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ABSTRACT Convolutional neural networks (CNNs) have found applications in ship detection from
synthetic aperture radar (SAR) images. However, there are some challenges hamper their advance. First,
the detected bounding boxes are not very compact. Second, there are quite a few missing detections for
small and densely clustered ships. Third, objects with analogical scatterings on land are detected as ships by
making mistake. This is due to: 1) the CNN-based SAR ship detectors cannot utilize the spatial information
very sufficiently; 2) features learned fromCNNs only describe SAR images in space domainwhile neglecting
the information hidden in frequency domain; and 3) information contained in the meta-data file, which may
link to other sources, is not taken into account. To overcome these problems, in this paper, a cascade coupled
CNN-guided (3C2N-guided) visual attention method for SAR ship detection is proposed. This method
considers the newly presented 3C2Nmodel as a qualified ship proposal generator because the images’ spatial
information is utilized more sufficiently. The 3C2N model, with coupled CNN as the baseline, consists of
a sequence of cascade detectors for training. Complementally, a pulse cosine transformation-based visual
attention model in frequency domain is operated on the adaptive regions for ship discrimination. This could
further refine the proposals’ locations and could significantly reduce the missing detections and false alarms.
In addition, the digital elevation model data are adopted to remove ship-like targets on land. Experimental
evaluations on 25 Sentinel-1 images demonstrate that the proposed method is superior to the previous state-
of-the-art methods.

INDEX TERMS Cascade coupled convolutional neural network (3C2N), pulse cosine transformation (PCT),
ship detection, synthetic aperture radar (SAR).

I. INTRODUCTION
With a wealth of irreplaceable characteristics, such as day-
and-night, all-weather, active imaging and wide-swath, syn-
thetic aperture radar (SAR) shows its unique superiority and
has been an important tool for marine surveillance regardless
of cloud cover conditions [1]–[7]. In particular, ship detection
from SAR images is playing an increasingly essential role
both in civil and military regime [8]–[10]. However, it is still
a challenging task due to the relatively small size, i.e., a ship
in Sentinel-1 images may only account for several pixels in
length. In addition, the various complex background condi-
tions further render the method difficult for ship detection,
for example, sometimes ships might be located in high clutter
ocean environments.

In the past decades, various threads relating to SAR ship
detection have been explored by researchers. As mentioned
in [11]–[14], a practical architecture of a SAR ship detection
system usually consists of four stages: that is, land masking,
preprocessing, prescreening, and discrimination. The land
masking stage distinguishes ocean area from land and defines
a smaller scope to be detected for subsequent stages, trying
to eliminate the adverse effect caused by land [15]. The
preprocessing stage is intended to transform the original SAR
imagery into a new image from which ship detection is more
easier and the detection performance is improved. There are
various preprocessing ways, such as speckle filtering [16].
In the prescreening stage, some potential ship pixels are
detected as candidate ship targets. Among the approaches
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FIGURE 1. SAR ship detection result by the state-of-the-art CCNN method. The red rectangles indicate the detected bounding boxes by CCNN. (a) CCNN
detection result in areas, where ships are small in size and are densely clustered. The bounding boxes are very loose and there are quite a few missing
detections. (b) CCNN detection result on land area. Some ship-like objects on land are detected by making mistake.

searching for the candidate pixels, the constant false alarm
rate (CFAR) [8], [17] and the generalized-likelihood ratio
test algorithm [18] account for the most prevailing position.
The core of which is based on the sea clutter modeling
and parameter estimation to find the optimal pixels. Finally,
the ship discrimination stage is intended to exclude the
regions containing false alarms, and accept the ones contain-
ing real targets [19]. Another stream in traditional SAR ship
detection system is the visual attention based methods [9],
[20]–[22], which is inspired by human vision system. The
visual attention model has also been used in Polarimetric
SAR ship detection [23], [24]. By applying this technology
into the ship detection system, the detection performance
has further improved so that both the missing detections
and the false alarms have been decreased. These traditional
detection systems share three advantages. Firstly, they make
full use of the statistical characteristics of the SAR image.
Secondly, the analysis in frequency domain could improve
the detection performance further. Thirdly, with the aid of
some prior knowledge, such as shape information, the detec-
tion performance has been highly improved. However, all
these traditional detection systems for SAR images still pose
great challenges. On one hand, the hand-crafted features
for discrimination have limited representation capability for
ship description, thereby leading to a low detection accuracy,
especially when they are immersed in complex scenes. On the
other hand, the traditional systems show a multi-step opera-
tion mode, which is very time-consuming and therefore, it is
not suitable for software implementations.

It is well-known that convolutional neural networks
(CNNs) [25]–[27] are multi-layer architectures, which enable
one to extract multi-level feature representations to depict
ship targets. With the end-to-end deep learning framework,
CNNs have achieved significant success in object detec-
tion from optical remote sensing images. For more details,
see [28]–[31]. They also have been verified the powerful
capability in SAR ship detection. In order to detect small
ship targets automatically, Kang et al. [32] firstly designed a
CNN-based method for SAR ship detection, which is com-
posed of a region proposal network (RPN) and an object

detection network with contextual features. The detection
performance shown in this work has been improved for
small-sized ships by fusing both the deep semantic and shal-
low high-resolution features. Recently, a densely connected
multi-scale neural network (DCMSNN) is proposed by
Jiao et al. [33] to detect multi-scale and multi-scene ship tar-
gets. Based on Faster R-CNN framework [34], the DCMSNN
leverages the densely connected network [35] as its main con-
volutional trunk. More recently, in 2018, Juanping et al. [36]
proposed a coupled convolutional neural network (CCNN)
for small and densely clustered SAR ship detection. This
method is mainly composed of an exhaustive ship proposal
network (ESPN) for proposal generation and an accurate ship
discriminative network (ASDN) for excluding false alarms.
In ESPN, features from different layers are reused and the
proposals are predicted from several representative interme-
diate layers to obtain reliable ship proposals as many as
possible. Note that in ASDN, the context information for each
proposal is combined with the original deep features in order
to rule out false alarms as accurately as possible.

Clearly, the success of CNN-based methods for SAR ship
detection can be attributed to the following reasons: Firstly,
CNNs could learn image features automatically in the end-
to-end deep learning framework. Secondly, in addition to
some multi-scale strategies [37]–[40], image information in
space domain is utilized in a relatively sufficient mode by a
series of convolution, pooling, and other spatial-like opera-
tions in CNNs [41]. Even though highly improved detection
results have been advanced by CNNs to a great extent in
comparison with the traditional ship detection systems, there
still exist some challenges for CNN-based methods. First
of all, the regressed bounding boxes are not very compact,
which is not desirable for practical applications. Meanwhile,
the missing detections are very severe for ships in some
complex background conditions and areas, where small and
densely clustered ship targets are filled. In addition, few false
alarms, especially the ones on land, still cannot be effectively
removed. These drawbacks can be visualized clearly in Fig. 1
in which the red rectangles indicate the detected bounding
boxes. The detection results in Fig. 1(a) give us a view
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that the bounding boxes are too loose so that it sometimes
leads to missing detections for small-sized ships in densely
packed areas. In Fig. 1(b), the ship-like objects on land are
detected by making mistake. The reasons can be attributed
by: 1) The images’ spatial information by CNN is not utilized
very sufficiently; 2) Information hidden in frequency domain
has been neglected by CNNs; 3) Information attached in the
meta-data file, which may link to other source data, has not
been utilized.

To the best of our knowledge, researches integrating
the visual attention model in frequency domain into the
CNN-based SAR ship detection framework have never seen
in literature. From the perspective of information mining,
features learned from CNNs only describe the SAR image
in space domain, while information relating to frequency
domain has been completely neglected. It is worthwhile to
point out that information in frequency domain could provide
an extremely important clue for ship detection, due to the fact
that ships are always moving-targets floating on the ocean
surface.

In order to achieve these goals, a cascade coupled CNN
guided (3C2N-guided) visual attention method for SAR ship
detection is proposed in this paper. This method firstly gen-
erates the rough locations as ship proposals by a pre-trained
3C2N model, which could provide a sufficient way to guide
ship detection. With the goal of utilizing the spatial infor-
mation in CNN more sufficiently, the 3C2N deep learning
framework leverages the CCNN architecture as base network,
and follows a sequence of discrimination networks, rather
than single, to further improve the detection quality. This
is motivated by the literature [42]. Then, adaptive proposal
regions are generated and they are despeckled by the non-
local-mean (NLM) algorithm [43] to make the following
discrimination work easier. In order to fully utilize informa-
tion hidden in the frequency domain and reduce the com-
putation complexity, the pulse cosine transformation (PCT)
model [44] is employed on the adaptive regions, rather than
the original wide-swath SAR imagery. Thus, the saliency
maps are generated in which the pixels belonging to the
ship targets are highlighted, while others are weakened.
Hence, with the constraints of ship length and digital ele-
vation model (DEM) available, a refined detection result
could be achieved. Finally, to avoid repeated detections,
the non-maximum suppression (NMS) [45] is adopted to
reduce redundancy. The proposed method can be essentially
viewed as combining the advantages of spatial superiority by
the 3C2N method, including the cascade spatial structure,
the ships’ structure feature, geometric feature, contextural
feature, etc., and the superiority of frequency domain by
the PCT-based visual attention method. Experiments on the
real Sentinel-1 images demonstrate the superiority of the
proposed method for SAR ship detection, achieving the accu-
rate bounding boxes, the lowered missing detections, and the
lowered false alarms.

The rest of this paper is organized as follows: Section II
illustrates the proposed method in detail, including the 3C2N

model for ship proposal generation and the PCT-based visual
attention model for ship discrimination. Section III provides
the details of the experiments, the detection results, and the
corresponding discussions. This paper concludes with a brief
summary in Section IV.

II. METHODOLOGY
This section is dedicated to propose a new method, which is
composed of two stages: ship proposal generation by using a
newly presented 3C2N model and followed by a PCT-based
visual attention model to discriminate ship targets. The 3C2N
model is trained with a large amount of Sentinel-1 images
and could characterize testing images in space domain more
sufficiently. Complementally, the PCT-based visual attention
model features the testing images in frequency domain. The
overall scheme of the proposed method is presented in Fig. 2.

FIGURE 2. The overall framework of the proposed method.

A. SHIP PROPOSAL GENERATOR: A CASCADE COUPLED
CONVOLUTIONAL NEURAL NETWORK
Zhao et al. [36] analyzed many SAR ship detection methods
and have concluded that the CCNN method achieves the
state-of-the-art performance. Based on the architecture of the
CCNN model, the 3C2N model, a cascade structure, is pro-
posed to generate ship proposals. The network architecture
is also motivated by the literature [42]. Aiming to improve
the detection quality, the 3C2N model is composed of an
ESPN and two ASDNs. In what follows, the architecture of
the 3C2N model and the mechanism of the way to generate
ship proposals are presented.

1) THE 3C2N ARCHITECTURE
The 3C2N framework mainly consists of three significant
modules: an ESPN, ASDN-1, and the ASDN-2. Three of
them share a CNN trunk for feature learning. Here, the
VGG-16 [41] architecture, which is verified to be efficient
in this task, is utilized as the shared CNN trunk for feature
learning. The 3C2N model is regarded as a ship proposal
generator, which is trained with annotated Sentinel-1 images.

VOLUME 6, 2018 50695



J. Zhao et al.: 3C2N-Guided Visual Attention Method for Ship Detection From SAR Images

FIGURE 3. The architecture of the 3C2N model, which sufficiently analyzes the SAR image in space domain using the multi-scale technology and the
cascade structure. It mainly consists of three significant parts: one ESPN and two cascade ASDNs. The ESPN and ASDN-1 is used for generating ship
proposals and ASDN-2 is followed to execute ship discrimination. All of them share some convolutional layers for feature learning. In this figure, ‘‘FC’’
represents fully connected, ‘‘cls.’’ and ‘‘reg.’’ denote classification (ship-region or non-ship region) and bounding box regression, respectively.

The overall architecture of the 3C2N model are shown
in Fig. 3. The first level ship proposals are generated via
the ESPN module and the second level ship proposals are
generated from the ASDN-1 module. The ship candidate
regions are generated by ASDN-2 module. Leveraging the
spatial information more sufficiently, this cascade architec-
ture could further improve the detection quality according
to [42].

In particular, image features in ESPN are extracted from
three different representative layers, i.e., Conv4_3, Conv5_3,
and Conv6_1. When assuming the size of the input SAR
image to be H ×W , the resolution of the feature maps from
these three layers are transformed to H

8 ×
W
8 ,

H
16 ×

W
16 , and

H
32 ×

W
32 , respectively. Then, the branches are reused and are

extended to three different sub-branches in that each branch
is convolved via a set of small convolutional filters, i.e., 3×3,
5 × 5, 7 × 7, to perceive different-sized objects. Finally,
the first level ship proposals are predicted from each sub-
branch. This technique is verified to be effective for perceiv-
ing different-sized objects in [36]. The objective function in
ESPN can be formulated as

LESPN(2p) =
M∑
m=1

∑
t∈Sm

αmlm(Xt ,Yt ,Bt |2p), (1)

where the number of detection layers, denoted byM , is equal
to 9, which stands for three proposal branches with three dif-
ferent sub-branches as detection layers, the training sample of
each prediction layer is denoted by Sm, αm denotes the weight
for them-th detection layer’s loss, the variables,Xt , Yt , andBt ,
represent the local features, labels (i.e., ships or non-ships),
and the coordinates of the t-th candidate region, respectively,
2p denotes parameters in this network, and lm indicates the

loss function of the m-th sub-branch, referring to the loss
function in [34].

In the ASDN-1 and ASDN-2 modules, image features for
each candidate region are composed of two parts: one is the
CNN feature learned directly from the candidate regions by
the shared convolutional layers and the other is the contextu-
ral feature learned from the corresponding context regions,
which are set as 1.5 times larger than the proposal ship
regions. The size of each context region is determined by
means of the grid-searching strategy. Next, both of the two
feature sets are pooled to feature maps with the same reso-
lution via region of interest (RoI) pooling, see the red and
green cubes in ASDN-1 and ASDN-2 part of Fig. 3. Then
they are combined by concatenation for further classification
(ship-like region or non-ship like region) and bounding box
regression. Both of the ESPN and ASDN-1 modules are used
for ship proposal generation and ASDN-2 are adopted for
ship discrimination.

The overall loss function of the 3C2N deep learning frame-
work must have the form

L(2p,2d1,2d2)

= LESPN(2p)

+αM+1
∑

t∈SM+1

lASDN-1(Xt ,Yt ,Bt |2d1)

+αM+2
∑

t∈SM+2

lASDN-2(Xt ,Yt ,Bt |2d2), (2)

where αM+1 & αM+2 denote the weight of the ASDN-1’s
loss lASDN-1 and the ASDN-2’s loss lASDN-2, respectively,
see [34]. And 2d1 & 2d2 stand for the added parameter set
of fully connected layers in the ASDN-1 module and the
ASDN-2 module, respectively.
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FIGURE 4. Ship proposals are generated by using the 3C2N model.

2) SHIP PROPOSAL GENERATION VIA THE 3C2N MODEL
The 3C2N, implemented with the deep learning framework
Caffe [47], popularizes the use of end-to-end CNNs for small
and densely clustered ship detection from SAR images.When
using thismethod for ship detection, training is needed to gen-
erate a component model for further research. Fig. 4 subtly
depicts the process of using 3C2N for ship proposal genera-
tion. The upper row of this figure shows the data preparation,
i.e., data collection, data annotation, and data augmentation.
The image testing for finding the ship proposals is illustrated
by the bottom row. The method can be divided into five steps
as follows:

(i) Build the training set. Before training the 3C2N model,
sixty wide-swath Sentinel-1 images containing small and
densely clustered ship targets are collected, all of which are
with interferometric wide-swath (IW) mode ground-range
detected (GRD) format. Ships in the images are manually
annotated by expert inspections on the Sentinel-1 application
platform (SNAP) [48] partially with the help of automatic
information system (AIS) information.

(ii) Augment and tile the training data set. The training
data set is tiled into image blocks of size 1024× 768 in pixel
and the corresponding ground-truth locations and labels are
attached in a XML file. Image blocks in the training data set
are then augmented eight-fold via rotation from 0◦ to 315◦

with an even gap 45◦. Finally, they are flipped horizontally
and vertically, respectively.

(iii) Train the 3C2N model. Before training the model,
the training configurations and the optimization strategy are
conducted. The network training is started with an initial
learning rate of 0.001 and the learning rate changes in accor-
dance with

LR = 0.001× 0.1iter/5k , (3)

where iter represents the current number of iteration. All the
parameters in this framework are iteratively updated, totally
35k iterations, by minimizing the loss function formulated
as (2). It is worth mentioning that the parameter of intersec-
tion over union (IoU) in ASDN-1 and ASDN-2 are set to be
0.5 and 0.6, respectively. The tiled training image blocks and
the corresponding labels are successively fed into the 3C2N
deep learning framework to train the network and generate
the 3C2N model. The entire training procedure proceeds
recursively until the overall loss function is converged.

(iv) In the testing stage, ship proposals are generated by
using the pre-trained 3C2N model. The original SAR images
to be tested S are divided into small image blocks, denoted
by Sb, which has nearly the same size as the training image
blocks. Notably, the upper-left corner’s index in the original
imagery is denoted as [Xul,Yul]. Thereafter, the pre-trained
3C2N model takes these image blocks as input and then
the model outputs the candidate ship regions [xb, yb, h,w],
given by

[xb, yb, h,w] = 3C2N(Sb), (4)

where xb & yb denote the index of the upper-left corner along
the row and column directions in the testing image block Sb,
respectively, and h & w indicate the height and width of the
proposal region, respectively.

(v) Transform both the locations and labels of all the
ship proposals into a unified format. The detection results
of the same original imagery are stitched together. Mean-
while, the corresponding locations and labels are transformed
into the coordinates in the original imagery S, denoted by
[xs, ys, h,w], where xs and ys represent the upper-left corner’s
coordinate, i.e., the row and column index, in the original
imagery space, respectively. Now, the relationship can be
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mathematically expressed by

[xs, ys, h,w]= [xb, yb, h,w]+[Xul − 1,Yul − 1, 0, 0]. (5)

Algorithm 1 illustrates a clear road-map for ship proposal
generation by using the pre-trained 3C2N model. This algo-
rithm takes the images to be tested and the pre-trained 3C2N
model as input. Also, it outputs ShipProposal = [xs, ys, h,w]
as ship proposals’ locations.

Algorithm 1 Ship Proposal Generation by Using the 3C2N
Model
Input:

Input imagery S for testing;
Pre-trained 3C2N model;

Output:
Ship proposals’ locations ShipProposal;

1: Initialize ShipProposal = zeros();
2: Set an index counter index = 1;
3: Tile the input imagery into Nb small-sized image blocks
Sb for testing;

4: for each i ∈ [1,Nb] do
5: Denote the upper-left corner’s index of S ib as [X

i
ul,Y

i
ul]

in the original imagery system;
6: Get the proposals’ locations in the image block coor-

dinate system Loc via (4). Therefore, ∀1 ≤ j ≤
size(Loc, 1), Loc(j, :) = [xb, yb, h,w];

7: for each j ∈ [1, size(Loc, 1)] do
8: Obtain ship proposals’ locations

ShipProposal(index, :) = [xs, ys, h,w] in the
input imagery coordinate system by (5);

9: index = index + 1;
10: end for
11: end for
12: return ShipProposal.

B. SHIP DISCRIMINATION: A PCT-BASED VISUAL
ATTENTION MODEL
Even though the detection results of the 3C2N model have
shown to be superior in SAR ship detection, they display a far
cry from meeting commands for practical applications. For
example, in small and densely clustered areas, ship targets are
usually very close to each other, which leads to big overlaps
between the detected regions of adjacent ship targets. This
phenomenon is aggravated by the loosely detected bounding
boxes.Meanwhile, few false alarms still exists in the land area
because the appearance of some scattering objects on land
are visually similar to ship targets by SAR. It is because the
CNN-based methods only focus on the images’ spatial infor-
mation, while neglecting the information hidden in frequency
domain, and other references relating to geographical infor-
mation are not considered. For these reasons, a PCT-based
visual attention model in frequency domain is presented for
ship discrimination. This model aims to refine the propos-
als’ bounding boxes so that reducing the missing detections,

especially in the small and densely clustered areas. It is worth
noting that the DEM data, which could be linked by the
Sentinel-1’s meta-data file, are adopted for ruling out regions
containing analogical scatterings on land. The workflow of
this method is shown in Fig. 5.
For each proposal region obtained by the presented

3C2N model, the PCT-based visual attention method for
ship discrimination can be implemented by twelve steps as
bellow:

FIGURE 5. Workflow of the PCT-based visual attention method for ship
discrimination.
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Step-1, extract one proposal region. The proposal region
can be obtained via the pre-trained 3C2Nmodel, i.e., denoted
by a rectangular [xs, ys, h,w]. This is illustrated in
Algorithm 1.
Step-2, enlarge the proposal region adaptively. In order to

lower the missing detections, the proposal region is enlarged
adaptively in the original detection map according to its
original size. The detailed mechanism is described in Fig. 6.
It follows from this figure that the red rectangle represents
the original proposal region and the green one denotes the
adaptive region. In particular, we enlarge the proposal region
five times both in the row and the column spaces with the
center pixel fixed and then obtain the adaptive region to be
Rad = [xs− 2h+ 1, ys− 2w+ 1, 5h, 5w]. This is because the
majority of the missing detections in areas with small-size
and densely clustered targets are very close to the detected
regions, no more than two-fold of the bounding box’s size,
according to our observation on the 3C2N detection results.
Particularly, if a proposal region’s border is beyond the origi-
nal imagery, the imagery border is contributed to the adaptive
region.

FIGURE 6. The mechanism of the adaptive region. The red rectangle
represents the original proposal region and the green one denotes the
adaptive region.

Step-3, reduce the speckle noise in the adaptive regions.
The NLM algorithm mentioned earlier is employed in this
paper, which is known to be one of the most effective
despeckling method for SAR images. The NLM despeckled
image can be written as

INL = NonLocalMean(Rad ), (6)

where NonLocalMean(·) represents the NLM algorithm
which transforms the input image to a despeckled one,
denoted by INL .
Step-4, image preprocessing. In this step, image prepro-

cessing is intended to smooth the sea clutter and the land
area and to enhance the real targets. In order to remove land
areas and pixels with high intensity, while still maintaining
the ships with only a few pixels, the following strategy is
adopted. For each pixel in the despeckled adaptive region,
i.e., p ∈ INL , the pixel value in this position is transformed to

f (p) =
[µlocal]2

2× [σadap]2
, (7)

where µlocal indicates the mean value of pixels in a local
region centered at the current location, i.e., a moving win-
dow of size 3 × 3 centered at p, and σadap is the standard

deviation of the despeckled adaptive image block INL . Then,
the preprocessed image block IPP is obtained.

Step-5, the PCT-based visual attention model used for
detection. This step is to transform the preprocessed image
block IPP in space domain into frequency domain. Then,
visually intensive pixels are highlighted in the transformed
saliency map Isaliency via the PCT method [49]. The details of
this step is analyzed in Section II-C. It is worth mentioning
that the results detected from one adaptive region may be
multiple. In addition, the results detected by the PCT-based
visual attention model are the binary maps, denoted by Ibi,
which serves as the candidate regions for the following steps.
In the binary maps, the pixels belonging to the ship targets
are set to be 1 and others are set to be 0.

Step-6, image morphology. In this step, we firstly deter-
mine the connected components. Then, we compute the area
for each component and remove the connected components
whose area is less than a certain value. In this paper, the one
whose area is less than 10 pixels is removed. This parameter
is set empirically.

Step-7, verification. In order to further improve the detec-
tion accuracy, the candidate detections are verified via several
basic constraints. First of all, considering the limitation on
ship size, we empirically remove the ships whose length is
larger than 600 m or lower than 30 m. This can be mathemat-
ically written as

30 < hr · PSaz,wr · PSrg < 600, (8)

where hr &wr illustrate the newly refined height and width of
the detected region, respectively, and PSaz & PSrg represent
the pixel spacing in azimuth and ground range directions,
respectively.

Then, we adopt the digital elevation model (DEM) [50]
as an important reference to remove land areas, where there
are still ship-like targets falsely detected by the 3C2N model.
The DEM is a complementary information of the SAR image,
which could be indexed by the geographical locations in
the meta-data file. It was gathered from the shuttle radar
topographic mission (SRTM) 3 Arc-Second Global.

Step-8, extract the refined ship targets. The ship tar-
gets detected by the PCT-based visual attention method are
located at [xrb, yrb, hr ,wr ], which is characterized in the
adaptive image block coordinate system. The detected targets
may be multiple.

Step-9, coordinate transformation. The refined detections
are transformed from the adaptive image block system to the
original imagery coordinate system by

[xrs, yrs, hr ,wr ]= [xrb, yrb, hr ,wr ]+[xs−2h, ys−2w, 0, 0].

(9)

Step-10, return to Step-8 recursively until all the candidate
regions detected by the PCT-based visual attention method
have been verified.

Step-11, return to Step-1 to process another proposal
region obtained by the 3C2N model until all the objective
regions has been discriminated.
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Algorithm 2 The 3C2N-Guided Visual Attention Model for Ship Discrimination
Input:

The imagery S to be detected;
Ship proposals’ locations ShipProposal in the imagery.

Output:
All the refined locations RefinedShip in the input imagery;

1: Compute the number of ship proposals obtained from 3C2N via Np = size(ShipProposal, 1);
2: Define a counter count = 1;
3: Initialize RefinedShip = zeros();
4: for each i ∈ [1,Np] do
5: Get the original proposal region [x is, y

i
s, h

i,wi] = ShipProposal(i, :);
6: Obtain the adaptive region Rad = [x is − 2hi + 1, yis − 2wi + 1, 5hi, 5wi];
7: Reduce the speckle noise by using the NLM algorithm and achieve INL = NonLocalMean(Rad );
8: Preprocess the despeckled image via (7) and obtain the preprocessed image block IPP;
9: Obtain the saliency map Isaliency of the adaptive region by the PCT-based visual attention method via (10) to (18);

10: Compute the binary map Ibi by using (19) in which only the pixels belonging to ship targets are highlighted;
11: Get the objects’ locations of the binary map via morphology and record the number of detected targets Nm;
12: for each j ∈ [1,Nm] do
13: Get the current object’s location temp = [x ijrb, y

ij
rb, h

ij
r ,w

ij
r ] in the coordinate system of the image block;

14: while (30 < hijr · PSaz < 600) ∧ (30 < wijr · PSrg < 600) do
15: if the object is not located on land then
16: Transform the coordinate of the detected bounding boxes back to the original imagery system via (9), denoted by

RefinedShip(count, :) = temp+ [x is − 2hi, yis − 2wi, 0, 0];
17: count = count + 1;
18: end if
19: end while
20: end for
21: end for
22: return RefinedShip.

Step-12, reduce redundancy. The NMS algorithm [51]
needed in this method is adopted to avoid repeated detections.

The details for implementing the 3C2N-guided visual
attention method are illustrated in Algorithm 2. In this algo-
rithm, the ship proposals’ locations ShipProposal obtained
from the pre-trained 3C2N model are taken as input and
the algorithm produces the refined detection result stored in
RefinedShip. The core of this algorithm is the PCT model,
which processes the adaptive image blocks in frequency
domain. The referenced DEM data also provides a good way
to eliminate false alarms on land.

C. THE PULSE COSINE TRANSFORMATION MODEL ON
ADAPTIVE REGIONS
Considering the computational efficiency and the great capa-
bility to predict eye fixation, in this paper, the PCT model
provides a good way to predict visual attention objects. Fur-
ther details about this algorithm is described as follows:

Given an image block I ∈ R5h×5w, to remove noisy pixels
and enhance the binary image quality, the image is firstly
transformed via

Ifl(x, y) =

{
I (x, y), if I (x, y) ≥ T1
T1, otherwise

, (10)

where the threshold T1 can be determined by

T1 = µ(Ifl)+ α · σ (Ifl). (11)

Here, µ(Ifl) represents the mean value of the enhanced image
block Ifl , called flooding image [21], σ (Ifl) denotes the stan-
dard deviation of the enhanced image block Ifl , and α is a
constant value, which is empirically set to be 0.6. It is of
interest to note that ship targets can be considered as noisy
pixels if a greater α is used. Otherwise, the noise of the image
can be decreased.

In the next stage, the PCT model is utilized to generate
visual attention maps. With the flooding image Ifl available,
the transformed image in frequency domain will be obtained
by means of the two-dimensional discrete cosine transforma-
tion (DCT). That is,

Ic(u, v) = C (Ifl(x, y))

= auav
5h−1∑
x=0

5w−1∑
y=0

Ifl(x, y)

× cos
(2x + 1)uπ

2 · 5h
· cos

(2y+ 1)vπ
2 · 5w

, (12)
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where C (·) indicates the two-dimensional DCT operation,
and

au =


1
√
5h
, if u = 0√

2
5h
, if 1 ≤ u ≤ 5h− 1,

(13)

av =


1
√
5w
, if v = 0√

2
5w
, if 1 ≤ v ≤ 5w− 1,

(14)

where 0 ≤ x ≤ 5h− 1, 0 ≤ y ≤ 5w− 1, 0 ≤ u ≤ 5h− 1,
and 0 ≤ v ≤ 5w− 1. In what follows, the encoded image
block Isn in frequency domain is adopted by

Isn(u, v) = sign(Ic(u, v)) =


−1, if Ic(u, v) < 0
0, if Ic(u, v) = 0
1, if Ic(u, v) > 0,

(15)

where the function sign(·) indicates the sign function by
which the positive pixel values and the negative values are
coded to be 1 and -1, respectively. Otherwise, the pixel values
are set to be zero.

Now, C−1(·) denotes the two-dimensional inverse DCT
operation. The input image in frequency domain can be trans-
formed back into space domain by the following manner:

Iinv(x, y) = abs(C−1(Isn(u, v)))

= abs(
5h−1∑
u=0

5w−1∑
v=0

auavIsn(u, v)

× cos
(2x + 1)uπ

2 · 5h
· cos

(2y+ 1)vπ
2 · 5w

), (16)

where

abs(η) =

{
η, if η ≥ 0
−η, otherwise,

(17)

Then, the saliencymap Isaliency can be obtained by convolving
Fg with the square of Iinv, given by

Isaliency = Fg ⊗ [Iinv]2, (18)

where Fg denotes the two-dimensional gaussian low pass
filter and ⊗ represents the two-dimensional convolution
process.

The PCT, represented by (12) to (15), retains the sign of
the two-dimensional DCT coefficient and neglects the ampli-
tude information. The sign function is utilized in frequency
domain and functions on the two-dimensional coefficient
because the sign is much important to simulate the activa-
tion or restriction of the neurons in human visual system.
In other words, the PCT codes the image into −1, 0, and 1.
It is the coding operation that simulates the neuron’s pulse
in human brain. Finally, the saliency map is obtained by
using (16) to (18).

Additionally, in order to achieve the detection results more
clearly, a binary image Ibi is obtained from the saliency map.
The mathematical formulation can be expressed by

Ibi(x, y) =

{
1, if Isaliency ≥ T2
0, otherwise,

(19)

where T2 = µ(Isaliency) + β · σ (Isaliency) is a threshold.
Here,µ(Isaliency) and σ (Isaliency) are the average value and the
standard deviation of the obtained saliency map, respectively,
and β, which is empirically set to be 2.5, is a balancing
parameter between µ(Isaliency) and σ (Isaliency).

III. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL ENVIRONMENT
The training of the CNN-based methods, implemented by
the deep learning framework Caffe [47], are executed on a
workstation with two Intel 32 Core i7 CPUs with 64G RAM
and four ENVIDIA GTX-1080 GPU with 8GB memory. The
testing part of the CCNN method, the 3C2N method, and the
3C2N-guided visual attention method are programmed with
MATLAB 2015b. The operating system is Ubuntu 16.04.

B. EXPERIMENTAL DATA
The data set used in this paper is collected from 60 wide-
swath Sentinel-1 images [52]. The data is collected from
five typical scenes because of their intense marine traffic:
Shanghai Port (China), Shenzhen Port (China), Tianjin Port
(China), Yokohama Port (Japan), and Singapore Port (Sin-
gapore). The Sentinel-1 images are suitable to verify the
effectiveness of the proposed method due to three reasons:
1) There are a large amount of multi-scale ship targets in the
images; 2) The background conditions of ships are varying
from simple to extremely complex; 3) The ships are dis-
tributed in different ways, sometimes they are single and
sometimes they are densely clustered. Among the images,
52 of them are used for training and the other 8 images are
used for testing. It is noted that the validation data set is
selected randomly from the training set, 21816 ship sam-
ples are included. In this experiment, the data acquired in
the interferometric wide-swath (IW) mode, high resolution
ground-range detected (GRD) format with C band is provided
by the European space agency (ESA). Such level-1 products
are generally available for most data users and consist of
focused SAR data detected in magnitude with a native range
by azimuth resolution estimated as 20m× 22m and a 10m×
10m pixel spacing. The polarization of this data set is selected
as VH. This is because the side-lobe effect for VV polar-
ization is much more severe than that for VH polarization,
which is may interfere the detection of SAR ships. And the
average image size is 25000× 18000 (rg× az). Here, rg and
az represent the ground range and the azimuth directions,
respectively. The main information of this data set is listed
in Table 1.
The ground-truths are annotated by professional SAR

image interpreters partially with the help of AIS information
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TABLE 1. Meta-data of wide-swath Sentinel-1 images.

on the official ESA Sentinel application platform (SNAP)
software, see [48]. Specifically, they are marked with
rectangles, which are denoted by the upper-left corner’s coor-
dinate with the object rectangle’s height and width. To better
exhibit the detection results of the proposed method, we tile
the testing imagery into image blocks of size 200 × 200
(rg × az) without overlap. It is worth mentioning that the
radiometric calibration is performed by using SNAP.

C. EVALUATION METRICS
Now, the precision, the recall, and the F1 score, which are
three widely used criterias in object detection, are adopted
in order to evaluate the detection performance quantitatively.
The precision is defined as

precision =
NTP

NTP + NFP
, (20)

where, NTP & NFP are the number of true-positives and the
number of false-positives, respectively. True positives and
false positives are the correctly detected ships and the falsely
detected ships, respectively.

Similarly, when assuming NFN as the number of false
negatives, the recall can be formulated more explicitly as

recall =
NTP

NTP + NFN
. (21)

Now, let F1 score be a comprehensive evaluation metric,
which can be mathematically given by

F1 = 2×
precision× recall
precision+ recall

. (22)

As is widely known that a higher precision and a higher
recall rate are both expected. Whereas, in fact, these two
evaluation metrics are on the opposite sides. It means that a
higher precision corresponds to a lower recall rate and a lower
precision corresponds to a higher recall rate. It is worthwhile
to point out that a higher F1 score means a more desirable
comprehensive ship detection performance.

D. BASELINE METHODS
To verify the effectiveness of the proposed method,
the CCNNmethod [36] is chosen as a baseline to demonstrate
the superiority of the proposed techniques. The newly pre-
sented 3C2N deep learning method is also evaluated to verify
its superiority over the CCNN. The intermediate features of
the PCT model are analyzed in Section III-E.2. Moreover,
the influence of the NLM algorithm and the preprocessing
strategy are discussed with configurations, namely, ‘‘Ours-
without-NLM’’ and ‘‘Ours-without-PP’’, separately. These
two configurations represent the proposed method without
using the NLM algorithm and the proposed method without
preprocessing, respectively.

E. EXPERIMENTAL RESULTS
1) THE COMPARATIVE OVERALL DETECTION PERFORMANCE
In this evaluation system, twenty-five 200×200 image blocks
with 324 ground-truths tiled from Sentinel-1 images are
selected to test the performance of the proposed method and
the baseline methods. Image blocks with the complex back-
ground conditions (e.g., high clutter ocean environments, and
areas, where the ships are mostly small in size and densely
clustered), are chosen in this experiment (see in Fig. 7(a)
to Fig. 7(d) as representative samples). Table 2 shows the
quantitative evaluation results of the proposed method and
the baselines. As demonstrated in this table, we can conclude
that: 1) the missing detections and the false alarms of our
proposed method are significantly decreased, compared with
the CCNN method and the 3C2N method; 2) the detection
performance of the 3C2Nmethod has been improved by using
the cascade structure. As a comprehensive evaluation metric,
the value of F1 score obtained by the 3C2N-guided visual
attention method, equal to 0.9605, is higher than the value of
the 3C2Nmethod the CCNNmethod, i.e., 0.8984 and 0.8524,
respectively, see Table 2.

Fig. 7 exhibits the detection results of the 3C2N-guided
visual attention method and other baselines of four classical
original image patches of size 200 × 200. The detection
results of each method is visualized with red rectangles

TABLE 2. The quantitative detection results.

50702 VOLUME 6, 2018



J. Zhao et al.: 3C2N-Guided Visual Attention Method for Ship Detection From SAR Images

FIGURE 7. Detection results on four image patches, shown by the red rectangles. (a), (e), (i) and (m) denote the original image patch tiled from
Sentinel-1 imagery, the CCNN detection result, the 3C2N detection result, and the bounding boxes detected by the 3C2N-guided visual attention method,
respectively. (b), (f), (j) and (n) display the second image patch example and its corresponding results, respectively. (c), (g), (k) and (o) exhibit the third
image patch example and its corresponding results, respectively. (d), (h), (l) and (p) show the fourth example image patch and its corresponding results,
respectively. (a) Sample1: image patch. (b) Sample2: image patch. (c) Sample3: image patch. (d) Sample4: image patch. (e) Sample1: CCNN method.
(f) Sample2: CCNN method. (g) Sample3: CCNN method. (h) Sample4: CCNN method. (i) Sample1: 3C2N method. (j) Sample2: 3C2N method. (k) Sample3:
3C2N method. (l) Sample4: 3C2N method. (m) Sample1: Ours. (n) Sample2: Ours. (o) Sample3: Ours. (p) Sample4: Ours.

which indicate the detected bounding boxes. In this figure,
each column illustrates one example, including the origi-
nal image patch and the detection results of each method,
respectively. The first row (Fig. 7(a) to Fig. 7(d)) in this

figure shows the original image patches. The second row
(Fig. 7(e) to Fig. 7(h)) and the third row (Fig. 7(i) to Fig. 7(l))
show the detection results of the CCNN method and the
3C2N method, respectively. The detection performance of
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FIGURE 8. The intermediate results of PCT model. (a) One image patch tiled from the original Sentinel-1 imagery. (b) The
image patch after image despeckling by using the NLM algorithm. (c) The image patch after preprocessing by (7). (d) The
flooding map. (e) The image patch in frequency domain. (f) The transformed image patch reversed to the space domain.
(g) The image patch after gaussian filtering. (h) The image patch after morphology. (i) The detection results by some
constraints.

the 3C2N-guided visual attention method is provided as the
fourth row (Fig. 7(m) to Fig. 7(p)). The background condi-
tions in the first and the second examples are both facing
extreme ocean clutters. In the third image patch example,
several ships are located at inshore area, besides many off-
shore situated ships. The fourth example shows a non-ship
object situated on land, which has been mistakenly regarded
as a ship by the CNN-based method, including the CCNN
method and the 3C2N method, because it is similar to a ship
in appearance. It is of high interest to note that the majority
of ships in the four image patches are small in size and
sometimes are packed densely and disorderedly, whichmakes
it very difficult to distinguish.

In comparison with the detection results of the CCNN
method, the 3C2N method, and the 3C2N-guided visual
attention method, one can easily obtain the results as follows:
• Even though the background is no more than complex,
the 3C2N-guided visual attention model could detect the
ship targets with accurate rectangles.

• Themissing detections by the 3C2N-guided visual atten-
tion method are declined dramatically, when compared
to the results via the CCNN method and the 3C2N
method.

• The false alarms on land have been eliminated
very well by using the 3C2N-guided visual attention
method.
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FIGURE 9. Detection results of the proposed method with and without the NLM algorithm for despeckling on three image
patches are shown by the red rectangles. The first and the second rows display the detection results of the 3C2N-guided
visual attention method without and with NLM for image despeckling, respectively. (a) Sample1: Ours without the NLM for
despeckling. (b) Sample2: Ours without the NLM for despeckling. (c) Sample3: Ours without the NLM for despeckling.
(d) Sample1: Ours with the NLM for despeckling. (e) Sample2: Ours with the NLM for despeckling. (f) Sample3: Ours with
the NLM for despeckling.

• When compared with the CCNN method, the 3C2N
method could improve the detection result to a certain
extent.

2) ANALYSIS OF THE PCT MODEL
One of the core algorithm in this method is the PCT-based
visual attentionmodel. In order to analyze themechanism and
identify its influence, some intermediate results hidden in this
model are visually displayed in Fig. 8. This figure displays the
visualized intermediate results of the PCTmodel step by step.
Fig. 8(a) shows an original image patch of size 200 × 200
tiled from the wide-swath Sentinel-1 imagery. The image
patch shows an extremely complex sea clutter, where the real
ship targets with small-size are emerged. The high clutter
has brought great challenge to locate and recognize ships.
Fig. 8(b) visualizes the despeckled image by using the NLM
algorithm, where the sea clutter has been depressed and the
ship targets are more clear. This makes the following detec-
tions easier. The filtered image after preprocessing via (7)
is provided in Fig. 8(c). Fig. 8(d) shows the flooding image
operated by (10) and (11), where the prominent scatters are
highlighted and others areweakened. Then, the image patches
after the two-dimensional DCT transformation and the quan-
tification by the sign function is presented in Fig. 8(e), which

visualizes the results in frequency domain. In the next step,
the image patch is transformed back to the space domain,
as shown in Fig. 8(f). Then the gaussian filter is applied to the
squared patch obtained from the last step. The result can be
easily seen in Fig. 8(g). Finally, Fig. 8(h). and Fig.8(i) exhibit
the detection results after morphology and the constraints
consecutively. It is clear that each step is helpful for ship
detection from SAR images filled with the extreme back-
ground conditions. As a result, the final detected ship targets’
bounding boxes are desirable.

3) THE FUNCTION OF THE NON-LOCAL-MEAN ALGORITHM
This section aims to emphasize the importance of despeckling
in SAR ship detection. Particularly, the despeckling algorithm
in this paper has adopted the NLM algorithm, which provides
an efficient way for reducing speckle noise in SAR images.
To illustrate this problem, three pairs of comparative detec-
tion results are represented in Fig. 9. Fig. 9(a) and Fig. 9(d)
provide the detection results of the first image patch example,
including the 3C2N-guided visual attention method without
and with using the NLM algorithm for despeckling, respec-
tively. The corresponding results of the second example are
shown in Fig. 9(b) and Fig. 9(e), respectively. The results
for the third example are in the similar way as the former
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FIGURE 10. Detection results on four image patches, shown by the red rectangles. Results visualized in the first row denote the detected bounding boxes
on four different image patches by the 3C2N-guided visual attention method without preprocessing, respectively. Results listed in the second row display
the corresponding detections by the 3C2N-guided visual attention method with preprocessing. (a) Sample1: Ours-without-PP. (b) Sample2:
Ours-without-PP. (c) Sample3: Ours-without-PP. (d) Sample4: Ours-without-PP. (e) Sample1: Ours-with-PP. (f) Sample2: Ours-with-PP. (g) Sample3:
Ours-with-PP. (h) Sample4: Ours-with-PP.

two examples. For all the three examples, by comparing with
the detection results in the first row and the second row,
one can easily obtain that the false alarms are ruled out
significantly by using the NLM algorithm so as to reduce the
speckle noise.

4) THE FUNCTION OF IMAGE PREPROCESSING
Image enhancement, considering as a preprocessing step,
plays an essential role in the 3C2N-guided visual attention
method. It is no exaggeration to say that the effects caused
by the image enhancement are very severe. This section
aims at discussing the effects caused by image preprocessing.
Fig. 10 presents the detection results of the 3C2N-based
method with and without preprocessing via (7). In this figure,
the first row (Fig. 10(a) to Fig. 10(d)) shows the detec-
tion results on the four image patches, and the second line
(Fig. 10(e) to Fig. 10(h)) displays the corresponding results of
the 3C2N-guided visual attentionmethodwith preprocessing.
One observes from the comparative results that the false
alarms are dramatically decreased in the condition that image
patches are preprocessed.

IV. CONCLUSION
TheCCNNmethod has achieved the state-of-the-art detection
performance in SAR ship detection. However, there are still
many challenges to be addressed. Firstly, the detected bound-
ing boxes are not very compact, which makes the detection

results not very accurate, and hence leads to big overlaps
between two densely packed ships. Secondly, there are quite a
few missing detections in areas, where ships are small in size
and they are densely clustered. Thirdly, there still exist some
false alarms on land. These can be attributed to the following
reasons: 1) The spatial information contained in the state-of-
the-art CNN-based method, namely CCNN, is not utilized
sufficiently; 2) The CNN-based ship detection method only
extract the image information in space domain, while neglect-
ing the information in frequency domain completely; 3) Infor-
mation attached in themeta-data file, such as the geographical
locations, is overlooked. In this paper, in order to improve
the CNN-based SAR ship detection performance, we firstly
present a 3C2N deep learningmethod. Based on this, a 3C2N-
guided visual attention method is proposed for accurate ship
detection from SAR images. The main contribution of the
proposed approach is that the pre-trained 3C2Nmodel, which
could quickly regress the coarse locations while only charac-
terizes the SAR image in space domain, is employed as a ship
proposal generator. The 3C2N method combines the CCNN
method and the recently published cascade RCNN method.
Thus, it could spatially leverage the SAR image information
more sufficiently. Complementally, a PCT-based visual atten-
tion method is added to perform ship discrimination from the
perspective of frequency domain. In addition, the DEM data,
which could be indexed by the geographical locations in the
meta-data file of Sentinel-1 imagery, is employed to exclude
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ship-like targets on land. It is notable that in order to improve
ship discrimination and without bringing too much burden on
computation, the NLM algorithm is utilized on the adaptive
ship regions to reduce the speckle noise in SAR images.
The experiments are evaluated on twenty-five image blocks
of size 200 × 200 in pixel tiled from Sentinel-1 imagery.
The F1 score of our approach could reach 0.9605, over
0.0621 when compared with the 3C3N method. This leads
to the significant decrease of both the missing detections and
the false alarms. Meanwhile, the visualized qualitative results
reveal that the detected bounding boxes by our approach are
much more accurate than other baselines.
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