
SPECIAL SECTION ON COLLABORATION FOR INTERNET OF THINGS

Received August 4, 2018, accepted August 31, 2018, date of publication September 10, 2018, date of current version October 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2869306

Rapid and Efficient Bug Assignment Using
ELM for IOT Software
YING YIN 1, (Member, IEEE), XIANGJUN DONG 2, AND TIANTIAN XU 2
1College of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
2School of Information, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China

Corresponding authors: Ying Yin (yinying@mail.neu.edu.cn) and Tiantian Xu (xtt-ok@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772124 and Grant 61332014 and in
part by the Fundamental Research Funds for the Central Universities under Grant N150402002.

ABSTRACT The reliable implementation of software in an Internet system directly influences information
transmission especially for the Internet of Things (IoT) system. Once defects in the system are found,
the communication between things and things and the interaction between people and things in the IoTwill be
greatly affected. Therefore, rapid and effective defect assignment to the right developer is the key to ensuring
software quality and bringing down time consumption in the IoT software life cycle. However, as the size
of the software becomes increasing larger, the requirement of users grows, and a large number of software
bugs will be found every day. It is difficult for managers to assign the software defects to the appropriate
developers. In this paper, a novel hybrid method based on a diversified feature selection and an ensemble
extreme learning machine (ELM) is proposed. First, the useful information is extracted from defect reports;
then, the data are preprocessed to establish a vector space model; and the diversified feature selection is
preprocessed in order to select a smallest set of representative non-redundant featureswithmaximal statistical
information. Finally, an ensemble GA-based ELM training classifier is used. Experimental results show that,
compared to SVM, C4.5, NaiveBayes, and KNN classifiers, the proposed ELM-based bug triage approach
with representative feature selection techniques in this paper significantly improves the efficiency and the
effectiveness of bug triages.

INDEX TERMS IoT software, diversified feature selection, software defect triage, ensemble extreme
learning machine (ELM).

I. INTRODUCTION
The Internet of Things industry is developing rapidly all over
the world. The development of the Internet of Things indus-
try is dependent on the popularization of software products.
Software covers many aspects of the Internet of Things sys-
tem, such as the IOT terminal system, short-distance connec-
tions, IOT architecture, IOT browser, IOT security and other
important applications [3]. According to an OMA survey,
60% of IOT enterprises believe that IOT products rely on
open source software. According to the VisionMobile survey,
91% of Internet of Things developers have used open bug
repositories to seek help to repair defects and further improve
the performance and safety of Internet of Things software.
Reliable quality of software is the basis of ensuring the effi-
cient and safe operation of the IOT system.

Open software projects usually adopt an open bug repos-
itory, such as Bugzilla or JIRA to manage software defect
reports that were submitted by developers and users from the

process of software development and maintenance [1]. When
one or some software bugs are found, software developers
and users will submit bug reports to the repository in the
form of software defect reports. A bug report describes the
details or the features (such as version, description, compo-
nent, and severity) of the submitted bug [2]. The advantage
of the open repository is that it allows more bug reports to be
submitted, confirmed and assigned.

Traditional artificial defect triage is described below: First,
test group members found the software defects and generated
defect reports and then handed in the reports to the test
group leader. Further, according to the defect reports, test
group leader first judged whether or not it is a genuine bug
report and determined the validity of the software defects, and
then, the report is checked for duplication. If the reports are
effective, then the numbers hand it over to the team leader.
Finally, the team leader assigns the software bug reports to
the most suitable developers according to their experience.

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

52713

https://orcid.org/0000-0002-6798-9293
https://orcid.org/0000-0002-5364-5844
https://orcid.org/0000-0002-7737-4858

Y. Yin et al.: Rapid and Efficient Bug Assignment Using ELM for IoT Software

Therefore, the project manager can use the system to assign
the reports, manage the solution process and improve the
quality of the software project. However, bug assignment
expenses incur significant costs, such as time and human
resources, especially for rapidly growing projects with many
bug reports generated every day. For instance, there are
on average more than 29 reports submitted to the platform
each day in Eclipse [18]. Up to May 1, 2014, data show
that Bugzilla has managed over 434,000 and 1,004,000 bug
reports for Eclipse and Mozilla, respectively. Each bug report
must be determined, validated and assigned to an appropriate
developer based on its features(whether it is a new prob-
lem or an enhancement).

The goal of most previous work on bug triage is to analyze
bug reports to help developers or programmers repair the
bugs efficiently. Jeong et al. put forward a graph model
based on Markov chains to detect the defect information
modified. Cubranic et al. [35] proposed a method that uses
the Naive Bayes algorithm to convert the defect triage into
text categorization. Since then, defect assignments based on
text classification technology have been used. Nevertheless,
the accuracies of the above two methods must to be improved
when using these methods to triage defects. Xuan et al. [33]
improved the accuracy of the classification by reducing the
size of data using instances and selected feature combina-
tions, improve the quality of the data, and selecting the
appropriate instance selection and feature selection order.
Ahsan et al. [34] mapped the defect report information to
the latent semantic space, reduced the size of the data using
singular value decomposition, improved the quality of the
data, and then improved the accuracy of the defect assign-
ments. Other studies use machine learning-based bug report
triage methods to recommend suitable repairers [30], [32].
The method must provide a bug report with a repairer, extract
some features of the existing bug report, train amodel through
machine learning, and then execute predictions on unknown
bug reports; Other classification techniques, such as SVM,
naive Bayes and decision trees are also used for triage [29],
[31], [32]. In these methods, a vector space model is used
to digitize bug reports. First, find the useless words in the
text, select the other words, retain the more important words
and calculate their weights. Defect assignment papers based
on association rules have been presented in the literature.
However, the large number of rules affects the efficiency of
assignments. All in all, there are two major challenges to
existing methods in the triage of defects: (1) The speed of bug
triage should be improved; with the advent of the Internet era,
increasingly more platforms support a variety of software,
such as mobile phones, IPads and various mobile terminals;
and in the face of large-scale bug reports, it is necessary to
improve the efficiency and accuracy of bug allocation. (2) The
triage accuracy must be improved; existing bug assignment
methods for single report feature extraction and assignment
accuracy must be improved. With the increasing size and
complexity of software projects, an increasingly more bugs
are generated. When a bug report is generated, it is important

to assign it quickly and effectively to the appropriate repairer.
Therefore, we require a fast and accurate defect triage algo-
rithm to reduce the consumption of time and labor. Below are
the primary contributions of this paper:

In this paper, we propose an effective bug report feature
learning model and an efficient bug assignment mechanism
for the above challenges. The primary contributions of this
article are as follows: (1) we propose a new hybrid bug
triage method based on supervised learning and ensemble
ELM classification based on GA. (2) We propose an efficient
method to identify diversified features as the representative
feature subsets of an all-dimensional space for each bug
report. Not using all features to construct a large searching
space, we only select those representative features with high
relevance and diversification by adopting a greedy algorithm;
and (3) We design an optimal ensemble ELM strategy by
combining the selected diversified features to promote the
strategy’s effectiveness.

The remainder of this paper is organized as follows.
Section 2 gives the background of bug triage, including the
information extracted from a bug report and the life-cycle of
a bug report. Section 3 presents the theory of the extreme
learning machine. Section 4 presents the hybrid ELM-based
bug triage framework. Section 5 describes the representa-
tive feature selection and gives the process of solution in
detail. Experimental analysis is elaborated in Section 6.
Section 7 describes the previous related work on bug triage.
Finally, Section 7 concludes this paper.

II. BUG REPORT
Currently, bug repositories, such as Bugzilla, GNAT and
JIRA are widely used in software projects to collect bug
information, store bug reports and triage the bug fixers. Bug
repositories play a very important role because they provide
a communication channel for software developers around
the world. With these repositories, many bug reports can be
repaired in time. The emergence of an increasing number of
bug repositories effectively improves the quality of software
development. Bugs in repositories takes many forms, such
as new features, defects, update operations or refactoring.
Once a new software bug is found, this bug will be recorded
by a recorder and submitted to the bug repository. The bug
repository provides a database of problems for a software
project. There are a series of states for a bug report over its
lifecycle. We elaborate these states as a lifecycle graph of a
bug report. Figure 1 shows the several states of a bug project
for internet software. Other projects have similarities to this
model.

At first, the state of a bug report is marked as NEWwhen it
is submitted to the bug repository. For a fixer/developer, once
he/she has been assigned to the report, the status of bug report
becomes ASSIGNED and the fixer/developer becomes an
assignee. Once the report is closed, the status of a bug report
is set to RESOLVED. It may further become VERIFIED or
CLOSED when it is reopened again. The bug report pro-
vides an integrated record of a bug from being presented to

52714 VOLUME 6, 2018

Y. Yin et al.: Rapid and Efficient Bug Assignment Using ELM for IoT Software

FIGURE 1. The lifecycle of a bug report in Bugzilla.

being repaired or closed. Its content mainly includes (1) the
migration process of the reported bug, such as new, assigned,
reopened, resolved, closed, or fixed, and (2) the repair sugges-
tions of the reviewer and the comments as well as the time of
posting.

Bug reports are similar in form in the same bug software
repository, whether it be IOT software or network software.
We take the Eclipse project as an example; Figure 2 shows
a partial bug report on bug 425152 in Eclipse stored in
Bugzilla. Each bug report consists of four parts: freeform
text, predefined fields, attachments, and dependencies. Some
items, such as such as the report creation date, identification
number and reporter are provided when the report is created.
Other attributes, such as the status (e.g., resolved or fixed),
product (e.g., JDT), component (e.g., Core), hardware (e.g.,
PC Windows 7), version (e.g., 4.4), importance (e.g., P3),
and target milestone (e.g., BETA J8), are described by the
reporter when the report is submitted, but the report’s sta-
tus may be changed with modifications by the contributor.
Figure 2 shows that a contributor named Jay Arthana-
reeswaran introduced a bug report on Jan.9, 2014. Jay
Arthanareeswaran gave a detailed description of this bug
about ‘‘[compiler] Lambda Expression not resolved but flow
analyzed leading to NPE’’. In addition, he described some

FIGURE 2. An example of bug report in Bugzilla.

items associated with this bug report, including components,
product and target milestone. Along with the progress of the
fix, the status of bug report may change as well.

The summary and description of the bug report is
described by the freeform text which consists of a descrip-
tion, a summary and comments. The comments are posted
by contributors. These contributors are happy to join in
the discussion or have interests in fixing the bug of the
project. Generally, contributors can also attach nontextural
information, such as test cases and patches. For example,
after Jay Arthanareeswaran submitted Bug 425152, there
are 9 total comments from 4 contributors, such as Jay
Arthanareeswaran, Srikanth Sankaran, Stephan Herrmann
and Noopur Gupta. In Figure 3, we only display a part of
the comments for bug 425152 in Eclipse stored in Bugzilla.
Interestingly, Srikanth Sankaran also contributed 7 com-
ments, Stephan Herrmann contributed 2 comments and
Noopur Gupta also contributed 1 comment.

FIGURE 3. The comments of bug 425152 in Bugzilla.

III. INTRODUCTION OF ELM
In recent years, a new artificial neural networkmodel learning
method called extreme learning machine (ELM) has been
proposed. Extreme learning machine (ELM) is a generalized
single hidden-layer feedforward network. ELM described in
Algorithm 1 provides better generalization performance with
faster speeds than those of traditional feedforward neural
network learning models [19]. In ELM, the hidden-layer
node parameter is mathematically obtained instead of being
iteratively tuned. The learning model not only ensures that
the network has good generalization performance, but also
greatly promotes the learning speed of the neural network
and avoids many problems of using gradient descent learning
methods, such as falling into local minima and slow conver-
gence rates.

VOLUME 6, 2018 52715

Y. Yin et al.: Rapid and Efficient Bug Assignment Using ELM for IoT Software

As an excellent learning model, ELM has been applied
in many fields successfully. For example, in [20], ELM
was applied for plain text classification by using the OAO
strategy and OAA scheme. An ELM-based XML document
classification framework was proposed to improve the clas-
sification accuracy with an efficient voting strategy [19].
An ELM-based protein secondary prediction framework was
proposed [22] to provide excellent performance with high
speed. An ELM-based protein-protein interaction prediction
framework on multichain sets was proposed by [21]; it uses
ELM and SVM as comparisons. Studies indicate that ELM
obtains a better recall than of SVM and shows an advantage
with its higher speeds.

The work [23] proposes an ELM-based classification on a
microarry dataset, evaluating the classification performance
on several microarray datasets. The use of ELM for mul-
tiresolution access of shadowmap compression was proposed
in [24]. The ELM-based optimization method for classifi-
cation was elaborated in [25]. In recent years, the use of
intelligent optimization algorithm combined with evolution-
ary limit learning machine (E-ELM), combined with dif-
ferential evolution and the ELM algorithm, to improve the
performance of SLFNs; In [4], an adaptive DE algorithm is
used to optimize the hidden layer node parameters of SLFNs,
and Moore-Penrose (MP) generalized inverse acquisition is
used to optimize the hidden layer node parameters of SLFNs.
IPSO-ELMwas presented in [6], optimization of hidden layer
node parameters in SLFNs using improved particle swarm
Optimization. The output weights of SLFNs can be obtained
using ELM, so the output weights of SLFNs can be improved.
The performance of SLFNs has been improved. The algo-
rithm has good performance in regression calculation and
classification [7].

As mentioned, ELM is a classifier based on SLFN.
Standard SLFNs with M arbitrary samples (xi, ti) ∈ Rm×n

and activation function g(x) are refer to [16] as
H∑
i=1

βigi(xj)=
H∑
i=1

βig(wi ·xj+di)=oi, (j=1, . . . ,M) (1)

where the number of hidden layer nodes is H , the weight
vector between the ith hidden node and the input nodes is
wi = [w1

i ,w
2
i , . . . ,w

n
i]
T , the weight vector between the ith

hidden node and the output nodes is βi = [β1i , β
2
i , . . . , β

m
i]

T ,
and the threshold of the ith hidden node is bi. The output of
ELM is:

f (x) =
N∑
i=1

βig(ci, di, x) (2)

where

H (w1, . . . ,wL, d1, . . . , dL , x1, . . . , xL)

=

 g(w1 · x1 + d1) . . . g(wL · x1 + dL)
... . . .

...

g(w1 · xM + d1) . . . g(wL · xM + dL)

M×L

,

β =
[
βT1 , . . . , β

T
L

]T
n×L

The decision function for classification [26] is:

d(x) = sign(
L∑
i=1

βig(ci, di, x)) = sign(β ·H) (3)

When g(x) approximates the M samples with zero error with
6L
j=1‖oj − tj‖ = 0 and outputs βi, wi and di such that

L∑
i=1

βig(wi · xj + di) = tj, j = 1, . . . ,M (4)

The equation above can be expressed compactly as follows:

Hβ = T (5)

where T = [tT1 , . . . , t
T
L]
T
m×L .

All in all, ELM is relatively rapid compared with the
traditional learning algorithms. ELM tends to have not only
the smallest training error but also the smallest norm of
weights [27]. More detailed introductions to ELM and its
improvements can be found in a series of new published
literatures.

Algorithm 1 ELM
Input: ODB: original dataset, HLN: Number of Hidden
Layer nodes, AF: ActivationFunction
Output: R
1. for k = 1 to L do
2. set input weight wi randomly
3. set bias di randomly
4. calculate H
5. obtain β = H†T

IV. OVERVIEW OF DEFECT TRIAGE
In this section, we first give the ELM-based defect triage
framework (Fig.4) and then explain every step of this frame-
work in the following steps respectively. Assume an orig-
inal dataset of s bug reports, m features/variables and k
workers, i.e. S = {s1, s2, . . . , sn}, M = {f1, f2, . . . , fm} and
C = {c1, c2, . . . , ck}. Each sample si can be represented by
a vector si = {xi1, xi2, . . . , xim}, where xij denotes the values
of sample si on feature fj. Each sample si ∈ S corresponds
to a class label ci. As shown in Figure 4, the defect triage
framework consists of three major steps: Software defect
information extraction, representative feature space construc-
tion, and optimal ensemble ELM classification based on GA
and recommendation.

In order to understand the proposed method better, we first
give a brief description for each of the three steps below.

(1) Software defect information extraction. A bug report
contains much information. However, not all of the informa-
tion is useful. We are only interested in information that can
be used to extract the software defect features for a bug triage.
The goal of this step is filtering some irrelevant information,
such as URL, target milestone, writeboard, keywords and so
on. In this step, we complete the initial filter with stemming

52716 VOLUME 6, 2018

Y. Yin et al.: Rapid and Efficient Bug Assignment Using ELM for IoT Software

FIGURE 4. Overview of defect triage.

and removing of the stop words. More detailed information
is given in subsection 4.1∼4.2.
(2) Diversified feature space construction. In this step,

we use the defect information to construct a feature space of
software defect reports. In this step, we mainly preprocessed
the defect information, and finish the diversified feature
selection of the representative features. The goal of this step is
to select a representative group of nonredundant feature sets
with relative maximal statistical information on the developer
triage. More detailed information is given in section 4.3.

(3) Optimal ELM classification based on GA. Finally,
based on the selected the diversity features, we train the
ensemble ELM classifier. Fixers are as the labels used to train
the ELM classifier. In this step, we develop an assembling
ELM-based genetic algorithm to further promote the classi-
fier’s effectiveness. This method can output the mean value
of a several weighted classifiers.

Instead of assigning equal weights to every classifier, for
better-performing classifiers, we set their weight coefficients
to be higher. In this paper, we use a genetic algorithm based

method to find the optimal weight allocation coefficients for
each classifier. When there are new software defects gener-
ated, we recommend the most suitable fixer according to the
trained model. More details are given in section 4.4.

A. SOFTWARE DEFECT INFORMATION EXTRACTION
Most of the previous researchers extracted from the defect
reports only information about the description and the corre-
sponding contributors. However, we found that the summary
and comments of the defect reports also provided substantial
valuable software defect information. The summary briefly
describes the basic types and locations of defects, and com-
ments are the communication that the developer has made
when repairing the software defects. Therefore, in addition
to extracting the description and restorers’ information of the
defect reports, we also collect the summary and comments to
improve the accuracy of the defect assignment.

In this paper, we use the defect tracking system Bugzilla
to obtain the defect report data. In Bugzilla, a defect report
records the details of a software defect. We extract the useful
information, such as part of the summary, the description and
the comments of the report as candidate attribute information
for the software defect triage. The contributors were extracted
as the labels of training samples. However, in Bugzilla,
the contributors are not always assigned to the real fixers
of software defects. For example, one defect was repaired
by another developer, not the first developer it was assigned
to, and it is also possible that the information regarding
the assignment did not receive timely updates. First of all,
we selected defect report data in the state of ‘‘solve’’. In order
to obtain the real fixers of software defects, we adopt the
following rules: (1). If a software defect is repaired by the
developer that it is assigned to, then this developer is assumed
to be the final real fixer of defect; (2). If a defect is not
repaired by a developer it is assigned to, then the person who
modifies the status of defect reports to ‘‘solve’’ eventually is
assume to be the real fixer.

From the bug report, it can be seen that most of the
bug report is about descriptive information and comments.
However, the description and comments of software defect
reports are in natural language descriptions, which contain
much useless information. Even some noise affects the train-
ing effect of the classifier. The dimensional space may reach
ten thousand dimensions or more when the text documents
are represented by the vector space model. Thus, if we do not
make perform data selection, it will be a complicated compu-
tation, which can not be tolerated in the actual classification.
Therefore, it is important to preprocess the original data and
select the representative features before training a classifier
efficiently. There are two steps for preprocessing. The first
step is stemming and the second step is removing the stop
words.

Stemming is the process of reducing inflected (or some-
times derived) words to their word stem, base or root form-
generally a written word form. The stem of this word is not
necessarily the same as the root of the word. The stem is

VOLUME 6, 2018 52717

Y. Yin et al.: Rapid and Efficient Bug Assignment Using ELM for IoT Software

usually sufficiently relevant to the root, even if this stem
itself is not a valid root. When turning a text document into
a vector space model VSM, the same word may has different
forms in description, such as word form, i.e., like past tense
and progressive tense, as described in natural language on
the software defect reports. We must unify the word forms
in the data preprocessing. Generally, there are some classic
algorithms based on grammar rules, such as Porter stemmer
and snowball stemmer. In this paper, we choose snowball
stemmer for stemming.

The process of stemming extracts a word stem or root [4],
mainly taking advantage of language rules to get the primary
form of words. For example, in Table 1, the word ‘‘spending’’
turns into ‘‘spend’’, the word ‘‘created’’ turns into ‘‘create’’,
and the word ‘‘keeps’’ turns into ‘‘keep’’. We translate the
same or similar words into a consistent form after extracting
stems and improved the validity of the selected feature. Fur-
ther, the step also helps to reduce the dimension of the data to
some extent.

TABLE 1. mapping relationship of the words and stems.

The system will filter out some words or phrases
before or after handling natural language data, and these
words or phrases are called stop words. Generally, stop words
are the function words in the human language, and these
function words are extremely common. Compared with other
words, function words have no actual meanings, such as:
‘‘the’’, ‘‘is’’, ‘‘a’’, ‘‘at’’, ‘‘which’’, ‘‘that’’, ‘‘on’’, numbers,
characters, punctuation, etc. Although these stop words can-
not separately express the degree of correlation for a doc-
ument, these stop words will take up considerable space.
In the extracted software defect reports, most of the words
are stop words which are not useful for the training classifier.
The researcher named Ho, Tin Kam at Bell laboratory of
American thought that ‘‘in a typical English article, stop
words account for more than half, but the number of these
stop words less than 150’’ [5]. The literature [6] lists the lists
of stop words, and the number reaches 658, which includes
many letter combinations but not words. Therefore, we first
build a stop list in Table 2 and then filter data according to
the stop list, which means that the data corresponding to the
word are removed and that the data dimension and the data
size are also reduced.

B. REPRESENTATIVE FEATURE SELECTION
There are much noise in bug reports. All-dimensional fea-
tures will produce a high-dimensional vector if we map the

TABLE 2. parts of stop list.

original data onto the vector space directly. Further, the noise
also increases the complexity of time, the complexity of
space and affects the accuracy of the classification [14], [15].
Therefore, efficient feature selection is an essential task for
filtering those meaningless features, such as redundant fea-
tures or irrelevant features, while retaining the important
features. It is necessary for us to use a suitable feature
selection method to reduce the feature space dimension and
noise to improve the efficiency and accuracy of the classifica-
tion. The common feature selection methods include mutual
information (MI), information gain (IG), term strength (TS),
chi-square (CHI). In the naive method, we choose IG as the
feature selection method. The literature [36] claims that IG is
one of the best feature selection methods. The formula of IG
feature selection is as following:

IG(u) = P(u)
∑
t

P(Cv/u) log
P(Cv/u)
P(Cv)

+P(u)
∑
t

P(Cv/u) log
P(Cv/u)
P(Cv)

(6)

where v is the total number of developer tags. P(u) repre-
sents the probability of feature u. P(Cv/u) represents the con-
ditional probability of belonging to developer Cv class when
the text contains feature u. P(Cv) represents the probability
of information text belonging to developer Cv in a text set.
P(u) represents the probability that feature u does not appear
in the text. P(Cv/u) represents the probability of belonging
to the developer Cv class when the text does not contain
feature u. In the experiments, we select a feature subset by
the IG method to reduce the dimension of the vector space
and filter the noise. In the next step, we weight the feature
words of different frequencies to improve the triage accuracy
of software defect reports.

If a word shows up in a paper with a high frequency,
and rarely appears in other papers, this word has a very
good ability to differentiate categories and is suitable for
classification. In this case, we compute the weight-value for
different important terms by using the TF-IDF method. The
TF-IDF algorithmwas proposed firstly in the literature by [7].
Later, Salton et al. [8] demonstrated the validity of TF-IDF
repeatedly. TF-IDF is a statistical method used to evaluate
the degree of the importance of a word for a document in a
file set. For a given feature word ti, the tfij of this word can be
expressed as:

tfij =
ni,j∑
k nk,j

(7)

52718 VOLUME 6, 2018

Y. Yin et al.: Rapid and Efficient Bug Assignment Using ELM for IoT Software

In the above formula, ni,j is the number of times this feature
word appears in the document dj. The denominator represents
the sum of the frequencies of all words that occur in the file.
The idfi of this word shown as:

idfi = log(1+
|D|

1+ |j : ti ∈ dj|
) (8)

|D| is the total number of files in the file set. |j : ti ∈ dj|
represents the numbers of files including feature word ti.
If this feature word is not in the file set, then the denominator
is zero, in this case, it is written as 1 + |{j : ti ∈ dj}|. The
weight wi,j of feature word ti in file dj can be expressed as:

wi,j =
tfi,j

maxj{tfk,j}
× idfi (9)

maxj{tfk,j} is the maximum number of feature words tf in
file dj. The weights of all the feature words with the above
methods are calculated, and the process is normalized by
establishing the vector space model (VSM).

After the processing of feature selection, we select the
top-k features as the representative features. However,
because these feature words are based on all the sample data,
next, we must to establish the VSM of each sample data
according to the feature words. During the construction of
VSM, we utilize the following principles:

(1) Searching the data of each sample according to the fea-
ture words chosen. If the sample contains the feature words,
then the VSM dimension value is 1; otherwise, the value is 0.

(2) Assigning values to the sample VSM according to the
corresponding weight of each feature word calculated above.
That means that if the dimension value is 1, the calculated
value is the weight of the feature words. Otherwise, if the
dimension value is 0, the value is unchanged.

V. OPTIMAL ELM ENSEMBLING BASED ON GA
When given some selected representative features, it is
not difficult to train a two-class problem ELM classifier.
However, many real-world data are multiclass and unbal-
anced [37]. Nevertheless, a multiclass problem can be solved
by a primitive ELM with multiple learners. As we all know,
an ensemble learner ismuch better than a single learner is, and
ensemble strategies are more successful in many real-world
domains [28]. Thus, in this paper, we proposed an ensemble
of ELMs of multiple binary for lifting the accuracy.

In ELM, weights are set by random, however; weights
also affect the accuracy of classification to some extent.
In fact, the weights can be set higher for those classifiers
performing well and lower for others. Therefore, finding
the optimal weight coefficient can be transformed into opti-
mization problem, which is difficult to be exactly settled
especially when there are fewer feature dimensions. Using
an intelligent optimization algorithm combined with ELM to
extract the performance of high SLFNs has become a hot
research topic [17]. In this paper, a genetic algorithm (GA)
based method is proposed to explore the appropriate weight
coefficients for each classifier.

A genetic algorithm is a random search optimization tech-
nique [11]. In GA, the search space is encoded in the form of
chromosomes. All the chromosomes make up the population.

Each chromosome is associated with a fitness function
representing the degree of superiority or inferiority of the
chromosome.
Fitness function. Given a training instance r , the expected

output of r is d(r) and the actual output of the x-th individual
ELM is ox(r). During the training, we expect that the output
of the actual x should be consistent with the output of the
running ELM. Moreover, let Va be the validation set and
a = [a1, a2, . . . , aM] be a possible weight coefficient.
According to the literature [12], the estimated generalization
error of the ensemble ELM corresponding to a is:

EWa =
M∑
i=1

M∑
j=1

aiajCW
ij = aTCW a, (10)

where

CW
xj =

∑
r∈W

(fx(r)− d(r))(fj(r)− d(r))

|W |
(11)

where EWa denotes the goodness of a. The smaller EWa is,
the better a is. Thus, we use the formula f (a) = 1

EWa
as the

fitness function.
Selection. During each successive generation, a certain

selection method is required to judge the merits and demerits
of a chromosome using a fitness function in order to select
the best solution. In this paper, we adopt the roulette wheel
as the selection strategy. Each chromosome associated with a
selection probability. If ft is the fitness of individual t in the
population, the probability of an individual t being selected is

pt =
ft

population∑
j=1

fj

(12)

where population is the total number of individuals in the
population. In this case, chromosomes with lower fitness
values are less likely to be selected, but there is still a small
chance that they will.
Crossover.We adopt the normal single point crossover. The

algorithm selects the crossover point between chromosomes
randomly from a range from 0 to l. The crossover probability
is calculated with the same method used in [13]. Supposing
that fmaxfit is the maximum fitness value on current popula-
tion, the average fitness value of the population is fīt . Let fit ′

be the larger of the fitness values among the solutions. The
crossover probability is δc.

δc =

k1 ×
fmaxfit − fit ′

fmaxfit − f
, if fit ′ > fit,

k3, otherwise.
(13)

where k1 = k3 = 1.0 [13]. The formula satisfies the
following conditions: if fmaxfit = fit , then fit ′ = fmaxfit and
δc = k3. The purpose of this is to achieve a balance between

VOLUME 6, 2018 52719

Y. Yin et al.: Rapid and Efficient Bug Assignment Using ELM for IoT Software

exploration and exploitation in a unique manner. The δc is
upgraded while the better of the two chromosomes is crossed.
The δc is low in order to decrease the probability of breaking
off a good solution by crossover.
Mutation. Every chromosome has a process of mutation

with a probability δm [13]. Chromosomemutation probability
is also a manifestation of chromosome survival. That is, δm is
given below:

δm =

k2 ×
fmaxfit − f

fmaxfit − f
, if fit > fit,

k4, otherwise.
(14)

where the parameters k2 and k4 are set to 0.5.
Each position of the chromosome is mutated with prob-

ability δm. The value is replaced using a random variable

drawn from a Laplacian distribution, p(ε) ∝ e−
|ε−α|
β , where

the parameter β is the perturbation magnitude and α is the
value of the position to be disturbed. β is equal to 0.1. The
newly generated value is in place of the old value at the posi-
tion. Once we generate a random variable using Laplacian
distribution, there is a probability of generating a value that
is closer to the old value.

The GA process of computing fitness value, selection,
crossover and mutation is carried out in iteration. The optimal
chromosome supplies the solution with the suitable weighted
coefficient for the ensemble ELM classifier. The sum of
the weighti should be saved during the evolving. Therefore,
we normalized the evolved weight . The process of normal-

ization is: weighti = weighti/
M∑
i=1

weighti.

VI. EXPERIMENTAL ANALYSIS
DATASETS
The experiments are conducted on both real datasets. IOT
software can be submitted by many bug report tracking sys-
tems. In this paper, we collected four bug repositories includ-
ing Bugzilla,1 Eclipse,2 GCC3 and Netbeans4 to to examine
the performance of the ELM classifier effectively. Table 3
summarizes the characteristics of the four datasets: the num-
ber of samples (# bug reports), the average bug reports for
each developer (# B.D), and the average comments of each
developer i(# C.D). For every experiment, we select 66% of
the bug reports as training sets, and 34% as testing sets.

1https://bugzilla.mozilla.org/
2https://bugs.eclipse.org/bugs/
3https://gcc.gnu.org/bugzilla/buglist.cgi?
4https://netbeans.org/bugzilla/

TABLE 3. The real dataset information.

In this set of experiments, we conduct the effectiveness
analysis by comparing the classification accuracies over a
series of combinations of different classifiers and feature
selection methods. For each table in this subsection, the rows
correspond to different classifiers, which are ELM, SVM,
NaiveBayes, C4.5 and KNN the columns correspond to dif-
ferent feature selection methods, which are DF (abbr. of
diverfied features), IG (abbr. of information gain), TR (abbr.
of twoing rule), SM (abbr. of sum minority), MM (abbr.
of max minority), GI (abbr. of gini index). Each entry cor-
responds to a different combination of the corresponding
classifier and feature selection method, the accuracy of which
is recorded in this entry.Note: Diversified features here refers
in particular to the discovered features by our method in
Section 4. The other five feature selection methods are avail-
able in book [9]. The methods are widely used in machine
learning and are used as comparativemethods inmany feature
selection studies on various domains.

Tables 4 ∼ 7 give the comparisons on the four real datasets.
As seen from the four tables, the DF-based approach always
provides the highest accuracy on all classifiers. This is mainly
because the features selected by DF can be considered as pro-
viding the smallest but most representative coverage of all the

FIGURE 5. Accuracy vs hidden nodes.

FIGURE 6. Accuracy vs samples.

52720 VOLUME 6, 2018

Y. Yin et al.: Rapid and Efficient Bug Assignment Using ELM for IoT Software

TABLE 4. Accuracy on Eclipse vs #feature selection.

TABLE 5. Accuracy on Firefox vs #feature selection.

TABLE 6. Accuracy on Netbeans vs #feature selection.

TABLE 7. Accuracy on GCC vs #feature selection.

original features. They provide less redundant information
than the other methods, while taking into account the feature
interactions.

Figures 5 ∼ 7 present the effectiveness comparison of
four different data sets, including Bugzilla, Eclipse, GCC
and Netbeans. The effectiveness is evaluated by comparing
how the accuracy varies with the number of samples, hidden
nodes, and features. Figure 5 shows the accuracy compari-
son with different hidden nodes changing while the number
of features is fixed at 500 and the number of samples is
fixed at 1500. Figure 6 shows the accuracy comparison when
changing the number of different samples while the number
of hidden nodes is fixed at 500 and the number of samples
is fixed at 1500. Figure 7 shows the accuracy comparison
when changing the number of features while the number of
samples is fixed at 1500 and the number of hidden nodes is
fixed at 500.

As seen from the results, nomatter how the number of sam-
ples, features or hidden nodes varies, DF-ELM is constantly
better than IG-ELM. This outcome is because DF-ELM is
based on a diversified feature selection. It explicitly performs
a removing of the irrelevant and the redundant features.
However, IG-ELM, ELM with feature selection by IG, runs

FIGURE 7. Accuracy vs features.

on the selected features, which makes it have an increasing
chance of being affected by overfitting. The observation that
DF-ELM ismore accurate than IG-ELM is consistent with the
fact that an ensemble is usually more accurate than a single
learner is [28].

The time-consuming situation when a classifier model
is constructed by using a training set is shown in

VOLUME 6, 2018 52721

Y. Yin et al.: Rapid and Efficient Bug Assignment Using ELM for IoT Software

FIGURE 8. Training times(s) on Eclipse.

FIGURE 9. Training times(s) on Firefox.

FIGURE 10. Training times(s) on Netbeans.

Figure 8∼ Figure 15. Figure 8∼ Figure 11 shows the training
times on different datasets and Figure 12 ∼ Figure 15 shows
the testing times on different datasets. Taking the variety of
features as an example, the training time is increasing as
the number of data features increases. We concluded that
DF-ELM is comparable to SVM, Naive Bayes, C4.5 and

FIGURE 11. Training times(s) on GCC.

FIGURE 12. Testing times(s) on Eclipse.

FIGURE 13. Testing times(s) on Firefox.

KNN on accuracy while using much less training time.
Thus, DF-ELM has a better tradeoff between effective-
ness and efficiency than that of SVM, Naive Bayes, C4.5
and KNN.

Through the previous analysis, we have already known
that, in most cases, ELM-based classifiers are the least

52722 VOLUME 6, 2018

Y. Yin et al.: Rapid and Efficient Bug Assignment Using ELM for IoT Software

FIGURE 14. Testing times(s) on Netbeans.

FIGURE 15. Testing times(s) on GCC.

time-consuming in terms of training. It can be seen that
the DF-ELM-based classifier has the shortest testing time
and that the size of the data does not have much effect on
the testing time of DF-ELM classifier. However, C4.5-based
classifier training takes the longest time in most cases.
DF-ELM-based classifiers and Naive Bayes-based classifiers
consume almost the same testing time in most cases.

VII. CONCLUSION
With the rapid development of the Internet of Things industry
in the world, trouble-free software has played a greater role.
The rapid and efficient elimination of bugs in the software is
vital to the growth of Internet of Things enterprises. In this
paper, we propose a software defect triage framework based
on ELM. Through experiments, we conclude that the effects
of the classification and the time consumption of the defect
triage classifier based on ELM are much better than those
of classifiers based on other algorithms. In future work,
we will improve the ELM-based classifier. In this paper,
when we assign a defect, each defect is assigned only to a
specific restorer, which reduces the accuracy of the defect
assignment because the software defects that can be repaired

do not significantly differ between restorers in real of soft-
ware development; in other words, a software defect can be
repaired by multiple restorers. Thus, in the future, we will
fully consider the capability of multiply restorers to repair
defects and to recommend a number of the most appropriate
restorers for each software defect, thereby improving the
accuracy of defect assignment, especially for the growing of
IOT enterprises.

REFERENCES
[1] N. S. M. Yusop, J. Grundy, and R. Vasa, ‘‘Reporting usability defects:

A systematic literature review,’’ IEEE Trans. Softw. Eng., vol. 43, no. 9,
pp. 848–867, Sep. 2017.

[2] N. S. M. Yusop, ‘‘Understanding usability defect reporting in software
defect repositories,’’ in Proc. ASWEC, vol. 2, 2015, pp. 134–137.

[3] W. Yu et al., ‘‘A survey on the edge computing for the Internet of Things,’’
IEEE Access, vol. 6, pp. 6900–6919, 2018.

[4] G. Nicolai and G. Kondrak, ‘‘Leveraging inflection tables for stemming
and lemmatization,’’ in Proc. ACL, vol. 1, 2016, pp. 1138–1147.

[5] T. K. Ho, ‘‘Stop word location and identification for adaptive text recogni-
tion,’’ Int. J. Document Anal. Recognit., vol. 3, no. 1, pp. 16–26, 2000.

[6] (Jun. 14, 2007). Stop Word List-Words Filtered out by Search Engine Spi-
ders. [Online]. Available: http://www.twitterbuttonfactory.com/www/seo-
innovation.com/

[7] G. Salton and C. T. Yu, ‘‘On the construction of effective vocabularies for
information retrieval,’’ in Proc. SIGIR, 1973, pp. 48–60.

[8] G. Salton, E. A. Fox, and H. Wu, ‘‘Extended Boolean information
retrieval,’’ Commun. ACM, vol. 26, no. 11, pp. 1022–1036, 1983.

[9] I. H. Witten, F. Eibe, and M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques, 3rd ed. San Mateo, CA, USA: Morgan
Kaufmann, 2011, pp. 1–629.

[10] Z. Wang, Y. Zhao, G. Wang, Y. Li, and X. Wang, ‘‘On extending extreme
learning machine to non-redundant synergy pattern based graph classifica-
tion,’’ Neurocomputing, vol. 149, pp. 330–339, Feb. 2015.

[11] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA, USA: Addison-Wesley, 1989, pp. 1–140.

[12] Z.-H. Zhou, J.-X. Wu, Y. Jiang, and S.-F. Chen, ‘‘Genetic algorithm based
selective neural network ensemble,’’ in Proc. 17th Int. Joint Conf. Artif.
Intell. (IJCAI), Seattle, DC, USA, 2001, pp. 797–802.

[13] M. Srinivas and L. M. Patnaik, ‘‘Adaptive probabilities of crossover and
mutation in genetic algorithms,’’ IEEE Trans. Syst., Man, Cybern., vol. 24,
no. 4, pp. 656–667, Apr. 1994.

[14] M. Radovic, M. Ghalwash, N. Filipovic, and Z. Obradovic, ‘‘Minimum
redundancy maximum relevance feature selection approach for temporal
gene expression data,’’ BMC Bioinf., vol. 18, no. 1, pp. 9:1–9:14, 2017.

[15] D. Zuckerman, ‘‘On unapproximable versions of NP-complete problems,’’
SIAM J. Comput., vol. 25, no. 6, pp. 1293–1304, 1996.

[16] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, ‘‘Extreme learning machine:
Theory and applications,’’ Neurocomputing, vol. 70, nos. 1–3,
pp. 489–501, 2006.

[17] G. Huang, G.-B. Huang, S. Song, and K. You, ‘‘Trends in extreme learning
machines: A review,’’ Neural Netw., vol. 61, pp. 32–48, Jan. 2015.

[18] J. Anvik, L. Hiew, and G. C. Murphy, ‘‘Who should fix this bug?’’ in Proc.
Int. Conf. Softw. Eng., Shanghai, China, 2006, pp. 361–370.

[19] G.-B. Huang, Y.-Q. Chen, and H. A. Babri, ‘‘Classification ability of single
hidden layer feedforward neural networks,’’ IEEE Trans. Neural Netw.,
vol. 11, no. 3, pp. 799–801, May 2000.

[20] R. K. Roul, A. Nanda, V. Patel, and S. K. Sahay, ‘‘Extreme learning
machines in the field of text classification,’’ in Proc. SNPD, Jun. 2015,
pp. 217–223.

[21] D. D. Wang, R. Wang, and H. Yan, ‘‘Fast prediction of protein–protein
interaction sites based on extreme learning machines,’’ Neurocomputing,
vol. 128, pp. 258–266, Mar. 2014.

[22] G.Wang, Y. Zhao, and D.Wang, ‘‘A protein secondary structure prediction
framework based on the extreme learning machine,’’ Neurocomputing,
vol. 72, nos. 1–3, pp. 262–268, 2008.

[23] T. Helmy and Z. Rasheed, ‘‘Multi-category bioinformatics dataset clas-
sification using extreme learning machine,’’ in Proc. IEEE Congr. Evol.
Comput., May 2009, pp. 3234–3240.

VOLUME 6, 2018 52723

Y. Yin et al.: Rapid and Efficient Bug Assignment Using ELM for IoT Software

[24] L. Scandolo, P. Bauszat, and E. Eisemann, ‘‘Merged multiresolution hier-
archies for shadow map compression,’’ Comput. Graph. Forum, vol. 35,
no. 7, pp. 383–390, 2016.

[25] K. Ning, M. Liu, and M. Dong, ‘‘A new robust ELM method based
on a Bayesian framework with heavy-tailed distribution and weighted
likelihood function,’’ Neurocomputing, vol. 149, pp. 891–903, Feb. 2015.

[26] G.-B. Huang, X. Ding, and H. Zhou, ‘‘Optimization method based
extreme learning machine for classification,’’ Neurocomputing, vol. 74,
pp. 155–163, Dec. 2010.

[27] G.-B. Huang, D. H. Wang, and Y. Lan, ‘‘Extreme learning machines:
A survey,’’ Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 107–122,
Jun. 2011.

[28] N. Settouti, M. A. Chikh, and V. Barra, ‘‘A new feature selection approach
based on ensemble methods in semi-supervised classification,’’ Pattern
Anal. Appl., vol. 20, no. 3, pp. 673–686, 2017.

[29] T. Zhang, H. Jiang, X. Luo, and A. T. S. Chan, ‘‘A literature review
of research in bug resolution: Tasks, challenges and future directions,’’
Comput. J., vol. 59, no. 5, pp. 741–773, 2016.

[30] T. Zhang, G. Yang, B. Lee, and A. T. S. Chan, ‘‘Guiding bug triage through
developer analysis in bug reports,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 26,
no. 3, pp. 405–432, 2016.

[31] E. A. Felix and S. P. Lee, ‘‘Integrated approach to software defect predic-
tion,’’ IEEE Access, vol. 5, pp. 21524–21547, 2017.

[32] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo. (2017). ‘‘Automatic
bug triage using semi-supervised text classification.’’ [Online]. Available:
https://arxiv.org/abs/1704.04769

[33] J. Xuan et al., ‘‘Towards effective bug triage with software data reduction
techniques,’’ IEEE Trans. Knowl. Data Eng., vol. 27, no. 1, pp. 264–280,
Jan. 2015.

[34] S. N. Ahsan, J. Ferzund, and F. Wotawa, ‘‘Automatic software bug
triage system (BTS) based on latent semantic indexing and support vec-
tor machine,’’ in Proc. 14th Int. Conf. Softw. Eng. Adv., Sep. 2009,
pp. 216–221.

[35] D. Cubranic and G. C. Murphy, ‘‘Automatic bug triage using text cate-
gorization,’’ in Proc. 16th Int. Conf. Softw. Eng. Knowl. Eng., Jun. 2004,
pp. 92–97.

[36] H. T. Le, T. Urruty, S. Gbèhounou, F. Lecellier, J. Martinet, and
C. Fernandez-Maloigne, ‘‘Improving retrieval framework using informa-
tion gain models,’’ Signal, Image Video Process., vol. 11, no. 2, pp. 309–
316, 2017.

[37] S. Huda et al., ‘‘An ensemble oversampling model for class imbal-
ance problem in software defect prediction,’’ IEEE Access, vol. 6,
pp. 24184–24195, 2018.

YING YIN (M’11) received the B.E., M.E.,
and Ph.D. degrees in computer science from
Northeastern University, China, in 2002, 2005,
and 2008, respectively. He is currently an
Associate Professor with the School of Informa-
tion Science and Engineering, Northeastern Uni-
versity. His major research interests include data
mining and machine learning. He is a member of
ACM and CCF.

XIANGJUN DONG received the M.E. degree in
computer applications from Shandong Industrial
University in 1999 and the Ph.D. degree in com-
puter applications from the Beijing Institute of
Technology in 2005. He is currently a Professor
with the School of Information, Qilu University
of Technology, Jinan, China. He has published
research papers in national and international jour-
nals and in conference proceedings. His research
interests include association rules, sequential pat-

tern mining, and negative sequential pattern mining.

TIANTIAN XU received the B.E. andM.E. degrees
in computer applications from the Qilu University
of Technology in 2012 and 2015, respectively. She
has published research papers in international jour-
nals. Her research interests include pattern recog-
nition, association rules, and sequential pattern
mining.

52724 VOLUME 6, 2018

	INTRODUCTION
	BUG REPORT
	INTRODUCTION OF ELM
	OVERVIEW OF DEFECT TRIAGE
	SOFTWARE DEFECT INFORMATION EXTRACTION
	REPRESENTATIVE FEATURE SELECTION

	OPTIMAL ELM ENSEMBLING BASED ON GA
	EXPERIMENTAL ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	YING YIN
	XIANGJUN DONG
	TIANTIAN XU

