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ABSTRACT This paper presents an effective constrained multiple model particle filtering (CMMPF)
for bearings-only maneuvering target tracking. In the proposed algorithm, the process of target tracking
is factorized into two sub-problems: 1) motion model estimation and model-conditioned state filtering
according to the Rao–Blackwellised theorem and 2) the target dynamic system is modeled by multiple
switching dynamic models in a jump Markov system framework. To estimate the model set, a modified
sequential importance resampling method is used to draw the model particles, which can be restricted
into the feasible area coincide with the constrained bound. To the model-conditioned state nonlinear
filtering, a truncated prior probability density function is constructed by utilizing the latest observations
and auxiliary variables (target spatio–temporal features), which can guarantee the diversity and accuracy of
the sampled particles. The tracking performance is compared and analyzed with other conventional filters
in two scenarios: 1) uniform and time-invariant sampling scenario and 2) non-uniform and sparse sampling
scenario. A conservative Cramer–Rao lower bound is also introduced and compared with the root mean
square error performance of the suboptimal filters. Simulation results confirm the superiority of CMMPF
algorithm over the other existing ones in comparison with respect to accuracy, efficiency, and robustness for
the bearings-only target tracking system, especially for the aperiodic and sparse sampling environment.

INDEX TERMS Bearings-only maneuvering target tracking, constrained bound, constrained multiple model
particle filtering, Cramer-Rao lower bound.

I. INTRODUCTION
Bearings-only tracking uses only the noise-corrupted angular
data to estimate the current state parameters (ie., positon and
velocity) [1]–[3]. In recent decades, this method has been
widely used in a variety of important practical applications,
such as radar, aerospace and computer vision. Due to inherent
nonlinearity and observability issues, it is difficult to con-
struct a finite-dimensional optimal Bayesian filter, as for the
bearings-only tracking of a maneuvering target, the problem
is much more difficult and so far, very limited research has
been published in the open literature. The multiple model
adaptive estimate (MMAE) [4], [5] approach runs a set of
parallel single-model-based filters, which are independent
of each other. This approach works well with an unknown
structure or parameters but requires no structural or para-
metric changes. One common approach to overcome this
difficulty is the interactingmultiple-model (IMM)-based esti-
mator [6]–[8], themodels obey aMarkov sequence, switching

from one model to another in a probabilistic manner. For
IMM-based trackers, model design should consider both the
quality and complexity of the model. Typically, the models
used in the air traffic control tracking will include one for
the uniform motion and one or more for the maneuver. [6].
Accurate motion modeling and nonlinear filtering are two
challenging problems that should not be separated. Taylor-
series expansion (TSE) is a fundamental tool for handling
nonlinearity. The first-order extended Kalman filter (EKF),
which has been no doubt the most widely used to in nonlinear
filtering algorithm for state estimation, including target track-
ing for its simplicity and generality. But the EKF is adequate
only when the noise is sufficiently small, which can rarely
be guaranteed [9], [10]. The unscented Kalman filter (UKF)
algorithm selects a few Gaussian points to approximate a
nonlinear distribution, raising the accuracy to third order,
leading to more accurate results and much better estimates of
the covariance of the states than the EKF. Nevertheless, these
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KF-type filters, have the limitation that the filtering
method does not apply to general non-Gaussian distribu-
tions [10], [11]. Another popular solution strategy for the
general nonlinear filtering problem is the sequential Monte
Carlo (SMC) methods, also known as particle filters (PFs)
[12], [13], which allow for a complete representation of the
posterior distribution of the estimated states in an online
manner, in principle, the approach can deal with any non-
linear and non-Gaussian estimation problems by drawing an
infinite number of particles theoretically. But the computation
complexity is expensive especially for high dimension.
One method of improving the efficiency and reducing
the coariance of SMC is to utilizing Rao-Blackwellised
approach [13], [14], which computes the conditionally Gaus-
sian component in a closed form and is always more accurate
than any finite set and has less variance than pure Monte
Carlo sampling. Based on the Rao-Blackwellised structure,
Liu et al. [15] investigated the formulation of the correlation
between the two linear and nonlinear components, solved
the deviation problem by correctly updating the conditioned
linear model estimation with the information from the non-
linear state filtering, and finally reduced the estimation error
in maneuvering target tracking.

In actual applications, the stochastic nonlinearity of a
stochastic dynamic system is always limited by the sub-
regions of the state space in the presence of state constraints.
Truncated methods can often effectively improve the track-
ing performance in nonlinear filtering. In [16], a truncated
unscented Kalman filter were proposed, improving the accu-
racy of posterior density in the region of interest. Meanwhile
the state vector distribution becomes highly non-Gaussian
due to truncated edge probability density function (PDF),
and thus, the KF-type filters are not applicable. While the
constrained particle filters show merits for this problem [17].
Li et al. [18] proposed an auxiliary truncated particle filter
by modifying the priori PDF, which handles the abrupt tar-
get maneuvering more effectively compared with the corre-
sponding Monte Carlo simulation without constraints when
dealing with the bearing-only target maneuvering tracking.
Xu et al. [19] incorporated the nonlinear state constraints
into the dynamic model establishment, deduced the revised
state prediction and updating process to realize the opti-
mization control which satisfies certain variance criterion.
Heng et al. [20] proposed to design a more efficient SMC
method using an optimal control which can achieve the
same accuracy with fewer particles, deduced the correlation
between iterative recursion and optimal control strategy and
aimed to extend the existing particle filtering method to the
static model.

In this paper, the angular measurements are collected by
two passive sensors on two stationary platforms which are
assumed to be connected by a tactical data link capable
of transmitting measurements as they occur synchronously
with a zero transmission delay. Furthermore, it is assumed
that the probability of target detection is unity and there are
no false alarms (thus ignoring the data association issues).

The proposed CMMPF-based estimator divided the maneu-
vering target tracking process into two components: motion
model estimation and model-conditioned state nonlinear fil-
tering. Based on the assumption that this approach can prob-
abilistically draw model particles with a higher likelihood of
output measurement, a series of optimizations are enforced
to work out the proposal distribution with the measure-
ment constraints knowledge. For the state nonlinear filtering,
the approach simultaneously introduces the latest measure-
ment and target spatio-temporal features into the modified
prior PDF by an efficient LS method, the prior density is
jointed adaptively to enhance the estimate accuracy.

The tracking performance of CMMPF is compared with
other conventional filters, they are two IMM-based estimator
schemes, IMMEKF and IMMUKF,which uses EKF andUKF
to compute the model-conditioned state estimation, respec-
tively; JMS-PF which factorizes estimation into the model
sequence given measurements and state estimation using a
standard EKF method [7]; multiple model Rao-Blackllised
particle filter (MMPF), and auxiliary truncated particle filter
(ATPF) [18]. The Monte Carlo (MC) simulations are carried
out in two scenarios: (i) Uniform and time-invariant sampling
scenario and (ii) Non-uniform and sparse sampling scenario.
The filtering performance is analyzed and compared to the
ideal estimate Cramer-Rao lower bound (CRLB) [5], [7].

The remainder of the paper is organized as follows.
Mathematical formulations for the bearings-only target
maneuvering tracking problem and basic theory of CMMPF
algorithm are introduced in Section II. Design and discus-
sion of the proposed CMMPF algorithm are described in
Section III. Whereas simulations and analysis of all algo-
rithms in comparison are illustrated in Section IV. Finally,
some concluded conclusions are presented in Section V.

II. STOCHASTIC DYNAMIC SYSTEM AND BASIC THEORY
A. STOCHASTIC DYNAMIC SYSTEM
The basic problem in bearings-onlymaneuvering target track-
ing is to estimate the trajectory of a target (i.e., position and
velocity) from noise corrupted bearings data. In this paper we
assume the target motion is modelled by multiple switching
regimes, also known as jumpMarkov system (JMS) [21]. This
means that the usual target state vector xk = [x1, · · · , xn] ∈
<
nx is appended with a discrete model (or regime) variable

M ∈ {M1, · · · ,MK }, where K is the number of possible
models, whose transitions are modelled with a Markov chain.
And then a three-dimensional(3D) model-conditioned target
state vector is denoted as

xm,k = (xm,k , ẋm,k , ym,k , ẏm,k , zm,k , żm,k )T (1)

where subscript index k is the discrete time step,
(xm,k , ym,k , zm,k ) and (ẋm,k , ẏm,k , żm,k ) denote the motion-
conditioned position and velocity components, respectively.
A class of stochastic hybrid systems with additive noise can
be can be mathematically written as

xk = fk (xk ,Mk )+ gk (xk ,Mk )vk (2)
zk = hk (xk )+ ek (3)

51722 VOLUME 6, 2018



H. Zhang et al.: CMMPF for Bearings-Only Maneuvering Target Tracking

where xk ∈ <nx is the state vector at time k; vk and ek
are the process and measurement noise vector, respectively;
zk = [z1, · · · , zn] ∈ <nz is the measurement sequence at time
k . f (·), g(·) and h(·) are in general nonlinear vector-valued
functions depending on the problem considered.

A typical target maneuver, such as a turn, often has an
approximately constant speed and turn rate, most 2D and
3D target maneuver models are naturally turn motion models
which are usually established relying on target kinematics [4].
For the JMS framework considered in this paper, the tar-
get motion obeys one of three dynamics behavior models:
(a) standard constant velocity (CV) model, while the other
two correspond to coordinated turn (CT) models that cap-
ture the maneuver dynamics. (b) clockwise CT model, and
(c) anticlockwise CT model. Let Mk ∈ {1, 2, 3} denote the
model set, whose evolution follows a first order Markov
chain. For the first CV model, the dynamic formula can be
written as

xk =


1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

 xk−1

+


T 2
/
2 0 0

T 0 0
0 T 2

/
2 0

0 T 0
0 0 T 2

/
2

0 0 T

 vk (4)

with the CV model transition matrix is

F (1)(xk ) =


1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

 (5)

where T denotes the sampling time, and vk is a 3x1 i.i.d.
process noise vector with vk ∼ N (0,Q). The process noise
covariance matrix is chosen to be Q = σ 2

k I , where I is the
3x3 identity matrix and σk is the standard deviation (STD) for
process noise. The next two transition matrices correspond to
constant turn (CT) transitions (clockwise and anticlockwise,
respectively). These are given by

F (j)(xk ) =



1
sin(T · w)

w
0 −

1−cos(T · w)
w

0 0

0 cos(T · w) 0 − sin(T · w) 0 0

0
1−cos(T · w)

w
1

sin(T · w)
w

0 0

0 sin(T · w) 0 cos(T · w) 0 0
0 0 0 0 1 T
0 0 0 0 0 1


j = 2, 3 (6)

where w is a constant angular turn rate; w > 0 describes a
clockwise turn for CT correct model 2, and w < 0 for anti-
clockwise CT oppositemodel 3. The process noise covariance
matrix Q2 is the same as that in CV model 1.
The target dynamic model jump (switch) process is mod-

elled as a homogeneous Markov chain with known and
time-invariant probabilities as

pij = P
{
Mk = mj|Mk−1 = mi

}
(7)

which are independent of the target state. The initial model
probabilities πi = {M0 = mi} are also known.

In this paper, the angular measurements are collected by
two passive sensors on the stationary platforms, denoted as
z jk = [z j1,k , · · · , z

j
n,k ] ∈ <

nz where the subscript k denotes
the time when the measurement was recorded and superscript
j ∈ {1, 2} denotes the jth observer (sensor) which supplies the
measurements. The nonlinear measurement formula [1] can
be rewritten as

hj(xj,k )

=

(
θj,k
βj,k

)

=


arctan

(
yj,k−ysj
xj,k−xsj

)

arctan

 zj,k−zsj√(
xj,k−xsj

)2
+
(
yj,k−ysj

)2


 j = 1, 2

(8)

where xj,k = (xj,k , yj,k , zj,k ) define the target location in the
3D space from the jth sensor at time k; θj,k and βj,k denotes
the azimuth and elevation angles of aircraft at time k , respec-
tively, which are measured by the jth sensor and transmitted
to the fusion node; xsj = (xsj , ysj , zsj ) is the location of the jth
sensor; esj denotes themeasurement noise in jth sensor, which
is assumed to be zero-mean white Gaussian with variance

Rsj =
[
1 0
0 1

]
σ 2
sj , independent of measurement noise in the

other sensor and the process noise vk . Due to the band-width
constraints, however, not all of the messages are transmitted,
so that the tracking filter on jth platform receives all the local
measurements and only occasional external messages via the
data link. Time delays in the transmission are assumed to
be zero.

B. BASIC THEORY OF CMMPF
In practice, it should be noted that the measurement noise is
always boundary because no noise can supply an infinitely
large value and thus the truncation theorem can be used in
constrained optimization. To simplify the algorithm deriva-
tion, the target state vector is represented as xk = [aTk , b

T
k ]
T ,

where ak ∈ Rna and bk ∈ Rnb denote the position and velocity
vectors of the target state, respectively, nx = na + nb.
Such that, the equation (2) can be rewritten as

zk = hk (ak )+ ek (9)
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where h(·) is the nonlinear function of ak . The derivation
should be subject to two basic hypotheses: 1), the measure-
ment function h(·) in (3) is a bijective, continuous function;
2), the density of the additive measurement noise ek , pek (ek)
has a bounded, connected support, i.e.,

pek (ek ) = 0, ek /∈ Iek ⊂ Rnz (10)

where Iek is an nz dimensional connected region.
According to the hypotheses 2), the measurement likeli-

hood function given the state can be written as a truncated
PDF as

p(zk |xk ) = p(zk |ak )

= pek (zk − h(ak ))χIek (zk )(zk − h(ak )) (11)

where χIek (zk ) is the indicator function on the sub-region
Iek (zk ), which can be defined as

χIek (zk )(xk ) =

{
0, ek /∈ Iek ⊂ Rnz

1, ek ∈ Iek ⊂ Rnz
(12)

Let ℘k denote the feasible area of state xm,k that satisfies
the constraints condition

℘k =
{
xm,k |ek ∈ Iek ⊂ Rnz

}
=
{
am,k |ek ∈ Iek ⊂ Rnz

}
(13)

Applying Bayes’ rule and the Rao-Blackwellised theorem,
the full posterior distribution p(xm,k |zk ) at time k can be
factorized as

p(xm,k |x1:k−1,M1:k−1, z1:k )

= p(xm,k |x1:k−1,Mk , z1:k )p(Mk |x1:k−1,M1:k−1, z1:k )

s.t.
{
xm,k

}
∈ ℘k (14)

In doing so, the drawn motion model particles can be
restricted in a feasible area that satisfies the constraint con-
ditions. Meanwhile, the covariance of the joint estimator can
be calculated as

Var [η(x,M )] = Var [E(η(x,M )|x)]+ Var [E(η(x,M )|M )]

(15)

Because varE(η(x,M )|x) is non-negative, the covariance
of the estimator h′ = E(h(x,M )|M ) is less than the covari-
ance of η(x,M ), it is clear that the suboptimal estimation
reduces the estimation error.

The specific evolution and detailed derivation of the pro-
posed CMMPF algorithm will be described in Section III.

III. DESIGN OF CMMPF
Taking advantage of both measurement constraints and aux-
iliary variables could yield more accurate estimate. In this
regard, we develop a new CMMPF algorithm for bearings-
only maneuvering target tracking. The design of CMMPF
algorithm will be described in this section. The model-set
estimation is presented in Section A, model-conditioned state
estimation is represented in Section B, the summary and
discussion of the CMMPF are given in Section C.

A. MODEL-SET ESTIMATE
At first, we now derive the model-set measurement likelihood
function in presence of state constraints. The target motion
model set Mk ∈ {1, 2, 3} are assumed to be independent
of each other. If the measurement zkj is related to the target
motion model m, the measurement likelihood can be given by

plik (zkj|Mk = m, z1:k−1,M i
k−1)

=

∫
p(zkj|Mk = m, xm,k )p(xm,k |z1:k−1,M i

k−1)dxm,k

=

∫
N (zkj|h(xk ,Mk=m),R)N (xm,k |f (xk−1,M i

k−1),Q)dxm,k

(16)

where j denotes the jth observer.
Such that, the measurement likelihood function can be

derived by (2) and (16) as

Plik (zk |M i
k = m.z1:k−1.M i

k−1, r1:k )
= N (zkj|h(f (xk−1,M i

k−1),Mk = m, rk ), Sk,m)
m = 1, 2, · · · ,K (17)

where Sk,m denotes the measurement covariance.
Substituting (16) into formula (17), the joint measurement

likelihood function can be calculated as

Plik (zk |M i
k = m.z1:k−1.M i

k−1, r1:k )

=


N (zkj|h(f (xk−1,M i

k−1),Mk=1, rk ), Sk,1), if Mk=1
N (zkj|h(f (xk−1,M i

k−1),Mk=2, rk ), Sk,1), if Mk=2
...

N (zkj|h(f (xk−1,M i
k−1),Mk=K , rk ), Sk,1), if Mk=K

s.t.
{
xm,k

}
∈ ℘k (18)

where the set rk = {r1k , r
2
k , · · · , r

c
k } which include c indepen-

dent components denote the target motion features irrelevant
to the observation zk .

Thus, the importance function of model particle can be
established recursively as

π (Mk |z1:k ,M i
k−1, r1:k )

∝ plik (zk |Mk , z1:k−1, r1:k ,M i
k−1)p(Mk |z1:k−1, r1:k ,M i

k−1)

= plik (zk |Mk , z1:k−1, r1:k ,M i
k−1)p(Mk |M i

k−1)

s.t.
{
xm,k

}
∈ ℘k (19)

where the model particle Mk depends only on the previous
model M i

k−1 due to the Markov chain. Such that, the impor-
tance weight can be formed as

ωik ∝ ω
i
k−1

p(zk |M i
k , z1:k−1, r1:k ,M

i
k−1)p(Mk |M i

k−1)

π (Mk |z1:k ,M i
k−1, r1:k )

i = 1, · · · ,N (20)

and can be normalized as

ωik = ω
i
k−1

[∑N

i
ωik

]−1
i = 1, · · · ,N (21)

Based on the deductions above, Table 1 summarized the
MSIR method to estimate model set

{
M i
k

}N
i=1.
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TABLE 1. Model-set estimate by MSIR.

What is essential in the evolution of the algorithm 1 is the
model particles and their associated importance weights.

B. MODEL-CONDITIONED STATE ESTIMATE
The objective of this subsection is to estimate the model-
conditioned state. From the hypothesis 1) in Section II, with
Bayes’ rule, the full posterior PDF of model-conditioned
target state xm,k can be derived as (22), as shown at the bottom
of this page, where ε is a normalized constant.
Due to constraints, the initial prior PDF becomes a trun-

cated form, P1(·), ie.,

p1(xm,k |zk , xk−1,M i
k−1, r1:k )

= p0(xm,k |xk−1,M i
k−1, z1:k−1, r1:k )pg(xm,k , rk ) (23)

where pg(xm,k , rk ) denotes the indicator function defined in
Equation (12). According to the results of (29) and (31)
derived in the later subsection 1), when the measurement
noise variance is low, the modified PDF p1(·) can signif-
icantly reduce the covariance of the prior PDF p0(·) and
improve the state estimation performance.

Considering the influence of past and current observa-
tion on state estimate adaptively, the proposal distribution of
model-conditioned state can be jointly constructed as

π (xm,k |z1:k , x0:k−1,M i
k−1, r1:k )

= αkp1(xm,k |zk ,M i
k−1, xk−1, r1:k )

+ (1− αk )p0(xm,k |xk−1,M i
k−1, zk−1) (24)

where parameter αk ∈ [0, 1] maintains a freedom degree
to meet Bayes’ rule, and its definition can be found in the
Section 2).

Correspondingly, the importance weight for sampled parti-
cle at time k can be updated as (25), as shown at the bottom of
this page, where x im,k denotes the ithmodel-conditioned state
particle at time k .

The update process above implies that all the sampled par-
ticles fall into the feasible area which satisfies the constrained
condition with a non-zero weight.

1) APPROXIMATION OF p1(·)
Apparently, it is almost impossible to sample directly from
the proposal distribution defined in (19). To address this prob-
lem, we approximate the prior PDF p0(·) and the modified
prior PDF p1(·) as Gaussian distributions and fuse the filtered
results to form the final approximation of the a posterior
PDF. To this end, the target vector can be rewritten as xk =
[aTk , b

T
k ]
T ,where ak ∈ Rna and bk ∈ Rnb denotes the position

and velocity vector, respectively, and nx = na + nb. And
the following assumptions are reasonable: AP1), The non-
linear measurement function hk (·) can be locally linearized;
AP2), The marginal prior pm,k (am,k ) of the position vector
is constant over the region Iek ; and AP3), The truncated
measurement noise has the same first two moments as the
real noise, i.e., E[ek ] = 0 and cov[ek ] = Rk .
With AP1), the measurement function hk (·) can be approx-

imated as am,k = φ̂(zk ) using a first-order Taylor series.
We choose φ̂(zk ) = argmaxam,k p(z|am,k ) because it is the
most likely observable state according to the measurement.
If AP1) holds, hk (am,k ) can be calculated by

hk (am,k ) ≈ h(φ̂(zk ))+ H̃
−1
k (am,k − φ̂(zk )) (26)

where H̃−1k = [∇akh
T
k (ak )]

T
|ak=φ̂(zk )

is the Jacobian of

hk (am,k ) evaluated at φ̂(zk ).

p(xm,k |z1:k , r1:k ) =
p(zk |x0:k , z1:k )p(xk |x1:k−1, z1:k−1)p(x1:k−1|z1:k−1)

p(zk |z1:k−1)

=
p(zk − h(ak ))pg(am,k , rk )p(xm,k |x1:k−1,M i

k−1, z1:k , r1:k )p0(xm,k−1|M
i
k−1, z1:k−1, r1:k−1)

p(zk , rk |M i
k−1, z1:k−1, r1:k−1)

∝ p(zk |xm,k , r1:k )p1(xm,k |zk , xk−1,M i
k−1, r1:k )/ε

s.t.
{
xm,k

}
∈ ℘k (22)

ωik =
p(x im,k |z1:k , r1:k )

π (x im,k |z1:k , x0:k−1,M
i
k−1, r1:k )

=
p(zk |x im,k , r1:k )p1(x

i
m,k |zk , xk−1, r1:k )p(x

i
k−1|M

i
k−1, z1:k−1, r1:k−1)

π (x im,k |x
i
k−1, z1:k−1, r1:k )π (x

i
k−1|z1:k−1,M

i
k−1, r1:k−1)

∝ ωik−1

p(zk |x im,k , r1:k )p1(x
i
m,k |zk , xk−1, r1:k )

π (x im,k |x
i
k−1, z1:k , r1:k )

∝ ωik−1p(zk |x
i
k,m, r1:k ) (25)
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Integrating out variable b, with AP2) and AP3), the mean
and covariance of the prior PDF pi(·), i = 0, 1 can be
derived as

µai,k =

∫
api(a; z)da = φ̂(zk ) (27)∑

ai,k
=

∫
(ai,k − µi,a)(ai,k − µi,k )T pi,k (a; z)da

= H̃−1R(H̃−1)T (28)

Thus, the corresponding mean x̂i,m,k and covariance matrix
pi,m,k can be factorized as

x̂i,m,k =
[
E(ai,m,k )
E(bi,m,k )

]
=

[
µai,m,k
µbi,m,k

]
(29)

pi,m,k =
[

cov(ai,m,k ) cov(ai,m,k , bi,m,k )
cov(ai,m,k , bi,m,k ) cov(bi,m,k )

]
=

[ ∑
ai,m,k

∑
abi,m,k∑T

abi,m,k

∑
bi,m,k

]
(30)

In thismanner the semi-positive definite or negative covari-
ancematrix caused by the truncated error can be avoided. And
the definitions of µa0,m,k , µb0,m,k ,

∑
a0,m,k ,∑

b0,m,k and
∑

ab0,m,k of the prior PDF can be refer-
enced as in literature [16]. Equivalently, the mean x̂1,m,k and
covariance p1,m,k of the modified prior PDF p1(·) can be
calculated by

x̂1,m,k =
[
E(a1,m,k )
E(b1,m,k )

]
=

[
µa1,m,k
µb1,m,k

]
(31)

p1,m,k =

[ ∑
a1,m,k

∑
ab1,m,k∑T

ab1,m,k

∑
b1,m,k

]
(32)

where µa1,m,k and
∑

a1,m,k denote the mean and covariance of
the position vector a1,m,k , respectively. The details of µb1,m,k ,∑

b1,m,k ,
∑

a1,m,kb1,m,k can be found in the literature [18].
Now, we use an adaptive least square method to estimate

the state mean µa1,mk . To achieve high tracking accuracy, the
auxiliary variables (actual target speed v, time interval T ,
and heading angle θ ) is incorporated to attain the maximum
likelihood position φ̂(zk ) defined as

φ̂(zk ) = µak,0 + Kk (ã(zk )− H̃
−1
k µak,0 ) (33)

Kk = (T 2
· v2 · σ 2

v (k))/(λ · σ
2
m(k)+ T

2
· v2 · σ 2

v (k)) (34)

where ã(zk ) =
(
x̂T , ŷT , ẑT

)
denotes the target estimate posi-

tion vector,λ is a constant factor,σ 2
m(k) denotes the variance

of measurement noise, and σ 2
v (k) denotes the innovation

variance. φ̂(zk ) is considered as the latest measurement, and
then, the mean µam,k ,1 and the covariance

∑
am,k ,1 can be

approximated as

µa1,m,k = φ̂(zk ) (35)

6a1,m,k = H̃−1k Rk (H̃
−1
k )T = diag[σx̂T , σŷT , σẑT ] (36)

where (σx̂T , σŷT , σẑT ) denotes the STD of the target state in
the x, y, z coordinates.

Finally, the modified prior PDF p1,m,k (·) can be approxi-
mated as a Gaussian distribution with mean x̂p1,m,k
and variance pp1,m,k , i.e.,

p1,m,k (xm,k |zk ,M i
k−1, rk ) ≈ N (x̂p1,m,k ,Pp1,m,k ) (37)

2) FUSION OF THE STATE ESTIMATE
Now, the final problem to be solved is how to decide the
coefficient αk , which can reflect the time-varying aspect for a
Markov dynamic system. When the target measurement zk is
relativelymore accurate, the estimation based on themodified
prior PDF p1,m,k (·) is more credible, and αk tends to 1, vice
versa. The parameter be calculated by (38) and (39)

µi(x̂i,m,k ) =
1√∣∣pi,m,k ∣∣ ·exp

(
−
(zk−hk (x̂i,m,k ))2

2

)
i = 0, 1

(38)

αk =
µ1(x̂1,m,k )

µ0(x̂0,m,k )+ µ1(x̂1,m,k )
(39)

where x̂i,m,k , i = 0, 1 is the mean of prior and modified prior
PDF.

Based on the deductions above, the mean x̂m,k and covari-
ance pm,k of the final posterior PDF p(xm,k |z1:k , r1:k ) can be
approximated jointly as

x̂m,k|k = αk x̂1,m,k|k + (1− αk )αk x̂0,m,k|k (40)

pm,k|k = αk [p1,m,k|k+(x̂1,m,k|k−x̂m,k|k )(x̂1,m,k|k−x̂m,k|k )T ]

+ (1− αk )[p0,m,k|k + (x̂0,m,k|k − x̂m,k|k )

× (x̂0,m,k|k − x̂m,k|k )T ] (41)

In such a manner, the proposed CMMPF method can use
the past and current observation adaptively to improve the
target state estimation accuracy. Then the final fusion of state
estimation for all motion models are updated as

x̂k|k =
N∑
i=1

ωim,k x̂m,k|k (42)

pk|k =
N∑
i=1

ωim,k

[
pim,k+(x̂m,k−x̂

i
m,k )(x̂m,k−x̂

i
m,k )

T
]

(43)

where ωim,k denotes the associated weight of the ith motion
model at time k which can be found in Equation(20). For
the next iteration step at time k + 1, the filtered outputs
(x̂k|k , p̂k|k ) and the current measurement zk+1 are taken as the
input variables for the motion model estimation, allowing the
state constraints and the latest observation into the prediction
step, and enhance the accuracy of the model set estimation.

C. SUMMARY AND DISCUSSION
To summarize, the CMMPF algorithm proceeds as follows
in table 2.

Taking advantage of the state bounds and constraints in the
update process can yieldmore accurate tracking performance.

1) Unlike the Taylor series estimation (TSE)-based lin-
earization methods such as EKF, UKF which have the major
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TABLE 2. Constrained Multiple Model Particle Filtering.

limitation of local linearization of the nonlinear model and
Gaussian noise model, CMMPF uses sequential Monte Carlo
(SMC)method, also known as particle filters (PFs) to approx-
imatemulti-dimensional integration by a finite of set samples,
the technique can deal with nonlinear and non-Gaussian dis-
tribution model effectively.

2) Unlike the conventional IMM-based filters which ignore
the latest measurement in the first interacting stage, CMMPF
estimate the model-set using MSIR method which introduces
the current measurement information into the proposal distri-
bution, enhancing the estimation accuracy other than using of
only the historical measurement information.

3) Like the conventional auxiliary particle filter (APF), for
model-conditioned state filtering CMMPF uses target spatio-
temporal features as the auxiliary variables to guarantee the
diversity and accuracy of samples. Furthermore, CMMPF
takes account into the state bounds and constraints during
the update proceeding, the optimization yields modified prior
density that can explicitly account for bounds on state.

4) Additionally, to consider the influence of past and cur-
rent measurement on the estimate, the hybrid importance
distribution is established constants of prior and modified
prior PDF.

IV. EXPERIMENT RESULTS
To evaluate the tracking performance of CMMPF for
bearings-only maneuvering target tracking problem, a set
of 100MC simulation are carried out in two simulation sce-
narios: (a) uniform and time-invariant sampling scenario.
(b) non-uniform and time-varying sparse sampling scenario.
The two passive sensors are located at the y-coordinate of the
coordinate system as (0,5km,0) and (0,−5km,0), respectively.
The constant turn rate is set to w = 3◦/s. The model mk in
effect at (k−1, k] is modeled by a time homogeneous 3-state
first-order Markov chain with known transition probability
matrix 5 [7], whose elements are given as

5 =

 0.98 0.01 0.01
0.1 0.8 0.1
0.1 0.1 0.8

 (48)

Before the MC proceeding, we give a description of the
three performance metrics that will be used in the anal-
ysis: (1) root mean square(RMS) position error, (2) effi-
ciency η, (3) root time-averaged mean square (RATMS)
error [7]. To define each of the above performance metrics,
let (x ik , y

i
k , z

i
k ) and (x̂ ik , ŷ

i
k , ẑ

i
k ) denote the true and estimated

target positions at time k at the ith MC run, respectively.
Suppose M of each MC runs are carried out. Then, the RMS
position error at time k can be computed as

RMSk =

√√√√ 1
M

M∑
i=1

(x̂ ik−x
i
k )

2+(ŷik−y
i
k )

2+(ẑik−z
i
k )

2 (49)

The Cramer-Rao lower bound can be used to give us a
theoretical optimal bound on the expected errors between
the estimated quantities and the true values from the known
statistical properties of the measurement errors [5], which can
be defined as

P = (HTR−1H )−1 (50)

whereH is Jacobian matrix. For the observation function (8),
H can be calculated as (51), as shown at the bottom of the
next page, where

(lj,k )2 = (xj,k − xsj )
2
+ (yj,k − ysj )

2 (52)

(rj,k )2 = (xj,k−xsj,k )
2
+(yj,k−ysj,k )

2
+(zj,k−zsj,k )

2 (53)

where j = 1, 2 denotes the jth passive sensor.
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The second metric stated above is the corresponding effi-
ciency parameter for the matrix (9) defined as

ηk =
CRLB(RMSk )

RMSk
× 100% (54)

which indicates ‘‘closeness’’ to CRLB. Thus, ηk = 100%
implies an efficient estimation that achieve the CRLB exactly.
For a particular scenario and parameters, like scenario A in
this paper, the overall performance of a filter is evaluated
using the third metric which is the RTAMS error. This is
defined as

RTAMS

=

√√√√ 1
(tmax−l)M

tmax∑
k=l+1

M∑
i=1

(x̂ ik−x
i
k )

2+(ŷik−y
i
k )

2+(ẑik−z
i
k )

2

(55)

where tmax is the total number of observations (or time
epochs) and l is a time index after which the averaging is
carried out. Typically l is chosen to coincide with the end of
the target maneuver.

A. UNIFORM AND TIME-INVARIANT
SAMPLING SCENARIO
In this subsection a uniform and time-invariant sampling
scenario is designed. A thorough and realistic performance
comparison is carried out among the IMMEKF, IMMUKF,
JMS-PF, MMPF and CMMPF trackers, including three
aspects: process noise, measurement noise and sampling
interval time. Fig. 1 shows the true simulated target trajectory.
The real initial position of the target is (2km, 8km, 1km), and
the initial velocity is (0.19km/s, 0.23km/s, 0.00km/s) and
held invariant throughout the journey where the target makes
two turns with rectilinear segments connecting them. The
initial prior PDF of state is assumed to be x0 ∼ N (x̂0|0, P̂0|0),
where

x̂0|0 = [2.1km 0.12kms−1 7.95km

0.23kms−1 0.95km 0kms−1]

P̂0|0 = diag[0.144km2 0.022km2s−2 0.144km2

0.022km2s−2 0 0]T

The trajectory segments are set as follows.
First Segment: Rectilinear flight until the plane is at

(4.85km,12.94km,1km) from t = 1s to t = 25s.

FIGURE 1. Simulated trajectory.

Second Segment: Circular maneuver mode with correct
turn rate 5◦/s until the plane is at (10.56km,14.24km, 1km)
from t = 26s to t = 45s.
Third Segment: Rectilinear flight until the plane is at

(12.81km,10.34km,1km), from t = 46s to t = 60s.
Forth Segment: Circular maneuver mode with opposite

turn rate 4◦/s until the plane is at (19.01km, 10.34km, 1km)
from t = 61s to t = 85s.
Fifth Segment: Rectilinear flight until the plane is at

(21.26km, 14.24km, 1km), from t = 86s to t = 100s.
For PF-based filters, the number of particles was set as

N =100 tomatch the computational time, as preliminary runs
indicate that policy refinement provides little improvement
for the parameterization [22].

(1) Effect of process noise
We now investigate and compare the tracking performance

of the filters with different process noise, when the obser-
vation noise is small, i.e., high signal-to-noise ratio. To do
so, we fix the observation noise STD to be 1.5mrad/s and
simulate three sets of process noise with STD as 0.005km/s2,
0.01km/s2 and 0.04km/s2, respectively. The interval time
T = 1s. The RMS position error curves, against the the-
oretical bounds, are shown in Fig. 2. The probability of
CV model switching being in effect is reported in Fig. 3.
Table 3, 4 and 5 summarized the data in detail, including the
mean and variance of RMSE, η, RTAMS and improvement.
Note that the column ‘‘improvement’’ refers to the percentage

H (k + 1) =
∂h
∂X

∣∣∣∣
X=X̂ (k+1|k)

=


−
yj,k − ysj
(lj,k )2

0 −
xj,k − xsj
(lj,k )2

0 0 0

−
(xj,k − xsj )(zj,k − zsj )

(rj,k )2
√
(lj,k )2

0 −
(yj,k − ysj )(zj,k − zsj )

(r jkk )
2
√
(lj,k )2

0

√
(lj,k )2

(rj,k )2
0


j = 1, 2 (51)
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FIGURE 2. RMS position error versus time for a maneuvering target
scenario with different process noise (a) σv = 0.005km/s2.
(b) σv = 0.01km/s2. (c) σv = 0.04km/s2.

improvement in RTAMS error compared with a chosen base-
line filter with the worst filtering performance [7].

Results from Fig. 2 (a) and table 3 show that, (1) In the
first smooth CV motion stage from k = 1s to k = 25s,
the overall RMS position errors of IMM-basedKF-type filters

FIGURE 3. CV model switching probability σv = 0.04km/s2.

TABLE 3. Performance comparison σv = 0.005km/s2

are even smaller than PF-based filters for the smoothing
and high signal-to-noise ratio segments. (2)When the target
maneuvering occurs at time k = 26s, CMMPF algorithm
presents a slight bubble in the RMSE curve correspondingly,
while the other four algorithms show a relative larger bubble
at k = 30s due to a time delay. (3) After the target maneuver,
CMMPF shows the smallest error during the maneuvering
onset from k = 26s to k = 45s, which is closest to the
CRLB curve, while IMMUKF presents the highest peak error.
The ‘‘closeness’’ to CRLB curve arranged from small to large
for other filters is MMPF, JMS-PF and IMMEKF. The main
reason for this is that, the target maneuvering has resulted
in an observable geometry at that instant and a larger size
of innovation covariance correspondingly, but the KF-type
algorithms cannot update the gain and the covariance in time.
While MMPF and CMMPF shows a superior performance.
As can be seen from table 3, CMMPF has the smallest size of
RTAMS,with the highest improvement 20% over the baseline
filter IMMUKF. The JMS-PF on the other hand is worse than
MMPF and CMMPF but better than IMMEKF/IMMUKF,
as it uses an EKF to compute the mode history probability,
due to the linearized approximation, even if the number of
particles for JMS-PF is increased, its performance cannot
reach that of MMPF/CMMPF.

Both the qualitative RMSE curves in Fig. 2 (b), (c) and
the quantitative statistics in table 4, 5 indicate that, with the
process noise increasing, the overall error gaps between the
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TABLE 4. Performance comparison σv = 0.01km/s2.

TABLE 5. Performance comparison σv = 0.04km/s2.

algorithms is becoming narrower, all filters exhibit a decline
tendency in the uniform motion period but a better tracking
performance in the maneuvering period.

Fig. 3 shows the CV model switching curves with a pro-
cess noise STD 0.04km/s2. For IMMEKF, the motion model
hardly switches along with the target maneuvering, and the
overall tracking results show a trend that deviates from the
true orbit, this is consistent with the parameters listed in
table 5 with the lowest η and largest RTAMS. IMMUKF
also shows worse performance than MMPF and CMMPF
obviously. Themajor reasons for this are (1) the basic premise
of the EKF is that the errors are ‘‘small’’ enough so that a
first-order expansion of the nonlinear model can sufficiently
describes the errors at all times [5], like UKF, both filters
assume that the posterior PDF is Gaussian, i.e., the PDF is
unimodal. When dealing with nonlinear systems this may no
longer be true, even with Gaussian inputs into the nonlinear
model. While the CMMPF can capture the target maneuver-
ing behavior well for the same settings because it utilizes both
the state constraints and target motion features in the state
updating process effectively, after the target maneuvering, the
RTAMS improvement over the baseline filter IMMEFK is
48%, nearest to the CRLB whose improvement is 71%.

TABLE 6. Comparison of the computation time.

Finally, table 6 summarized the average computation time
needed for 100 MC runs of different algorithms in the sec-
ond case. Obviously, the PF-based multiple model methods
have an expensive computation load mainly because of the
increased Monte Carlo calculations in the state nonlinear
filtering process.

(2) Effect of measurement noise
Here we investigate the tracking performance for bearings-

only maneuvering target tracking when the observation noise

FIGURE 4. The RMS position error versus time under different
measurement noise. (a) σe = 3mrad/s. (b) σe = 5mrad/s.

is larger, i.e., signal-to-noise ratio is lower. To do so, we fix
the process noise STD to be 0.01km/s2 and select three
sets of observation noise with STD as 1.5mrad/s, 3mrad/s,
and 5mrad/s, respectively. The interval time T = 1s. The
qualitative RMS position error curves, against the theoret-
ical bounds, are shown in Fig. 2(b) and Fig. 4. Table 7
and 8 summarized the data statistics in detail. Noting that
the performance comparison with measurement noise STD
1.5mrad/s is the same as the second one in case (1), with the
same results in Fig. 2(b) and table 4, which is not repeatedly
given here.

Simulation results show that, the parameter values, both
RMSE and RTAMS, of all filters exhibit an increment as the
measurement noise increases. Like the analysis in case (1),
CMMPF indicates advantages over the other existing filters
with respect to accuracy, efficiency and robustness.

It is worth noting that in the above simulations, the per-
formance of MMPF is comparable to that of the CMMPF
due to the small process noise used in the uniform sampling
simulations. However, for bearings-only maneuvering target
tracking problem with larger interval time and moderate
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FIGURE 5. Model switching probability with sampling time T=3s (a) IMMEKF. (b) IMMUKF. (c) JMS-PF. (d) MMPF. (e) CMMPF.

to high process noise, the CMMPF is likely to outperform
the MMPF.

(3) Effect of sampling interval time
Now, we will investigate the effect of sampling interval

time for the bearings-only maneuvering target tracking in the

uniform sampling and time-invariant scenario. The interval
time is set to relatively larger as T = 3s, the STD of process
and measurement noise is 0.01km/s2 and 1.5mrad/s, respec-
tively. The motion model set switching probability curves for
the five multiple model based filters are shown in Fig. 5.
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TABLE 7. Performance comparison σe = 3mrad/s.

TABLE 8. Performance comparison σe = 5mrad/s.

Obviously, although there is a slight bump in the model
probability for the correct turn model, the IMM-based algo-
rithms are unable to switch from the first CV model to the
other CT models. That is to say, they failed to capture the tar-
get maneuvering behavior for the sparse observation, mainly
because of ignoring the latest observation information in the
interacting stage. JMS-PF shows a better performance than
IMMEKF and IMMUKF, but worse thanMMPF and CMMF.
For the same scene, meanwhile, CMMPF indicates a better
ability to capture the target maneuvering behavior, because it
estimates model-set with series of boundary optimization.

In summary, simulation results in this subsection indicate
that CMMPF algorithm is the best one among the suboptimal
algorithms in comparison with respect to RMS position error,
efficiency η and RTAMS.

B. NON-UNIFORM TIME-VARYING AND SPARSE
SAMPLING SCENARIO
In this subsection, we will investigate a real aperiodic sparse
sampling aircraft tracking scenario, including 40 aperiodic
sampling points, and the target flight time is 107s. The sam-
pling interval T is time-varying and can be defined as

T = t(k + 1)− t(k) (56)

where t(k + 1) and t(k) denotes the sampling time at time
k + 1 and k , respectively. As the IMMEKF, IMMUKF and
JMS-PF trackers show a divergence when the target is missed
from measurement at k = 25s due to an abrupt larger
interval time, the track loss rates are high to 38%. Such that,
we compare and analysis filtering performance of the ATPF,
MMPF and CMMPF. The initial state prior PDF is given as
x0 ∼ N (x̂0|0, P̂0|0), where

x0|0 = [6.331km− 0.031kms−1 2.589km 0.29kms−1

1.0km 0kms−1]T

p̂0|0 = diag[0.152km2 0km2s−2 0.152km2 0km2s−2

0.152km2 0km2s−2]T .

FIGURE 6. Filtering performance. (a) True and Estimated trajectories.
(b) RMS position error with different number of particles. (c) Average
computation time with different number of particles.

To evaluate the tracking performance under different num-
bers of particles, we set the number of particles as 40, 100,
200 and 300. The STD of process and measurement noise
is 0.2km/s2 and 3mrad/s, respectively. 100 MC runs are
carried out.
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The true and estimated trajectories are shown in Fig. 6 (a).
Statistics of RMS position error and average execution time
needed for 100 MC runs are shown in Fig. 6 (b) and (c),
respectively.

Compared with ATPF and MMPF algorithm, the overall
RMS position error of CMMPF decreases near 22.1% and
39.5%, respectively. The major reasons are that (i) CMMPF
estimates the model-set in an optimal manner, takes advan-
tage of the nonlinear soft state constraints in every step of
the state update. (ii) CMMPF simultaneously incorporates the
current measurement and spatio-temporal features as auxil-
iary variables into the proposal distribution for nonlinear state
filtering. Thus it can deal with the motion model uncertainty
effectively.

Additionally, since the tracking performance shows no
significant improvement as the number of particle increases
while the execution time increases much more. It is reason-
able to reduce the number of particle to trade off the estimate
accuracy and calculation load.

V. CONCLUSIONS
One of the major challenges for target tracking arises from
the target motion uncertainty and observation nonlinearity,
furthermore, the state constraint is another challenge should
not be ignored. In this regard, we have proposed a novel
and efficient constrained multiple model particle filter for
bearings-only maneuvering target tracking, there are four
distinguished features for the algorithm

1) To save the high-dimension calculation load and reduce
the error covariance, CMMPF divides the dynamic
state space into two sub-problems according to the
Rao-Blackwellised theorem.

2) For model set estimate, the algorithm utilizes a MSIR
method to restrict the samples into a feasible area
consistent with the constraint boundary, and simulation
model switching curves are consistent with the target
maneuvering trajectory.

3) The approach showsmerits for nonlinear non-Gaussian
problem, because the estimator approximates the poste-
rior distribution without necessary linearization or high
order differential matrix.

4) For the model-conditioned state nonlinear filtering, the
tracker approximates the truncated prior density by LS
method, incorporates the latest measurement and target
spatio-temporal features into the proposal distribution
effectively, the diversity and accuracy of the sampled
particles can be guaranteed.

Experiment results confirm that the proposed CMMPF
algorithm has a distinguished advantage over the other filters
in comparison in this paper when dealing with the bearings-
only target maneuvering tracking problem, especially, in the
aperiodic and sparse sampling environment. The main draw-
back of CMMPF is the calculation load, which is to be
addressed in our future work. We will extend this algorithm
to multi-target tracking in clutter environments and make
corresponding improvements.
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