on the spot and surplus grid connection’’ [7], We design an
energy management infrastructure, as shown in Fig. 2, to
achieve efficient use of the BAPV systems and to ensure
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a smooth and safe transition from the island pattern to grid
connection pattern.

In the illustration, every single household BAPV system
in the residential area is an energy unit that depends on
its own PV generation to produce energy. The generated
energy is first fed to the household DC loads after being
processed by the terminal controller, which includes the filter
circuit and charge controller. We note that, since the installed
capacity of the PV system studied in our work is small,
the inverter system is not considered part of the household
energy unit. The surplus energy is stored in the home storage
device [30] or transmitted to the residential area dispatching
center (RADC) of the BEMG via the building storage device,
in order to participate in redistribution or connect into the
grid. The dual-flow of energy and information of the micro-
grid is a two-way transmission, and each energy unit can also
pay to use the energy from others within the micro-grid for a
fee through the RADC.

As the control center of the BEMG, the RADC manages
the micro-grid in two patterns:

(i) In the island pattern, the RADC uses the E-router as
an interactive node to coordinate the demands of its
members through controllers and building storage
devices, and to ensure the balance of energy supply
and demand among internal units first and foremost.
In addition, with the converter including the inverter
and solid-state transformer the RADC can supply
power for public loads such as streetlights, irriga-
tion systems and electric vehicles in the area.

(ii) In the connection pattern, the RADC aggregates
the surplus energy by controlling the energy buffer
facility, and then utilizes the converter to incorpo-
rate the energy into the power grid. Furthermore,
the RADC can exploit a large number of storage
facilities in the micro-grid, such as building storage
devices, electric vehicles, and so forth, to carry out
energy reserves at low electricity prices.

The designed BEMG strives to actualize the ‘‘using and
storing on the spot’’ with the help of the scheduling of the
RADC, and attempts to minimize the transmission losses
by enabling the generated energy to be consumed first by
the units inside the micro-grid. In addition, with the dual-
flow control pattern and advanced power electronics [19],
the surplus energy of the micro-grid can be connected to the
backbone grid flexibly, which also benefits the maximization
of users’ interests by storing low-cost energy.

However, whether operating in the island pattern or con-
nection pattern, the premise of the BEMG to reach the expec-
tation is that its operation is guaranteed to be controllable and
smooth. In the island pattern, to achieve efficient peak load
shifting in themicro-grid, it is necessary to forecast the output
capacity of the BAPV in each period to reasonably schedule
the various load demands in the micro-grid; in the connection
pattern, the total output of the micro-grid also needs to be
estimated in advance to achieve stable and smooth energy
interaction, all of which requires the support of a reliable

FIGURE 3. One-day power curves of PV under different conditions.

power forecasting model. Therefore, to eliminate the impact
of the output on the forecast results, we explore the power
forecasting technique that targets the BAPV system in the
following sections.

IV. MODEL INPUT DATA
In this section, we first study the MEs that influence the
output power by eliciting the nature of BAPV systems,
and selecting the key ones as the forecast input. Secondly,
the selected MEs are preprocessed in a matrix format to
match the proposed CNN-based model. Finally, to enhance
the features of the input data, we transform it into 2-channel
data that is more suitable for the model through the Fourier
transform.

A. KEY RELATED FACTORS
Although the factors affecting the PV output are various and
complex, the meteorological factor is the most important, and
the output power of a PV system varies greatly with different
types of weather. These include clear, cloudy, rainy, or snowy
and smoggy. Fig. 3 depicts the daily power curves for the four
weather types in January and July. The PV system data are
taken from a small-scale independent imitating BAPV system
(or OPVS, shown in Fig. 4) that we set up for collecting
data and testing, with a sampling interval of 15 minutes.
Here, ‘‘P-cloudy’’ represents partly cloudy and ‘‘M-cloudy’’
denotes mostly cloudy, and note that we also classify over-
cast or smoggy as the M-cloudy type.

In Fig. 3 (a) and (b), the output curves are smooth and
efficient on clear days, and are fluctuant and inefficient under
cloudy or rainy conditions, with the yield in the rain or snow
being lowest. These curves illustrate the variety of PV power
conditions occurring with different weather types. In addi-
tion, although the PV power is significantly diverse under the
same weather type in different months because of differences
in the solar angle and irradiation duration, as can be seen in
the data for clear days, the peak in Fig. 3(a) is around 1.8 times
that in Fig. 3(b) and it does not affect the trend of the power
curve in the same way as the MEs.
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FIGURE 4. Our data collection and testing platform (located at 35.28N,
113.95E, 75mASL, capacity with 480Wp).

The illustrations reflect the diversity of PV power under
different weather types, especially with non-clear conditions,
and reveal the randomness of PV output. Therefore, we need
to build forecasting models for different weather conditions,
which also take into account the influence of specific MEs.

According to previous research [9], [10], [24], MEs,
including solar irradiance, temperature, humidity, and so on,
play an important role in the process of PV power gener-
ation. Among these factors, solar irradiance is particularly
important. In contrast to PV farms located in open suburbs,
the BAPV system usually exists in densely populated areas.
Therefore, the air quality index (AQI) has a greater impact on
the yield of BAPV compared with the PV farms [31], which
is one important consideration during the selection process.

To accurately measure the influence of the key MEs on PV
power, we used the Pearson correlation coefficient expressed
in Eq. (1) to quantitatively describe the relationship between
each element and the output power, as follows:

ρW ,P =

N−1∑
n=0

(wn − w̄)(pn − p̄)√
N−1∑
n=0

(wn − w̄)2 ·

√
N−1∑
n=0

(pn − p̄)2
(1)

where setW represents the values of MEs quantified between
[0,1] (details are in the next subsection); set P is the PV data
that our platform collected in January; and w̄ and p̄ are the
sample means. N denotes the total of sampling time points
during one day. The correlation coefficients under different
weather types are shown in Tab. 1.
Tab. 1 shows that among the factors that are positively

correlated with PV power under the same weather type,
the correlation between irradiance and output is the highest,
followed by temperature and humidity, while the influence
of wind speed is smaller. The AQI and humidity have a
greater impact but are negative. In addition, the same element

TABLE 1. Correlation coefficients under different weather types.

under different weather types has different influences on the
PV output.

To sum up, in this work we take into account the relevance
of different MEs and the influence of different weather types
on PV output power, and select irradiance, temperature, AQI,
humidity and wind speed as the key factors for determining
PV power. In the following section, the preprocessing meth-
ods are outlined.

B. INPUT DATA PREPROCESSING
Nine kinds of MEs were selected as forecast input data in
accordance with their relevance to PV power in Tab. 1, which
is expressed as a feature set:

MD−1(n) = {HD(n), ID(n)swa , I
D(n)
lwa , I

D(n)
net ,T

D(n)
rea ,

TD(n)max ,T
D(n)
min ,A

D(n),WD(n)
} (2)

where D−1(n) denotes the nth decision point of the day D-1
that to carry out the forecasting, ∀n ∈ {0, 1, 2, . . . ,N − 1},
D is the forecast day. According to Chinese standard [32],
the daily forecast period in our work is set from 6:00 to
20:45 and the time interval is set to 15 minutes, hence the
decision stage is split into 60 points along the horizontal time,
i.e. N = 60. The elements in MD−1(n) indicate that the MEs
captured in advance according to theweather prediction of the
day D. HD(n) denotes relative humidity; ID(n)swa , ID(n)lwa and ID(n)net
indicate three kinds of solar irradiance respectively: incident
short wave, long wave and net radiation; TD(n)rea , TD(n)max and
TD(n)min indicate that the real-time, maximum, and minimum
temperature, respectively;AD(n) is AQI andWD(n) is real-time
wind speed.

The exact values of the above MEs are all downloaded
from the various NWP systems’ databases. and the sequence
of the elements is based on the processing mechanism of
the convolutional network, with the purpose of exploiting the
data information properly.

Obviously, the MEs are heterogeneous data with various
measurements. Thus, before being put into the same matrix,
they need to be normalized in a uniform format.We take TD(n)rea
as an example to give the method for all elements, as follows:

T̂D(n)rea = R

(
TD(n)rea −min(Trea)

max(Trea)−min(Trea)

)
(3)
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where max(Trea) and min(Trea) represent the historical max-
imum and minimum values, respectively. R(·) is to prevent
TD(n)rea from overflowing with extreme values.

Using Eq. (3), the temperature, as well as other elements,
are mapped into [0,1] of dimensionless. The set of normalized
feature scalars is expressed as:

MD−1(n)
sca = [M̂D(n)

0 , M̂D(n)
1 , . . . , M̂D(n)

k−1 , . . . M̂
D(n)
K−1]1×K

= [ĤD(n), ÎD(n)swa , . . . , T̂
D(n)
rea , . . . , ŴD(n)]1×9 (4)

Then, we grade each scalar M̂D(n)
k−1 by its value and convert

it into a sparse vector, which is expressed as:

M̂D(n)
k−1 ⇒ mD(n)k−1 = [0

↑
0

, 0, . . . , 1
↑
l−1

, . . . , 0]1×L (5)

wheremD(n)k−1 denotes a sparse vector resulting from the scalar.
l out of L levels indicates the grade of ME at n, and larger l
indicates a larger scalar value, hence L is called the element
resolution. Through this conversion, the value of each scalar
is reflected by the position of ‘‘1’’ in the sparse vector. To
demonstrate the vectorization process, we need to introduce
a function:

fvec(x, l) =
l∑

τ=0

[ε(x −
τ

L
)− ε(x −

τ + 1
L

)] (6)

where ε(·) is the Step Function, and ∀l ∈ {0, 1, 2, . . . ,
L − 1}. With the function fvec(·), we can obtain the feature
matrix MD−1(n)

nor , as follows:

MD−1(n)
nor =


fvec(M̂

D(n)
0 , l)

fvec(M̂
D(n)
1 , l)
...

fvec(M̂
D(n)
K−1, l)


l={0,1,...,L−1}

= [mD(n)0 ;mD(n)1 ; . . . ;mD(n)k−1 ; . . .m
D(n)
K−1]K×L (7)

This process is shown in detail in Algorithm 1. After the
above processing, complex and heterogeneous original MEs
are converted into a simple unified matrix format. However,
the sparsity of the matrix can weaken the diversity of features
under the training mechanism of the convolutional network.
Therefore, we further probe into the methods to enhance the
diversity of features.

C. INPUT DATA TRANSFORMATION
First, we modify the feature matrix, before performing the
transformation. Considering the background of the Fourier
theory [33], we treat the mD(n)k−1 as an L-point discrete spec-
trum, and further use the frequency to indicate the meteoro-
logical scalar. Since the lowest frequency and the highest of
the digital frequency are 0 and π within one period of [0, 2π)
respectively, in order to exactly reflect the meteorological
data in terms of frequency and to avoid the impact of sym-
metry on representation, we add L zeros at the end of mD(n)k−1

Algorithm 1 Process of Solving the Feature Matrix

Input: Raw meteorological data setMD−1(n) and their cor-
responding historical data including maximum and mini-
mum, N ,K and L.
Output: Feature matrix MD−1(n)

nor .
Initialization: Matrix of K × L: Mnor .
1: for n = 1, 2, . . . ,N do
2: Import a data setMD−1(n) and the historical values.
3: for k = 1, 2, . . . ,K do
4: Mn←MD−1(n)(k)
5: SubstitutingMn and the historical values into the

Eq. (3) to
6: solve the feature scalar M̂ .
7: R(·) implementation:
8: if M̂ > 1 || M̂ < 0 then
9: M̂ = 1 or M̂ = 0
10: end if
11: for l = 1, 2, . . . ,L do
12: Substituting M̂ into the Eq. (6):

13: m←
l∑

τ=0
[ε(M̂ − τ

L )− ε(M̂ −
τ+1
L )]

14: Mnor (k, l) = m
15: end for
16: end for
17: MD−1(n)

nor {n} = Mnor
18: end for

to compress the position of 1 into [0, π ] over the frequency
domain, as follows:

mD(n)k−1 → [0, . . . , 1, . . . , 0
↑
L−1

, 0, . . .]1×2L (8)

Second, the extended matrix MD−1(n)
nor (shape is K×2L) is

mapped into the time domain through the 2-dimensional
inverse Fourier transform (2D-IFT). For simplicity, we omit
the superscript D−1(n) and express it as:

M(r, c) =
K−1∑
k=0

2L−1∑
l=0

Mnor (k, l)e[j2π(
kr
K +

lc
2L )]

=

K−1∑
k=0

[
2L−1∑
l=0

Mnor (k, l)e(j2π
lc
2L )

]
e(j2π

kr
K )

=

K−1∑
k=0

[
M̃(k, c)

]
e(j2π

kr
K ) (9)

where M̃(k, c) denotes the transformation along the column
direction. For the Fourier transform, the zero-fill operation
does not improve the frequency resolution, that is, no further
details of the feature can be obtained. Thus, to reduce the
redundant operation of our model, we only obtain the even
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FIGURE 5. Architecture of the proposed model for power forecasting.

component of M̃(k, c), as follows:

M̃(k, c) =
2L−1∑
l=0

Mnor (k, l)e(j2π
lc
2L )

=

L−1∑
l=0

Mnor (k, l)e(j2π
lc
2L ) +

2L−1∑
l=L

Mnor (k, l)e(j2π
lc
2L )

=

L−1∑
l=0

[
Mnor (k, l)+ e(jcπ)Mnor (k, l + L)

]
e(j2π

lc
2L )

(10)

Let c̃ = {0, 1, . . . ,L − 1}, and when c = 2c̃ = {0, 2, 4 . . .},
the even component M̃(k, 2c̃) can be expressed as:

M̃(k, 2c̃) =
L−1∑
l=0

[Mnor (k, l)+Mnor (k, l + L)]e(j2π
lc̃
L ) (11)

Substituting Eq. (11) into Eq. (9), and we get a transformed
feature matrix of K × L, which is expressed as follows:

M(r, c)|c={0,2,4,...} =
K−1∑
k=0

[
M̃(k, 2c̃)

]
e(j2π

kr
K ) (12)

where M(r, c) is the matrix whose features are enhanced by
the Fourier transform.

Finally, considering that M(r, c) is a complex matrix, we
decompose it into a real part and an imaginary part, which
not only avoids complex data processing but also increases
the dimensionality of the data features, as follows:

M(r, c)|K×L = Mrea(r, c)+ jMima(r, c)

⇒



K−1∑
k=0

[
M̃(k, 2c̃)

]
cos (2π

kr
K
)

K−1∑
k=0

[
M̃(k, 2c̃)

]
sin (2π

kr
K
)

(13)

With the preprocessing of meteorological data, we can
obtain 2-channel input data that stems from theMEs selected.
After this, we embarked on the building of the CNN-based
forecasting model.

V. FORECASTING MODEL
The core purpose of the CNN is feature learning, which
aims to capture a hierarchical and independent characteriza-
tion of input objects through a layered network. A typical
CNN is mainly composed of convolutional layers, pooling
layers, and fully connected layers, where the convolution
cooperates with the pooling to extract features layer by layer
and finally generates output via several fully connected neu-
rons [17], [34]. Combining this scenario and the purpose of
this paper, we introduce the proposed CNN-based forecasting
model in the following sections.

A. ARCHITECTURE DESIGN
The architecture of the CNN-based model to serve our back-
ground demand is shown in Fig. 5.

The model is divided into three parts: input part, fea-
ture extraction, and the mapping part. First, we treat the
2-dimensional meteorological matrix as a 2-channel ‘‘image’’
of L×K , which is fed to is fed to the first filter bank.

The second step, involving the 2×2 linear filters which are
exploited to activate the classification features of the input
data, performs convolution on the two ‘‘images’’ and the
results are sent to the second filter bank. Unlike in classic net-
work structures such as LeNet-5 [11], we do not implement
the pooling operation following the first convolution.

The filter bank II, which is based on the 2D-IFT mecha-
nism, consists of two types of filters: one is for the columns
of the matrix and its purpose is to extract the abstract features
of the meteorological elements, and to take into account the
relationship with other elements. The other aims to extract
the interaction information from among the MEs using the
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rows of the matrix. Filters in the filter bank II are doubled.
Each filter performs a convolution operation and generates
row or column vectors that contain only 1-dimensional fea-
tures. Then, we perform maximum pooling on each output
of the previous layer, from which only a maximum value is
retained in each vector, and these maximum values form a
vector by concatenating.

The final feature mapping layer takes these feature vectors
as inputs and employs a feedforward network with two hid-
den layers, where each layer has 20 neurons, to obtain the
estimated value.

Note that the shape of the model’s filters, neurons and
so on are confirmed through trial and error, and although
they are not necessarily the absolute best solution, this model
architecture is optimal with a maximum probability in our
scenario.

B. LEARNING ALGORITHM
Given the contributions of a large amount of literature,
the classic algorithms for CNN, such as the feedforward,
backpropagation and so forth [34], are quite mature. There-
fore, here we only give some brief theoretical introductions
based on the proposed model architecture.

The 2-channel input obtained at the decision point n
according to Eq. (13) is normalized and represented as M,
then the convolution output of the first layer {y1j } can be
expressed as:

y1j = ReLU

(∑
ch

M[:, :, ch]⊗ w1
ch,j + b

1
j

)
(14)

whereReLU(·) denotes rectified linear unit (ReLU) function,
and ⊗ denotes the convolution operator; w1

ch,j ∈ R2×2 is the
jth filter for channel ch, and the number of filters in bank
I is 16 in our work; b1j ∈ R denotes the bias term of this
layer. Note that this convolution is boundary-padded; that is,
padding is ‘‘SAME’’.

The operation of the second layer is valid convolution, and
the output of the second layer {y2j } are fed to pooling layer for
down-sampling, expressed as follows:

y3j = ReLU(λ3j ·max(y2j )+ b
3
j ) (15)

wheremax(·) indicates the max pooling, λj is a multiplicative
bias which is generally set to constant along with bj.

After pooling and concatenating, the feature vector of
P×1 that is obtained is fully connected to the neurons
of mapping module, then the final output estimate yest is
expressed as:

yest = fact

[∑
P

(XP×1 ×W1
1×J )+ B1

1×J

]
×W2

J×1 + B2

(16)

where fact (·) is sigmoid function;
∑
P

represents the sum of

each column of the matrix; X denotes the extracted feature

vector, and W and B are the connection coefficient and bias
of each layer, respectively.

The learning objective of the model is to minimize the total
error, which represents the deviation between the estimated
and the true value. We define the total error Etot as:

Etot =
1
2

Ns∑
n=0

(yntru − y
n
est )

2 (17)

where yntru denotes the true power at decision point n, and the
samples for test total Ns. Focusing on this goal, our model
will complete the training effort by leveraging the existing
gradient descent-based algorithms [36].

C. FORECAST PROCEDURE
Fig. 6 shows the procedure of forecast implementation.

FIGURE 6. Block diagram for the forecasting model.

According to the abovementioned analysis, the models are
divided into four categories in our work: sunny, P-cloudy,
M-cloudy (smoggy), and rainy/snowy types, where each
sub-model is built according to the CNN-based architecture
in Fig. 5. During the training stage, due to the significant
impact of different climate conditions on output power, we
trained the four models separately according to the classi-
fied historical meteorological information; during the testing
and decision stage, the meteorological feature matrices are
fed to different sub-models according to their corresponding
weather types.

The determination of the weather types in the test or train-
ing phase is achieved through the day-ahead weather fore-
cast, which does not require additional classification tech-
niques [10], and the MEs used in this process are reanalyzed
data [37], [38], all of which means that in this paper we
assume the NWP is approximately error-free.

VI. NUMERICAL EVALUATION
In this section, we provide details on the performance evalu-
ation of the proposed scheme. Our forecasting model is built
on TensorFlow 1.3 [39], along with the other models picked
for comparison. To achieve a fair comparison, the data used
by each of the models in our evaluation is the same.

In addition, we selected the relative error (RE), root
mean squared error (RMSE) and mean absolute percentage
error (MAPE), which are the commonly used in power fore-
casting as the evaluation metrics [9], [15], [40]. The MAPE
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FIGURE 7. True and estimated output power curves.

is expressed as:

MAPE =
100%
Ns

Ns∑
ns=1

∣∣pnsest − pnstru∣∣
pavg

pavg =
1
Ns

Ns∑
ns=1

pnstru (18)

where Ns is the total number of samples, Pnsest and P
ns
tru are

estimated and true power value, respectively.

A. DATA DESCRIPTION
The power data set was obtained from the corrected mea-
surements of ELIA’s Brussels PV power plant [41], which is
similar to the BAPV system we built in terms of climate and
geography. The data set covers the period fromMarch 2015 to
February 2016 with a 15 minutes sampling rate, and thus the
data volume is 366 × 96 = 35, 136. During the evaluation,
the last five days of each month’s data are used to test the
model and the rest as training data.

The corresponding MEs are downloaded from ECMWF
Public Datasets [37] by employing Python 3.6, and the AQI
data from [42]. Since the sampling interval of the MEs
obtained is one hour, and considering that the MEs are usu-
ally the continuous time variables, we employed a linear

interpolation-based method, which has been proven to effec-
tively improve the resolution of NWP [43], [44], to fill the
MEs to match the interval of the power data used, i.e.,
the meteorological data and power data are synchronized in
horizontal time.

Moreover, to take into account the generalization of the
model, the test power data also includes data collected from
our OPVS, which totals 11, 808 and are collected in January,
April, July and October of 2017, and the corresponding
weather data comes from CMDC [38]. Before being fed into
the forecasting model, all of the input data are generated
according to the method of Section IV, and power data is
mapped to the interval [0,1] through normalization. The daily
forecast period is set from 6:00 to 20:45 in our work, and thus
the number of decision points in one day is 60.

B. FORECASTING RESULTS
We first set the meteorological feature matrix to a standard
data format (SDF) of K = 9, L = 6, (nine elements are
selected and each is divided into six grades). Therefore, the
meteorological data for forecasting are processed into the
6 × 9 2-channel matrices before being fed to the input layer
of the model. The model structure, filter banks, and fully
connected neurons are set according to Section V, and the
optimizer employs ADAM.
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Based on the above, we completed the training effort,
and tested the trained model using the related data from
the last five days of a total of four months. The power
data from ELIA’s database and the results are shown
in Fig. 7.

Through the analysis in Section III, we have learned that
the weather type has a notable influence on power output;
that is, the output is stable and smooth in stable weather,
while volatile weather causes power fluctuations. In the
four illustrations of Fig. 7, curves with a large peak value
and smoothness reflect clear weather, which represents an
approximate linear case and the estimated power curves fit
well with the true curves. For fluctuating output caused by
unstable climates, including M-cloudy and smoggy weather,
the error of the proposed curves is relatively large and this
indicates that our model still has room for improvement when
dealing with strongly nonlinear cases. On a rainy or snowy
day, although the power output has a small peak due to low
solar radiation, as seen in Fig. 7 (a) and (d), the true curve
fluctuates less because the climate is consistent and thus the
error is small as well.

To assess the generalization of the forecasting model, three
months of data gathered from the OPVS were also used for
testing. The results are shown in Fig. 8, 9 and 10.

FIGURE 8. True and estimated output power curves for Jan. 2017.

From Fig. 8-10, the related data from other installations
(or regions) can also be adequately estimated by the trained
model, especially in clear type weather. In this case, for unsta-
ble climate conditions the error is larger. Overall, although
they are slightly worse than the test results using the same
database data in Fig. 7, Fig. 8-10 still illustrate a better
generalization of the proposed method. The main cause for
this is that, with the proposed data preprocessing method,
the forecasting model can discover the inner link between
MEs and PV output exactly and can thereby create correct
mapping for them.

The above evaluation shows the effectiveness and accuracy
of the proposed model. Next, we specifically analyzed the
factors or parameters affecting the estimate.

FIGURE 9. True and estimated output power curves for Jul. 2017.

FIGURE 10. True and estimated output power curves for Oct. 2017.

C. PERFORMANCE ANALYSIS
To probe the influence of some key factors on the accuracy
of the forecasting model, we took weather type, factor res-
olution, and the model optimizer as objects and performed
different evaluations separately. The data for the first two tests
comes from OPVS, and for the last test comes from ELIA.
Fig. 11 illustrates the cumulative distribution of the MAPE

of our model under four types of climatic conditions.
We selected clear, P-cloudy, and M-cloudy for 30 days from
the historical NWP data to be used randomly as input, and
used the related data fromApril as amixed input. EachMAPE
is calculated on a statistical scale for one day (Ns = 60).
From the illustration, it can be seen that the overall error of the
model on clear days is the smallest, with about 90% ofMAPE
being lower than 0.012. The total error of the M-cloudy type
is the largest, with the error of more than half of the estimated
values being higher than 3.5%, which is still attributed to
the deficiency of our model in a strongly nonlinear scenario.
However, this is a common weakness among these statistics-
based forecasting models [24], [45]. For the mixed data,
the number of the estimates for which MAPE was below 2%
was 23 out of 30, and this result outperforms the industry
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FIGURE 11. Error distribution under different weather types.

FIGURE 12. Influence of different element resolutions (L).

standards of ultra-short-term forecasting (see 5.3 in [32]),
which is about 5%. Although these results depend on having
a stable climate during April, they do demonstrate that the
overall performance of our model is better.

Fig. 12 illustrates the impact of diverse element resolu-
tions on the forecast result, using test data taken from April.
As in the other conditions, the overall error decreases with
increasing L. When L = 4, (MEs are divided into four grades
only) the number of errors exceeding industry standards is
close to 40%. When L = 8 and 10, the performance of the
model keeps improving, which is due to the higher resolution
representing more detailed information. However, above the
SDF, the estimation value is not greatly improved. The reason
for this is that if the element resolution is increased without
adding to its number, the model will suffer from the Barrel
Theory [46]. Thus, for a tradeoff between complexity and
error, the input matrices of the following evaluation are all
SDF.

Fig. 13 illustrates the training process of models that
employ two typical optimizers respectively, from which
the two characteristics of the proposed model are revealed:

FIGURE 13. Performance of the optimizers under different weather types.

TABLE 2. Performance of models under different weather types.

(i) Under the same climate, compared to a gradi-
ent descent (GD) optimizer, adaptive moment estima-
tion (ADAM) has better convergence and a smaller relative
error, and it performs better against the nonlinear cases. This
is due to the learning rate of each iteration of ADAM having a
definite boundary after completing the bias correction, which
makes the convergence more stable. GD has fluctuations and
large errors, but the convergence rate is faster. (ii) As men-
tioned above, the weather type has a significant effect on the
model. Taking into account that the forecast decision occurs
in non-real-time, the optimizer selects ADAM.

D. PERFORMANCE COMPARISON
To highlight the superiority of the proposed model, three
well-known statistics-based forecasting models (based on
SVR, ANN and DBN) were applied to the same case studies.
T he structure of the SVRused for comparisonwas taken from
previous research by Yang et al. [10]; the traditional ANN
structure is similar to that used by Cervone et al. [25] but
sets up 20 hidden neurons; and DBN refers to the research
by Zhang et al. [15], and the number of nodes in a 3-layered
RBM is 20 × 20 × 20. In view of the structure of the three
models, the input data were only quantized using Eq. (3),
the labeled power data was taken from the OPVS, and the
calculation parameter was Ns = 30 (days) × 60.

Tab. 2 lists the MAPEs generated by the four models
in different climates. Compared with the other models, the
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TABLE 3. Comparison of different models.

proposed model has the lowest average relative error and
highest accuracy under each weather type. In addition, all
four models perform well on clear days and have large errors
with strongly nonlinear cases, while the proposed model’s
performance is relatively optimal on M-cloudy days. The
reasons for these superiorities stem from two factors: one
is that the proposed input data processing method makes
the meteorological features more detailed, and the other is
that feature extraction based on the combination of CNNs
and multi-hidden layer output mapping enables the model
to depict nonlinear relationships accurately, and is not easily
trapped into local optima. SVR and ANN perform well only
when the objective function is highly smooth, and DBN also
has an excellent ability to discover non-linear relationships,
but since only 1-dimensional meteorological data without
detailed features can be fed into these models, various errors
are higher than in our model.

In Tab. 3, the RMSE and MAPE criteria are provided to
compare the power forecasting results over four months for
the models. Similarly, the two criteria of the proposed model
outperform the others for each month. For the test data of the
OPVS with a capacity of 480Wp, the average absolute error
of our model is about 32.66W, while the error relative to the
total capacity is only about 6.8%, which is nearly 1.5 times
lower than the industry standard of 10%.

VII. CONCLUSION
The efficient utilization of renewable energy sources is cur-
rently a very active research area and has important prac-
tical significance. This work targets the BAPV system,
and designs a micro-grid infrastructure that is beneficial to
BAPV grid connection with the background of EI. A scheme
for forecasting power using meteorological information and
CNN technique is proposed, which aims to guard against the
uncertainty of PV power.

Real-world power data and their corresponding meteoro-
logical data trained and tested themodel, a nd the results show
that with detailed processing for meteorological data features,
along with the outstanding feature abstraction and fitting
ability of the CNN-based model, the proposed model exhibits
satisfactory forecast accuracy and generalization. Compared
with the models based on SVR, ANN and DBN, the model
is superior. Therefore, it can be concluded that the proposed
model is feasible and promising in the field of REGS power
forecasting.

There are still several problems that need to be considered
regarding the proposed model; one of which is that this paper
does not involve more MEs. Based on previous research and
the results of this work, we can suggest with some confidence
that selecting more MEs will bring more rewards. The other
issue that needs to be emphasized is that our forecasting
technique relies on the accuracy of NWP, and therefore if we
can integrate a high-accuracy NWP system with the model,
then the proposed model will be more practical.
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