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ABSTRACT The cardinality-balanced multi-target multi-Bernoulli (CBMeMBer) filter is a promising
solution for multi-target tracking. However, the performance of the CBMeMBer filter will be degraded
severely by outliers in the presence of heavy-tailed process noise and measurement noise. To address this
challenging issue, a novel CBMeMBer filter called the Student’s t mixture CBMeMBer (STM-CBMeMBer)
filter is proposed in this paper, by assuming that the joint probability density function (pdf) of the state and
process noise and the joint pdf of the state and measurement noise follow joint Student’s t distributions.
Following that, a closed-form solution of the CBMeMBer recursion is obtained by approximating the
probability density parameter of the multi-Bernoulli as a STM. The proposed algorithm is a generalization
of existing Gaussian mixture CBMeMBer (GM-CBMeMBer) filter, and it reduces to the GM-CBMeMBer
filter in some special cases. Simulation results demonstrate that robust multi-target tracking can be achieved
in the presence of outliers in process and measurement noises.

INDEX TERMS Multi-Bernoulli, multi-target tracking, outlier, random finite set, Student’s t mixture.

I. INTRODUCTION
Due to the random birth and die pattern of different targets
in multi-target tracking, the filters are required to estimate
both the state and time-varying number of multiple targets.
Multi-target tracking has attracted intensive research interests
over the past decades. Generally, the joint probabilistic data
association (JPDA) filter [1], [2], the multiple hypothesis
tracking (MHT) [3], [4], and the random finite set (RFS)
theory [5] are the most commonly used approaches for multi-
target tracking. The RFS provides an elegant Bayesian multi-
target framework by modeling the states and measurements
at each moment as a state RFS and a measurement RFS,
respectively. Due to the complicated combinatorial nature
and multiple integration, the RFS is usually mathematically
intractable. To address this issue, the probability hypothesis
density (PHD) [6] and cardinalized PHD (CPHD) [7] filters
have been proposed. The PHD filter achieves multi-target
tracking by propagating the multi-target moments, on the
other hand, the CPHD recursively calculating the multi-target

moments and distributions of the number of the targets. Note
that both of the filters can be implemented by Gaussian
mixture [8], [9] and particle methods [10], [11]. So far, both
of the filters and their modified versions [12]–[16] have been
applied to deal with different filtering problems. In addi-
tion, another Bayesianmulti-target approximation, named the
multi-target multi-Bernoulli (MeMBer) filter, was proposed
in [5] by recursively propagating the multi-target posterior
density. Unlike the PHD and CPHD filters, the multi-target
state and number can be obtained by recursively predicting
and updating the parameters of a multi-Bernoulli set in the
MeMBer filter. However, there exists a cardinality bias in
the MeMBer measurement update, which usually causes an
overestimate of the multi-target cardinality. Thus VO etc.
proposed a cardinality-balanced MeMBer (CBMeMBer) fil-
ter in [17], where the calculation of the multi-Bernoulli
parameter was modified in measurement update procedure
to eliminate the posterior cardinality bias. So far, the exist-
ing implementation of the CBMeMBer mainly includes
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Gaussian mixture CBMeMBer (GM-CBMeMBer) [17], par-
ticle CBMeMBer filter (SMC-CBMeMBer) [17] and their
modified versions [18]–[21]. The GM-CBMeMBer fil-
ter is proposed based on the Gaussian assumption of
both process and measurements noise. Unfortunately, the
GM-CBMeMBer filter is only suitable to linear Gaussian
system and it may become ineffective in some practical sce-
narios with outliers in the process and measurement noises.
An outlier which usually has heavy tails can be regarded
as an observation that lies outside of an overall pattern of
distribution [22], [23]. Intuitively, outliers may be samples
that deviate from the positions where they are supposed to be.
In multi-target tracking, unanticipated environmental distur-
bances and unreliable sensors may cause outliers in process
and measurement noises. The process outlier may cause a
target maneuver with an abrupt change in target position and
velocity. The measurement outlier may result in a negligible
weight of the target due to the lightweight tail of Gaussian
distribution. The performance of the GM-CBMeMBer filter
may be degraded by the process and measurement outliers.

Recently, the Student’s t distribution is found to be capable
to handle the process and measurement outliers due to its
heavy tailed characteristics. A large number of Student’s t
based filters and smoothers [24]–[26] have been proposed for
heavy-tailed process and measurement noises. In these filters
and smoothers, the process and measurement noises are mod-
elled as Student’s t distributions, meanwhile, the posterior
distribution is approximated as Gaussian distribution. Then
the state and noise parameters are jointly estimated based on
the variational Bayesian approach. In addition, another robust
Kalman filter [27] has been proposed to handle the non-
Gaussian heavy-tailed and/or skewed state and measurement
noises through modeling the state and measurement noises
as Gaussian scale mixtures distributions. Unfortunately, some
fixed-point iterations need to be utilized to calculate the cou-
pled variational parameters in variational Bayesian approach,
which incurs higher computational complexities. Another
class of Student’s t based filter [28] has also been pro-
posed by modeling both the process and measurement noises
as Student’s t distributions and approximating the posterior
probability density as a Student’s t distribution to obtain a
closed-form solution for linear single target tracking problem
in the presence of heavy tailed process and measurement
noises. Furthermore, the Student’s t filter [28] is extended to
the nonlinear system through different numerical integration
methods [29]–[32]. However, the aforementioned methods
above are only applicable for single target tracking. To the
best of our knowledge, the CBMeMBer filter based on Stu-
dent’s distribution has not been reported in the literature,
which motivates this work.

This paper presents a linear multi-target filter based on the
Student’s t distribution and CBMeMBer recursion, referred to
as the Student’s t mixture CBMeMBer (STM-CBMeMBer)
filter, to handle multi-target tracking in linear system with
process and measurement outliers. In addition, we extend this
technique to nonlinear system via the unscented transform.

In the proposed filter, the joint density of the process noise
and the state is approximated by a joint Student’s distri-
bution, then the multi-target predicted density is approxi-
mated by a multi-Bernoulli distribution whose probability
parameters are represented by a Student’s t mixture. Mean-
while, the joint density of the measurement noise and the
state is also approximated by a joint Student’s distribu-
tion, then the multi-target posterior density is approximated
as a multi-Bernoulli distribution in which each Bernoulli’s
probability parameter is represented by a Student’s t mix-
ture. Following that, the CBMeMBer filter based Student’s
mixture is derived in closed form. It is shown that the
GM-CBMeMBer filter is a special case of the proposed
filter. Simulation results show that it can achieve compara-
ble performance with the GM-CBMeMBer filter in linear
Gaussian case without outliers, moreover outperforms the
GM-CBMeMBer filter in scenarios where outliers occur in
process and measurement noises.

The rest of this paper is organized as follows. The system
model and problem statement including the properties of
the Student’s t distribution and the CBMeMBer filter are
presented in Section II. Following that, the STM-CBMeMBer
filter is proposed and derived in Section III. Simulation
results are shown in Section IV. Finally, conclusions are given
in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT
Consider the state evolution and the measurement equation as
follows

xk = Fkxk−1 + wk , (1)

yk = Hkxk + vk , (2)

where xk ∈ Rdx is the target state at time step k , yk ∈ Rdy

is the measurement vector generated from xk , Fk is the state
transition matrix, Hk is the measurement matrix, wk and
vk are the process noise and the measurement noise, respec-
tively. Note that the system matrices Fk and Hk are assumed
to be known, and the process noise and measurement noise
are assumed to be independent with each other. Furthermore,
wk and vk are assumed to have heavy tails and admit the
Student’s t distributions described by

p(wk ) = St(wk ; 0,Qk , υ1), (3)

p(vk ) = St(vk ; 0,Rk , υ2), (4)

where St(x;µ,6, υ) represents a student’s t probability den-
sity function (pdf) with mean µ, scale matrix 6, and degree
of freedom (dof) υ. Note that 6 is not the covariance of
the Student’s t distribution. The relationship between the
covariance P and the scale matrix 6 of student’s t random
variable is P = υ

υ−26 [28].

A. STUDENT’S T DISTRIBUTION
Suppose that V > 0, V ∈ R, V ∼ Gamma(υ2 ,

υ
2 ), where

Gamma(α, β) represents the Gamma distribution with shape
α > 0, and rate β > 0. Let z ∈ Rd be a random vector, which
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admits the Gaussian distributionN (0, 6) with zero mean and
covariance 6. Then

x = µ+
1
√
V
z (5)

obeys the multivariate t distribution [28], [34] whose pdf can
be expressed as

p(x) =
0
(
υ+2
2

)
0
(
υ
2

) 1

(υπ )d/2
1

√
det(6)

(
1+

12

υ

)− υ+22
. (6)

For the sake of convenience, we use St(x;µ,6, υ) to
represent p(x) in (6) in the rest of this paper.

The Student’s t distribution can be regarded as a gener-
alized Gaussian distribution [33], which will reduce to the
Gaussian distribution when the dof υ approaches infinity.
Similar to the Gaussian distribution, the Student’s t distribu-
tion has several convenient properties [28], which can be used
to facilitate the following derivation of the proposed filter.
In the following, we review three important properties of the
Student’s t distribution.

1) LINEAR TRANSFORMATION
Similar to the Gaussian distribution, for x ∼ St(x;µ,6, υ),
the pdf of its linear transformation y = Ax + b can be
expressed as

p(y) = St(y;Aµ+ b,A6AT , υ). (7)

2) MARGINAL DENSITY
Assume that x1 ∈ Rd1 and x2 ∈ Rd2 are random vectors with
joint Student’s t distribution

p(x1, x2) = St(
[
x1
x2

]
;

[
µ1
µ2

]
,

[
611 612
621 622

]
, υ), (8)

then the marginal pdf of x1 is

p(x1) = St(x1;µ1, 611, υ). (9)

Note that this property can be obtained by a linear transfor-
mation to (8) with appropriate matrix A = [I 0], where I is a
unit matrix.

3) CONDITIONAL DENSITY
Given that x1 and x2 follow the joint Student’s t distribu-
tion described by (8), and x2 admits Student’s t distribution
p(x2) = St(x2;µ2, 622, υ). Then the pdf of x1 conditioned
on x2 can be expressed

p(x1|x2) =
p(x1, x2)
p(x2)

= St(x1;µ1|2, 61|2, υ1|2), (10)

where

υ1|2 = υ + d2, (11)

µ1|2 = µ1 +6126
−1
22 (x2 − µ2), (12)

61|2 =
υ + (x2 − µ2)T6

−1
22 (x2 − µ2)

υ + d2
(611 −6126

−1
22 6

T
12).

(13)

The proofs of the above properties are omitted here, readers
may refer [28] and [34] for more details.

B. THE CBMeMBer FILTER
The MeMBer filter [5] can be used to track targets through
propagating the approximated posterior density recursively,
which is represented by a multi-Bernoulli parameter set
π = {(r (i), p(i))}Mi=1 with r (i) representing the existence
probability and p(i) representing the probability density,
respectively. However, the MeMBer filter may result in a
cardinality over-estimation problem. To solve this problem,
the CBMeMBer filter was proposed in [17] through modi-
fying the parameter estimation of the multi-Bernoulli in the
measurement update step. In the following, we will give a
brief description of the CBMeMBer filter.

1) PREDICTION
We assume that the multi-target posterior density of the tar-
get RFS at time k − 1 is represented by a multi-Bernoulli
distribution

πk−1 = {(r
(i)
k−1, p

(i)
k−1)}

Mk−1
i=1 . (14)

Then the multi-target predicted density of the target RFS at
time k can be expressed by the union of the survival multi-
target multi-Bernoulli set {(r (i)P,k|k−1, p

(i)
P,k|k−1)}

Mk−1
i=1 and the

spontaneous births multi-Bernoulli set {(r (i)0,k , p
(i)
0,k )}

M0,k
i=1 , i.e.,

πk|k−1 = {(r
(i)
P,k|k−1, p

(i)
P,k|k−1)}

Mk−1
i=1 ∪ {(r

(i)
0,k , p

(i)
0,k )}

M0,k
i=1 .

(15)

Note that the survival multi-Bernoulli parameter can be cal-
culated as

r (i)P,k|k−1 = r (i)k−1〈p
(i)
k−1, pS,k 〉, (16)

p(i)P,k|k−1(x) =
〈fk|k−1(x|·), p

(i)
k−1pS,k 〉

〈p(i)k−1, pS,k 〉
, (17)

where fk|k−1(x|·) represents the single-target transition proba-
bility density from time k−1 to k , pS,k represents the survival
probability. 〈v, h〉 ,

∫
v(x)h(x)dx, where v(x) is density

function, h(x) is referred as test function (see [5, pp. 371]).

2) UPDATE
Suppose that the multi-target predicted density of the target
RFS at time k is expressed by a multi-Bernoulli distribution

πk|k−1 = {(r
(i)
k|k−1, p

(i)
k|k−1)}

Mk|k−1
i=1 . (18)

Then the multi-target posterior density at time k can
be approximated by a multi-Bernoulli distribution which
is represented by the union of the detected targets
{(rU ,k (z), pU ,k (x; z))}z∈Zk and undetected targets {(r (i)L,k ,

p(i)L,k )}
Mk|k−1
i=1 , i.e.,

πk ≈ {(r
(i)
L,k , p

(i)
L,k )}

Mk|k−1
i=1 ∪ {(rU ,k (z), pU ,k (x; z))}z∈Zk ,

(19)
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where Zk is the measurement RFS at time k ,

r (i)L,k = r (i)k|k−1
1− 〈p(i)k|k−1, pD,k 〉

1− r (i)k|k−1〈p
(i)
k|k−1, pD,k 〉

, (20)

p(i)L,k = p(i)k|k−1(x)
1− pD,k (x)

1− 〈p(i)k|k−1, pD,k 〉
, (21)

rU ,k (z) =

∑Mk|k−1
i=1

r (i)k|k−1(1−r
(i)
k|k−1)〈p

(i)
k|k−1,ψk,z〉

(1−r (i)k|k−1〈p
(i)
k|k−1,pD,k 〉)

2

κk (z)+
∑Mk|k−1

i=1
r (i)k|k−1〈p

(i)
k|k−1,ψk,z〉

1−r (i)k|k−1〈p
(i)
k|k−1,pD,k 〉

, (22)

pU ,k (x; z) =

∑Mk|k−1
i=1

r (i)k|k−1
1−r (i)k|k−1

p(i)k|k−1(x)ψk,z(x)∑Mk|k−1
i=1

r (i)k|k−1
1−r (i)k|k−1

〈p(i)k|k−1, ψk,z〉
, (23)

ψk,z(x) = gk (z|x)pD,k (x), (24)

gk (z|x) represents the measurement likelihood, pD,k (x) repre-
sents the single-target detection probability, κk (z) represents
the intensity of the clutter.

III. STUDENT’S T MIXTURE CBMeMBer FILTER
The CBMeMBer filter is effective for multi-target tracking
for the scenarios with low clutter density [17]. By represent-
ing the multi-target density with a multi-Bernoulli set form,
the CBMeMBer filter can achieve multi-target estimation by
recursively calculating the parameters of the multi-Bernoulli
set. The Gaussian Mixture CBMeMBer (GM-CBMeMBer)
filter is one realization of the CBMeMBer filter, which
can achieve a promising result for linear system with
Gaussian noise model. However, the performance of the
GM-CBMeMBer filter may be degraded when outliers
occur in process noise and measurement noise due to the
lightweight tails of Gaussian distribution.

In this section, we propose a novel CBMeMBer realization,
named Student’s t mixture CBMeMBer (STM-CBMeMBer)
filter, to deal with the multi-target tracking problem when
outliers occur in process noise and measurement noise. In the
STM-CBMeMBer filter, the joint density of the process noise
and the state is modelled as a joint Student’s t distribution.
Similarly, the joint density of measurement noise and state
is also assumed to be a Student’s t distribution. Then the
outliers occurring in process noise and measurement noise
can be well handled due to the heavy tailed Student’s t
distribution. Similar to the derivation of the GM-CBMeMBer
filter, the following assumptions are adopted to facilitate the
derivation of the STM-CBMeMBer filter.
Assumption 1: Each target follows the evolution and mea-

surement models according to (1) and (2), i.e.,

fk|k−1(x|ξ ) = St(x;Fk−1ξ,Qk−1, υ1), (25)

gk (z|x) = St(z;Hkx,Rk , υ2), (26)

where fk|k−1(x|ξ ) and gk (z|x) are transition probability
density and likelihood function, respectively. Note that

Assumption 1 is obtained according to the linear transforma-
tion property of the Student’s distribution.
Assumption 2: The joint pdf p(xk−1,wk−1|Zk−1) of the

process noise and the state xk−1 at time k−1 follows Student’s
t distribution given by

p(xk−1,wk−1|Zk−1)

= St(
[
xk−1
wk−1

]
;

[
x̂k−1|k−1

0

]
,

[
Pk−1|k−1 0

0 Qk−1

]
, υk−1),

(27)

Assumption 3:The joint pdf p(xk , vk |Zk−1) of themeasure-
ment noise and the predicted state vector at time k follows
Student’s t distribution given by

p(xk , vk |Zk−1) = St(
[
xk
vk

]
;

[
x̂k|k−1

0

]
,

[
Pk|k−1 0

0 Rk

]
, υk−1),

(28)

Assumption 4: Both the survival probability and the detec-
tion probability are assumed to be independent with state, i.e.,

pS,k (x) = pS,k (29)

pD,k (x) = pD,k (30)

Assumption 5: The birth targets are modelled by
a multi-Bernoulli form {(r (i)0,k , p

(i)
0,k )}

M0,k
i=1 with existence

probability r (i)0,k and probability density p(i)0,k , and p(i)0,k is
supposed to be a Student’s t mixture described as

p(i)0,k (x) =

J (i)0,k∑
j=1

w(i,j)
0,k St(x;m

(i,j)
0,k ,P

(i,j)
0,k , υ

(i,j)
0,k ), (31)

where w(i,j)
0,k ,m

(i,j)
0,k , P

(i,j)
0,k and υ(i,j)0,k denote the weight, mean,

scale matrix and dof of the jth Student’s t component,
respectively.

Next, we present the STM-CBMeMBer filter in detail.

A. PREDICTION
Suppose that Assumptions 1-5 hold, the multi-target poste-
rior density of the target RFS is given by a multi-Bernoulli
expression as (14) at time k − 1. Moreover, the probability
density p(i)k−1 is comprised of Student’s t mixtures, i.e.,

p(i)k−1(x) =
J (i)k−1∑
j=1

w(i,j)
k−1St(x;m

(i,j)
k−1,P

(i,j)
k−1, υ

(i,j)
k−1). (32)

Then the multi-target predicted density of the survival
target RFS in (15) can be obtained as

r (i)P,k|k−1 = r (i)k−1pS,k , (33)

p(i)P,k|k−1(x) =
J (i)k−1∑
j=1

w(i,j)
k−1St(x;m

(i,j)
P,k|k−1,P

(i,j)
P,k|k−1, υ

(i,j)
P,k|k−1),

(34)
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where

υ
(i,j)
P,k|k−1 = υ

(i,j)
k−1, (35)

m(i,j)
P,k|k−1 = Fk−1m

(i,j)
k−1, (36)

P(i,j)
P,k|k−1 = Fk−1P

(i,j)
k−1F

T
k−1 +Qk−1. (37)

The birth multi-Bernoulli parameters r (i)0,k and p
(i)
0,k are given

by the birth model in (31).

B. UPDATE
Suppose that the multi-target predicted density of the target
RFS at time k is given by (18). Moreover, each probability
density of the predicted multi-Bernoulli is expressed by a
Student’s t mixture, i.e.,

p(i)k|k−1(x)=

J (i)k|k−1∑
j=1

w(i,j)
k|k−1St(x;m

(i,j)
k|k−1,P

(i,j)
k|k−1, υ

(i,j)
k|k−1). (38)

Then the multi-target posterior density can be obtained
by (19). The multi-Bernoulli parameters of the undetected
targets are calculated similar to that of the GM-CBMeMBer
filter, i.e.,

r (i)L,k = r (i)k|k−1
1− pD,k

1− r (i)k|k−1pD,k
, (39)

p(i)L,k (x) = p(i)k|k−1(x). (40)

The multi-Bernoulli parameters of the detected targets can
be calculated as

rU ,k (z) =

Mk|k−1∑
i=1

r (i)k|k−1(1−r
(i)
k|k−1)ρ

(i)
U ,k (z)

(1−r (i)k|k−1pD,k )
2

κk (z)+
Mk|k−1∑
i=1

r (i)k|k−1ρ
(i)
U ,k (z)

1−r (i)k|k−1pD,k

, (41)

pU ,k (x; z) =

Mk|k−1∑
i=1

J (i)k|k−1∑
j=1

w(i,j)
U ,k (z)St(x;m

(i,j)
U ,k ,P

(i,j)
U ,k , υ

(i,j)
U ,k )

Mk|k−1∑
i=1

J (i)k|k−1∑
j=1

w(i,j)
U ,k (z)

,

(42)

where

υ
(i,j)
U ,k|k−1 = υ

(i,j)
k|k−1 + dz, (43)

ρ
(i)
U ,k (z) = pD,k

J (i)k|k−1∑
j=1

w(i,j)
k|k−1q

(i,j)
k (z), (44)

q(i,j)k (z) = St(z;Hkm
(i,j)
k|k−1,S

(i,j)
k , υ

(i,j)
k|k−1), (45)

S(i,j)k = HkP
(i,j)
k|k−1H

T
k + Rk , (46)

w(i,j)
U ,k (z) =

r (i)k|k−1

1− r (i)k|k−1
pD,kw

(i,j)
k|k−1q

(i,j)
k (z), (47)

m(i,j)
U ,k = m(i,j)

k|k−1 +K(i,j)
U ,k (zk −Hkm

(i,j)
k|k−1), (48)

P(i,j)
U ,k =

υ
(i,j)
k|k−1 + (1(i,j)

z,k )
2

υ
(i,j)
U ,k|k−1

[I−K(i,j)
U ,kHk ]P

(i,j)
k|k−1, (49)

K(i,j)
U ,k = P(i,j)

k|k−1H
T
k (S

(i,j)
k )−1, (50)

(1(i,j)
z,k )

2
= (zk −Hkm

(i,j)
k|k−1)

T (S(i,j)k )−1(zk −Hkm
(i,j)
k|k−1).

(51)

An intuitive inspection of (41) and (42) reveals that the
formulation for calculating the multi-Bernoulli parameters
are similar to that of the GM-CBMeMBer filter. However,
there is a significant difference in calculating the meanm(i,j)

U ,k ,

scale matrix P(i,j)
U ,k and likelihood function q(i,j)k (z) due to the

Student’s t assumption.
The closed-form recursion of the CBMeMBer based Stu-

dent’s t approximation can be finished based on the following
lemmas.
Lemma 1:GivenAssumption 2, the following equationwill

hold if P and Q are positive definite,∫
St(x;Fξ,Q, υ1)St(ξ ;m,P, υ3)dξ

= St(x;Fm,FPFT +Q, υ3). (52)

Lemma 2:GivenAssumption 2, the following equationwill
hold if P and R are positive definite,

St(z;Hx,R, υ2)St(x;m,P, υ3) = q(z)St(x; m̃, P̃, υ̃3) (53)

where

q(z) = St(z;Hm,S, υ3), (54)

S = R+HPHT , (55)

m̃ = m+ PHTS−1(z−Hm), (56)

P̃ =
υ3 +1

2
z

υ̃3
(P− PHTS−1HP), (57)

υ̃3 = υ3 + dz, (58)

12
z = (z−Hm)TS−1(z−Hm). (59)

Lemma 1 and Lemma 2 can be proved using the properties
of Student’s t distribution as shown in section II-A, readers
may refer to [28] and [29] for more details.

C. IMPLEMENTATION ISSUES
1) PRUNE AND MERGE
Note that the amount of the multi-Bernoulli components
increases without limit as recursion goes ahead, which is
caused by the target birth in the prediction procedure as
well as the hypothesized tracks in the measurement update
procedure. Therefore, a prune operation is performed to the
multi-Bernoulli components through eliminating the compo-
nents, whose existence probabilities are below a predeter-
mined threshold P. Moreover, the number of the Student’s t
components to represent each multi-Bernoulli component
increases with recursion similar to the GM-PHD filter [8].
Therefore, the Student’s t components whose weights are
below a threshold T are eliminated to reduce the number
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of the Student’s t. Furthermore, a merge operation is per-
formed to combine the Student’s t components within a dis-
tance U . Note that the maximum number of the Student’s t
mixture for each multi-Bernoulli component is set as Jmax.
These operations are similar to that of the GM-PHD and
GM-CBMeMBer [8], [17].

2) MOMENT MATCH
A close inspection of (43) reveals that the dof parameter
υ
(i,j)
U ,k|k−1 will approach infinity with recursion proceeding.

As a result, the Student’s t mixture

p(i)U ,k (x) =

J (i)U ,k∑
j=1

w(i,j)
U ,kSt(x;m

(i,j)
U ,k ,P

(i,j)
U ,k , υ

(i,j)
U ,k|k−1) (60)

will converge to a Gaussian mixture. This may lose the heavy
tailed property so that the proposed filter may fail to deal
with the outliers in process and measurement noises. In this
paper, we perform a moment matching [28], [29] operation to
solve this problem. We match the first two moments similar
to [28] and [29], i.e.,

m∗(i,j)U ,k = m(i,j)
U ,k , (61)

υ
(i,j)
k|k−1

υ
(i,j)
k|k−1 − 2

P∗(i,j)U ,k =
υ
(i,j)
U ,k|k−1

υ
(i,j)
U ,k|k−1 − 2

P(i,j)
U ,k . (62)

Then we can obtain the Student’s t mixture presentation of
the posterior multi-Bernoulli parameter p(i)U ,k (x) updated by
measurement

p(i)U ,k (x) =

J (i)U ,k∑
j=1

w(i,j)
U ,kSt(x;m

∗(i,j)
U ,k ,P

∗(i,j)
U ,k , υ

(i,j)
k|k−1), (63)

where

P∗(i,j)U ,k =
(υ(i,j)k|k−1 − 2)υ(i,j)U ,k|k−1

(υ(i,j)U ,k|k−1 − 2)υ(i,j)k|k−1

P(i,j)
U ,k . (64)

3) STATE EXTRACTION
Similar to the GM-CBMeMBer filter, the mean cardinality
of the posterior multi-target density N̂k =

∑Mk|k
i=1 r (i)k is

regarded as the target number estimates. Then we extract
N̂k individual state estimates by calculating the mean of the
Student’s t components for the N̂k hypothesized tracks with
highest existence probabilities.

4) COMPARISONS WITH THE GM-CBMEMBER FILTER
In [17], the GM-CBMeMBer filter is designed for linear
systems with Gaussian process and measurement noises.
As mentioned above, the Student’s t distribution will con-
verge to a Gaussian distribution as the dof approaches infin-
ity. Hence, the GM-CBMeMBer filter can be regarded as a
special case of the proposed STM-CBMeMBer filter, which
is proved as follows.

Proof: The predicted multi-target multi-Bernoulli den-
sity can be expressed by a Gaussian mixture when the dof
approaches infinity, i.e.,

lim
υ
(i,j)
0,k→+∞

p(i)0,k (x)=

J (i)0,k∑
j=1

w(i,j)
0,kN (x;m(i,j)

0,k ,P
(i,j)
0,k ), (65)

lim
υ
(i,j)
P,k|k−1→+∞

p(i)P,k|k−1(x)

=

J (i)k−1∑
j=1

w(i,j)
k−1N (x;m(i,j)

P,k|k−1,P
(i,j)
P,k|k−1), (66)

the mean and covariance of the Gaussian components can be
calculated in a similar way as (37). Then the multi-Bernoulli
parameter pU ,k (x; z) becomes

lim
υ
(i,j)
U ,k→+∞

pU ,k (x; z)

=

Mk|k−1∑
i=1

J (i)k|k−1∑
j=1

w(i,j)
U ,k (z)N (x;m(i,j)

U ,k ,P
(i,j)
U ,k )

Mk|k−1∑
i=1

J (i)k|k−1∑
j=1

w(i,j)
U ,k (z)

. (67)

The likelihood function q(i,j)k (z) will also converge to a
Gaussian expression

lim
υ
(i,j)
k|k−1→+∞

q(i,j)k (z) = N (z;Hkm
(i,j)
k|k−1,S

(i,j)
k ). (68)

When υ(i,j)k|k−1→+∞, we have

υ
(i,j)
k|k−1 + (1(i,j)

z,k )
2

υ
(i,j)
U ,k|k−1

=
υ
(i,j)
k|k−1 + (1(i,j)

z,k )
2

υ
(i,j)
k|k−1 + dz

→ 1, (69)

then (49) can be rewritten as

lim
υ
(i,j)
k|k−1→+∞

P(i,j)
U ,k = [I−K(i,j)

U ,kHk ]P
(i,j)
k|k−1. (70)

�
This completes the proof.

5) EXTENSION TO NONLINEAR MODELS
Consider the following nonlinear evolution and measurement
equations

xk = fk (xk−1)+ wk−1 (71)

zk = hk (xk )+ vk (72)

where fk (·) and hk (·) are nonlinear functions, wk−1 and
vk are additional heavy tailed process and measurement
respectively. Due to the nonlinearity of fk (·) and hk (·),
the multi-target multi-Bernoulli density can not be approx-
imated as Student’s t mixture.

Similar to the GM-CBMeMBer filter [17], the pro-
posed STM-CBMeMBer filter for linear models can be
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extended to nonlinear models. However, the key issue of
STM-CBMeMBer filter for nonlinear models is how to
compute the Student’s t integrals. In single-target filtering,
the unscented transform [29] is used to compute the Student’s
t weighted integrals. In this paper, we utilize the unscented
transform to extend the proposed filter to nonlinear models
according to [17] and [29]. The extension of the proposed
filter is conceptually straightforward, therefore, we only give
a brief description of the basic approach for the approximate
recursions. Readers may refer to [17] and [29] for more
details.

IV. SIMULATION RESULTS
In this section, we design various multi-target tracking
experiments and compare the proposed filter with the
GM-CBMeMBer filter in order to verify the effectiveness
of the proposed STM-CBMeMBer filter. The Optimal Sub-
Pattern Assignment (OSPA) distance [35] is used as the per-
formance metrics in our experiments due to its capability to
capture the differences in both cardinality and individual state
between two multi-target RFSs.

A. SITUATIONS WITHOUT OUTLIERS IN PROCESS AND
MEASUREMENT NOISES
We apply the STM-CBMeMBer filter and the
GM-CBMeMBer filter to deal with multi-target tracking
problem in models (1) and (2) in absence of outliers in neither
process nor measurement noise. The multi-target scenario is
similar to that of [17] as shown in Fig. 1. The state transition
matrix Fk and measurement matrix Hk are set to

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, H =
[
1 0 0 0
0 0 1 0

]
. (73)

Let the sample interval be T = 1. The state vector at time k
is denoted by xk = [pxk , v

x
k , p

y
k , v

y
k ]
T , which is comprised of

the position components [pxk , p
y
k ]
T and velocity components

[vxk , v
y
k ]
T on the x and y axes. The process and measurement

noises are modeled as

wk ∼ N (0, σ 2
wI ), (74)

vk ∼ N (0, σ 2
v I ), (75)

where σw = 1m, σv = 2m. The surviving proba-
bility and detection probability of individual target are
assumed to be pS,k = 0.99 and pD,k = 0.98. The clut-
ter intensity κk (z) = λc/V and clutter rate λc = 10
denotes the average number of clutter per scan, V =

4 × 106m2 is the area of the surveillance region
[−1000, 1000]m × [−1000, 1000]m. The multi-Bernoulli
density of the spontaneous birth of the STM-CBMeMBer
filter is denoted by πS0 = {(rS0,k , p

(i)
S0,k )}

M0,k
i=1 , while

πG0 = {(rG0,k , p
(i)
G0,k )}

M0,k
i=1 denotes the multi-Bernoulli

density of the spontaneous birth of the GM-CBMeMBer
filter. The parameters are set to rS0,k = rG0,k = 0.03,

FIGURE 1. Target trajectories with start and stop positions denoted as
circles and triangles, respectively.

FIGURE 2. Cardinality estimations of the two filters in absence of process
and measurement outliers.

p(i)S0,k (x) = St(x;mi
0,k ,P0,k , υ0,k ), p

(i)
G0,k (x) = N (x;mi

0,k ,

P0,k ), where m1
0,k = [400, 0,−600, 0]T , m2

0,k =

[0, 0, 0, 0]T , m3
0,k = [−800, 0,−200, 0]T , m4

0,k =

[−200, 0, 800, 0]. The dof of the STM-CBMeMBer filter
is set to be υ0,k = 8. The pruning threshold for existence
probability is set to be P = 10−3. Meawhile, the pruning
threshold is T = 10−3, merging threshold is U = 4 and
the maximum number is Jmax = 100 for each hypothesized
track. The order p and cut-off parameter c of the OSPA are
set to be p = 1 and c = 200. To verify the perfor-
mance, 100 independent Monte Carlo (MC) simulations are
performed.

Fig. 2 shows the average of the target number estimates of
the proposed STM-CBMeMBer and GM-CBMeMBer filters.
The average OSPA distances of the two filters are shown
in Fig. 3. It can be observed that the GM-CBMeMBer fil-
ter can achieve a good performance in linear state space
whitout outlier in process and measurements. We can see
from Figs. 2 and 3, the proposed STM-CBMeMBer filter can
achieve comparable performance with the GM-CBMeMBer
filter. The simulation results reveal that the proposed
STM-CBMeMBer filter can handle multi-target tracking
problem.
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FIGURE 3. OSPA distances of the two filers in absence of process and
measurement outliers.

FIGURE 4. Cardinalities estimation of the two filters with measurement
outlier probability pmo = 0.1.

B. SITUATIONS WITH ONLY MEASUREMENT OUTLIERS
In order to verify the multi-target tracking capability in the
presence of measurement outliers, an experiment with only
measurement outliers is designed. In this simulation, themea-
surement noise decomposed by outlier is modeled similar
to [28] and [29] with

vk ∼

{
N (0, σ 2

v I), w.p. 1− pmo,
N (0, 100σ 2

v I), w.p. pmo.
(76)

where w.p. represents ‘‘with probability’’, pmo = 0.1 denotes
the probability of measurement noise outlier. In this exper-
iment, the dof of the STM-CBMeMBer filter is set to be
υ0,k = 5 . Other parameters are set to be the same as that
of simulation 1.

Figs. 4 and 5 show the average target number estimates
and OSPA distance, respectively. As can be seen from
Figs. 4 and 5, the performance of the GM-CBMeMBer fil-
ter degrades severely by the measurement outliers. This is
because the weight of the Gaussian tends to be a small
value or even zero in some cases due to its lightweight tail
property when outliers occur in measurement. As a result,
the GM-CBMeMBer filter may obtain an underestimate of
the target number, which will further worsen the tracking

FIGURE 5. Comparison of OSPA of the two filters with measurement
outlier probability pmo = 0.1.

FIGURE 6. Average OSPA of the two filters with different probabilities of
measurement outlier under a fixed clutter rate λc = 10.

performance, i.e., increasing the OSPA distance. It can
be observed from Figs. 4 and 5 that our proposed
STM-CBMeMBer filter outperforms the GM-CBMeMBer
filter because of the heavy tail of the Student’s t distribution.
When the outliers occur, the heavy tailed Student’s t distri-
bution can obtain a non-negligible weight which is helpful
to track the targets without missing. The results above imply
that the proposed filter can deal with the multi-target tracking
problem with measurement outliers.

In order to investigate the impact of the measurement
outlier probability on the two filters, the time averaged
OSPA distances under different measurement outlier prob-
ability are evaluated. Fig. 6 shows the average OSPA dis-
tances with different measurement outlier probabilities of the
proposed STM-CBMeMBer filter and the GM-CBMeMBer
filter with a fixed clutter rate λc = 10. Fig. 6 illustrates
that the average OSPA distances of both filters increase
with the increase of the measurement outlier probabil-
ity. Meanwhile, it is clear that the OSPA distance of the
GM-CBMeMBer filter rises faster with the increase of the
outlier probability. This is because the larger the measure-
ment outlier probability is, the higher probability the target
will be missed tracking, resulting in a degraded perfor-
mance of the GM-CBMeMBer filter. On the contrary,
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the OSPA distance of the proposed filter rises slower than that
of the GM-CBMeMBer filter. This is because the Student’s
distribution with heavy tail can capture the outliers and give
a non-negligible weight to the target. It can be concluded
that the proposed STM-CBMeMBer filter can achieve a more
stable performance than the GM-CBMeMBer filter for heavy
tailedmeasurement outliers, especially when the outlier prob-
ability is large.

C. SITUATIONS WITH BOTH PROCESS AND
MEASUREMENT OUTLIERS
In this simulation, experiments are designed to evalu-
ate the multi-target tracking capability of the proposed
STM-CBMeMBer filter with outliers in both process and
measurement noises. Similar to [28] and [29] the measure-
ment noise outlier can be generated according to (76), the pro-
cess noise with heavy tails corrupted by outliers are modeled
as

wk ∼

{
N (0, σ 2

wI), w.p. 1− ppo,
N (0, 25σ 2

wI), w.p. ppo.
(77)

where ppo denotes the probability of process noise out-
lier. Other parameters are set to be the same as that in
simulation 2.

Figs. 7 and 8 show the number estimates and OSPA
distances of the two filters under different outliers occur-
rence probabilities in the process and measurement noises.
It can seen from Figs. 7 and 8 that, when the measurement
noise outlier probabilities are fixed, the performance of the
GM-CBMeMBer filter degrades with the appearance of the
process noise outlier. It reveals that the GM-CBMeMBer
filter is very sensitive to the process noise outlier. This is
because the process noise outlier may cause target maneuver,
and the GM-CBMeMBer filter cannot capture the target due
to the lightweight tail of Gaussian distribution. We can also
observe that the process noise outlier has little impact on
the performance of our proposed STM-CBMeMBer filter
due to the heavy tailed Student’s distribution. It is demon-
strated that our proposed filter can handle maneuvering target
tracking problem. The results above reveal that our proposed
STM-CBMeMBer filter can realize reliable multi-target
tracking with outliers in both process and measurement
noises.

Fig. 9 shows the average OSPA distances with different
probabilities of measurement noise outlier of the two filters
under a fixed process noise outlier probability ppo = 0.1.
We can see from Fig. 9, the average OSPA distances of
the GM-CBMeMBer filter increases with the increase of
the measurement outlier probability, which implies larger
measurement outlier probability will worsen the performance
of the GM-CBMeMBer filter. Fig. 10 shows the relation-
ship between the average OSPA distances and the proba-
bility of process outlier with a fixed measurement outlier
probability pmo = 0.1 . As can be seen from Fig. 10,
the larger the process outlier probability is, the worse per-
formance of the GM-CBMeMBer filter will achieve. This is

FIGURE 7. Cardinality estimations of the two filters with different
probabilities of process and measurement outliers.

FIGURE 8. OSPA distances of the two filters with different probabilities of
process and measurement outliers.

FIGURE 9. Average OSPA of the two filters with different probabilities of
measurement outlier under a fixed process outlier probability ppo = 0.1.

because large probability of outliers in process noise will
causemoremaneuver of targets, whichmakes it harder for the
GM-CBMeMBer filter to capture. We can observe from
Figs. 9 and 10 that our proposed can achieve a relatively stable
performance for different process and measurement outlier
probabilities. Therefore, we can conclude that our proposed
STM-CBMeMBer filter outperforms the GM-CBMeMBer
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FIGURE 10. Average OSPA of the two filters with different probabilities of
process outlier under a fixed measurement outlier probability pmo = 0.1.

filter in multi-target scenarios where outliers occur in process
and measurement noises.

Note that, although the noise models (76) and (77) are
not consistent with the assumptions set in section III. Our
proposed filer still can achieve a good tracking perfor-
mance, which implies that our proposed STM-CBMeMBer
filter is robust to process and measurement noises modelling
uncertain.

D. SIMULATIONS FOR NONLINEAR SYSTEMS
In this section, we compare the performance of our proposed
Unscented Kalman(UK) STM-CBMeMBer approximation
with the UK GM-CBMeMBer approximation for nonlinear
systems. The multi-target scenario is similar to that of [17]
as shown in Fig. 11. The state vector at time k is denoted
by xk = [x̃Tk , ωk ]

T , where x̃Tk represents the position and
velocity x̃Tk = [pxk , v

x
k , p

y
k , v

y
k ] and ωk represents the turn rate.

The state dynamic equation is

x̃Tk = F(ωk−1)x̃Tk−1 + Gwk−1, (78)

ωk = ωk−1 + Tuk−1. (79)

where

F(ω) =


1

sinωT
ω

0 −
1− cosωT

ω
0 cosωT 0 − sinωT

0
1− cosωT

ω
1

sinωT
ω

0 sinωT 0 cosωT

,

G =


T 2

2
0

T 0

0
T 2

2
0 T

. (80)

Assume the noisy measurement is composed of bearing
and range vector given by

zk =

[
arctan(pxk/p

y
k )√

(pxk )
2
+ (pyk )

2

]
+ vk . (81)

FIGURE 11. Target trajectories of nonlinear systems with start and stop
positions denoted as circles and triangles, respectively.

FIGURE 12. Cardinalities estimation of the two filters with outlier
probabilities ppo = 0.05 and pmo = 0.05.

Similar to the linear models, the process and measurement
noises with heavy tails corrupted by outliers are modeled by

wk ∼

{
N (0,Q), w.p. 1− ppo,
N (0, 25Q), w.p. ppo.

(82)

vk ∼

{
N (0,R), w.p. 1− pmo,
N (0, 100R), w.p. pmo.

(83)

withQ = diag([2, 2, π/180]T )2 andR = diag([π/180, 5]T )2.
The clutter rate is set to λc = 10 over the surveillance
region [−π2 ,

π
2 ]rad× [0, 2000]m. πS0 = {(rS0,k , p

(i)
S0,k )}

M0,k
i=1

and πS0 = {(rG0,k , p
(i)
G0,k )}

M0,k
i=1 represent the spontaneous

birth multi-Bernoulli densities of the STM-CBMeMBer
and GM-CBMeMBer filter respectively, where rS0,k =
rG0,k = 0.03, p(i)S0,k (x) = St(x;mi

0,k ,P0,k , υ0,k ), p
(i)
G0,k (x) =

N (x;mi
0,k ,P0,k ),P0,k=diag([10, 10, 10, 10, 6(π/180)]

T )2,
m1
0,k = [−250, 0, 1000, 0, 0]T , m2

0,k = [−1500, 0, 250,
0, 0]T , m3

0,k = [1000, 0, 1500, 0, 0]T , m4
0,k = [250, 0, 750,

0, 0]T . The dof of the STM-CBMeMBer filter is set to be
υ0,k = 5, the other parameters are set to be the same as that
of linear systems.

To demonstrate the performance of the UK STM-
CBMeMBer filter, 100 independent Monte Carlo (MC)
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FIGURE 13. Comparison of OSPA of the two filters with outlier
probabilities ppo = 0.05 and pmo = 0.05.

FIGURE 14. Average OSPA of the two filters with different probabilities of
measurement outlier under a fixed process outlier probability ppo = 0.05.

simulations are performed. Figs. 12 and 13 show the average
target number estimates and OSPA distance with ppo =
0.05 and pmo = 0.05. It is observed from Fig. 12 that the
UK GM-CBMeMBer filter may obtain an underestimate of
the target number. This is due to the Gaussian distribution can
not capture the heavy tailed process and measurement out-
liers. As a result, the UK GM-CBMeMBer filter may achieve
worse tracking performance with a higher OSPA distance as
shown in Fig. 13. It can be seen from Figs. 12 and 13 that our
proposed UK STM-CBMeMBer filter outperforms the UK
GM-CBMeMBer filter.

Fig. 14 shows the average OSPA distances with different
probabilities of measurement noise outlier of the two filters
under a fixed process noise outlier probability ppo = 0.05.
Fig. 15 shows the relationship between the average OSPA
distances and the probability of process outlier with a fixed
measurement outlier probability pmo = 0.05 . As can be
seen from Figs. 14 and 15, the averaged OSPA distances
of the two filters increase with increase of the process
and measurement outlier probabilities. However, the pro-
posed UK STM-CBMeMBer filter outperforms the UK
GM-CBMeMBer filter overall. In addition, the gaps of the
OSPA curves between the two filters get wider as the proba-
bilities of the outliers increase. The results indicate that the

FIGURE 15. Average OSPA of the two filters with different probabilities of
process outlier under a fixed measurement outlier probability
pmo = 0.05.

proposed UK STM-CBMeMBer filter can achieve a rela-
tively stable performance for process and measurement out-
lier probabilities, especially for high oultier probabilities.

V. CONCLUSION
In this paper, we have proposed a novel filter named
STM-CBMeMBer filter to achieve reliablemulti-target track-
ing when there are heavy-tailed process and measurement
noises. By approximating the joint pdf of the process noise
and state and the joint pdf of the state and measurement
noise with Student’s t distributions, we have derived a
closed-form solution of the CBMeMBer recursion. Simula-
tion results have shown that the proposed filter is robust to
outliers in both process and measurement noises in multi-
target tracking, which greatly outperforms the conventional
GM-CBMeMBer filter.
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