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ABSTRACT Automatic fault feature extraction-based smart fault diagnosis is becoming more and more
popular, as it does not require excessive expertise of on-site staff. Advanced signal processing tech-
niques are of significant importance in order to ensure efficient and effective fault feature analysis.
Multi-resolution analysis is an effective tool utilized to decouple multiple signal modes within the measured
vibration signal. However, currentmulti-resolution analyzingmethods still cannot enable continuous spectral
refinements around fixed analyzing frequencies. To address this problem, a novel theory of topological fractal
multi-resolution analysis (TFMRA) is proposed. With the concept of nested centralized wavelet packet
cluster (NCWPC), TFMRA is equipped with the ability to extract multiple fault features simultaneously.
Mathematically, we prove that: 1) each NCWPC is a topology subset of spectral domain of the investigated
signal and 2) all sets of NCWPC share a common self-similar fractal property in geometry. This paper reveals
an important intrinsic relation between classical dyadic multi-resolution analysis and TFMRA. That is, each
dyadic wavelet packet can be uniquely associated with an NCWPC according to the definitions of TFMRA,
and classical wavelet packet spaces are regarded as proper subsets of the proposed NCWPCs. Combining
signal decomposition using TFMRA and damage information of a mechanical system, we propose an
improved sparsity promoted vibration signature analyzing methodology to investigate repetitive transient
fault features. This method was applied to extract abnormal vibration signatures from an experimental rotor
test rig with rub-impact faults. Processing results demonstrate that nanocomponents of transient vibrations,
which are produced by rub-impact faults, were successfully identified. These results are compared with those
of some other comparison techniques based on sparse representation. It is verified that the proposed fault
diagnosis method possesses more robust noise resisting capability.

INDEX TERMS Rotating machinery, fault diagnosis, topology fractal multi-resolution analysis (TFMRA),
sparse representation, rub-impact.

I. INTRODUCTION
Rotating machinery plays an important role in modern
industry, such as aeronautical and space technologies,
mechanical manufacturing, power and energy, transpiration
and etc. However, owing to harsh working conditions, such
as heavy load, high temperature, as well as corrosive envi-
ronment, mechanical faults are likely to occur on the compo-
nents of rotating machinery. Without timely fault diagnosis

services and effective maintenances, these faults not only
affect the service performances of equipment but also result
in fatal accidents causing major economic losses and severe
casualties [1], [2]. Attempting at avoiding such accidents,
predictive maintenance together with health prognosis tech-
niques are indispensable. Dynamic signals, acquired during
condition monitoring of rotating machinery, are feasible
vehicles carrying important information of abnormal faults.
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Extracting fault features frommasking interferences has been
recognized as a difficult problem of general interest in the
community [3], [4].

The past decades have witnessed the rapid development
of signal representation theory. This theory has been widely
used in weak feature extraction of dynamic signals, in which
vibration modes have distinct spectral counterparts. In order
to enhance representing ability of non-stationarity, non-
linearity within dynamic signals, special bases should be
carefully and properly chosen. Some related techniques are
redundant trigonometric bases [5], wavelet transform [6], [7],
self-adaptive signal decompositions [8], [9]. Empirical mode
decomposition (EMD) and its later variations are well-known
examples of the self-adaptive signal decomposition tech-
niques. These famous methodologies are continuously find-
ing more applications in fields of fault diagnosis and health
prognosis [10]–[14]. Sparse representation (SR) is a relative
recent enhancement to signal representation theory. In the
framework of sparse representation, the bases mentioned
above are examples of analyzing dictionaries [15], [16].
Techniques based on sparse representation are intensively
investigated by researchers and they were applied in numer-
ous machine health prognosis applications [17]–[22].

Wavelet analysis is an important tool of time-scale
analysis. Until now, many wavelet systems have been devel-
oped according to diversified demands. However, no matter
orthonormal bases, biorthogonal bases, dual-tree complex
bases, or multi-wavelet bases, patterns of frequency-scale
paving of these available discrete wavelet transforms are
identical and fixed. Mathematically, they can realize refine-
ment with regard to spectral resolution of wavelet sub-
spaces, but each wavelet subspace is equipped with a
unique central analyzing frequency different from that of the
others. Moreover, they were reported to possess poor per-
formance in analyzing transition band features [23]. On the
other hand, self-adaptive signal decomposition techniques
with artificial intervention, such as noise assisted ensemble
EMD, variational mode decomposition are also of wavelet
like filtering properties [24], [25]. Therefore, shortcomings
of classical discrete wavelet theory also exist for these
methods.

As stated above, different signal bases are employed to
match vibration modes with specific characteristics. The idea
of using multiple bases simultaneously to separate vibration
components of distinguished characteristics via optimization
have been investigated by many scholars. Cai et al. [26] and
He et al. [27] explored some unconventional wavelet dic-
tionaries, such as overcomplete framelet expansion, tunable
quality-factor wavelet transform (TQWT), and super wavelet
in mechanical fault feature extraction. These novel wavelet
dictionaries adopt non-dyadic dilation factors and therefore
enable frequency-scale paving patterns different from dyadic
wavelet system. However, they are still not able to real-
ize multi-resolution analysis around fixed spectral focuses.
As such, in an advanced sparse representation algorithm,
due to employment of multiple redundant dictionaries, more

iterations are required and thus the resulting computation
efficiency is low.

To achieve the merit of centralized multiresolution analy-
sis, Chen investigated a derived ensemble analytic framelet
expansion (DEAFE) based on dual tree wavelets. This redun-
dant framelet expansion was reported to be an elegant way
to solve the mentioned problem [28], [29]. However, it these
researches, mathematical backgrounds regarding topologi-
cal structures hidden in the DEAFE were not explained
in a systematic way. Serving as further investigations of
DEAFE, we proposed a novel theory of topological fractal
multi-resolution analysis (TFMRA) with concrete construc-
tion example in this paper. The contribution in the theo-
retical aspect lies in topological structure explanation of
DEAFE from viewpoints of point set topology theory. With
rigorous mathematical proofs, the unique centralized multi-
resolution properties are revealed and a novel generalized the-
ory of topology fractal multi-resolution analysis (TFMRA) is
established.

Moreover, a smart fault feature extraction method is put
forward based on TFMRA. In the diagnosis algorithm, a new
sparsity estimation indicator was designed based on the peri-
odic sparsity in the domain of envelope spectrum. This indica-
tor can effectively distinguish periodic impulsive components
even in the presence of masking noises as well as other types
of interference. Using this indicator, parameters of optimal
subspace can be properly selected. The NCWPC containing
this optimal subspace and neighboring wavelet subspaces
of this NCWPC are further investigated to detect incipient
fault features. With derived information of instantaneous
amplitude and instantaneous frequency, vibration modes with
more complete physical meaning can be retrieved. Processing
results of this fault diagnosis algorithm were compared with
those of some other comparison methods based on sparse
representation, such as group sparsity technique and TQWT
based resonance sparsity decomposition, to verify its superi-
ority of effectiveness.

II. CONCRETE EXAMPLE OF FRACTAL TOPOLOGICAL
MULTI-RESOLUTION ANALYSIS
A. FUNDAMENTALS OF CLASSICAL DYADIC
WAVELET THEORY
Subspaces of classical discrete wavelet theory are generated
by a single scaling function and a single wavelet function.
Let the sample frequency of digital discretization during
machine health monitoring be denoted as fs. As demon-
strated in Figure 1, the spectral resolutions of wavelet packets
wpkj (j ∈ Z+ ∪ {0}, k ∈ Z) are continuously enhanced by a
factor of 2. While the central analyzing frequency (CAF) of
wpkj can be computed as

CFj,k =
k + 1
2j+2

fs. (1)

As shown, ϕ : (j, k) 7→ CFj,k can be regarded as a
mathematical mapping represented by Z2

7→ R. It can be
inferred that each wavelet packet (WP) possesses a unique
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FIGURE 1. Frequency-scale paving pattern of the classical wavelet packet
transform.

CAF that is different from that of otherWPs. However, owing
to the fact that the shape of wavelet spectral response is
not ideally rectangular, WP has relatively poor performance
in extracting dynamic features whose spectral responses are
located at either end of passing-bands. That is, as a celebrated
mathematical microscope, classical dyadic wavelet trans-
form can achieve refined improvement of spectral resolution
but actually cannot achieve multi-resolution analysis around
some specific spectral focuses. Recent developments of over-
complete wavelet transform were designed to be equipped
with flexible scaling factors as well as flexible CAFs. Unfor-
tunately, the aim of centralizedmultiresolution analysis is still
not achieved.

B. CONSTRUCTION OF IMPLICIT ENSEMBLE WAVELET
TOPOLOGY FRCATAL DECOMPOSITION
In order to improve time-frequency localizability on the
transition bands of current discrete wavelet analysis.
In [26], a novel strategy for constructing implicit wavelet
packet (IWP) was proposed. Routines of this strategy can be
summarized in Algorithm 1.

C. MATHEMATICAL DESCRIPTION OF CENTRALIZED
MULTIRESOLUTON ANALYSIS
In Figure 2, the frequency-scale paving pattern of the gen-
erated IWPs is illustrated. According to the definition in the
above equations, for k ≥ 2, the spectral responses of wavelet
packet series D(·)

k,j(n) can be written as

W (·)
k,j(w) = H (·)

1,b1
(w)

 ione∏
u=2,u>k

H (·)
bm (2

uw)


×

 k∏
v=ione+1,v>k

Fbv (2
vw)

, (8)

Algorithm 1 IWP Construction Strategy

Input: x ∈ RN

Step 1). Perform quasi-analytic wavelet packet trans-
form (QAWPT) on the input signal x and implement
single branch reconstructions for each wavelet packet
series. Mapping between the input and the output can be
expressed as

x 7→ {DiJ |i = 1, 2 · · · , 2J }, (2)

where DiJ denotes the reconstructed signal after inverse
transform and J denotes the decomposition depth.
Step 2). Rearrange the order of elements in the set {Dik |i =
1, 2 · · · , 2k}, such that in the rearranged set {Rik |i =
1, 2 · · · , 2k} the relationCAF(Rlk ) < CAF(Rl+1k ) exists for
all 1 ≤ l ≤ 2k .
Step 2.1) For each wavelet packet Rik (n) in the rearranged
set, compute the binary coding for its index i, expressed as

i =
k−1∑
m=0

2mnm + 1, (3)

Step 2.2) Introduce an integer mapping ϕ : Z+ 7→ Z+ for
the coding {n1, n2, . . . , nm}. The definition of the mapping
is defined as

ñm =

{
nm, m = k − 1
mod(nm + nm+1, 2), m = 0, 1, · · · , k − 2.

(4)

As such, a new integer ĩ can be defined as

ĩ =
k−1∑
m=0

2mñm + 1. (5)

Step 2.3). According to the introduced mapping
ϕ (Z+):i 7→ ĩ, the relations between elements of the
original set and those of the resultant set can be expressed
as

Rik (n)
def
= Dĩk (n). (6)

Step 3). Engender implicit wavelet packets, shown as

IWPik−1(n) = R2ik (n)+ R
2i+1
k (n)

2 ≤ k, 1 ≤ i ≤ 2k−1 − 1 (7)

Output: {Rik (n)} ∈ RN and {IWPik (n)} ∈ RN .

where the binary coding for the integer j is expressed as

j =
k∑
i

bi · 2k−1−j. (9)

In the above equation, ione indicates the first element belong-
ing to the set Bk,j = {b1, b2, . . . , bk |b(·) = 0 or 1} that
satisfies the following requirements in Equation (10).{

bione = 1∑none−1
i=2 bi = 0

(10)

51888 VOLUME 6, 2018



N. Zeng et al.: Sparsity Enhanced Topological Fractal Decomposition for Smart Machinery Fault Diagnosis

FIGURE 2. Frequency-scale paving pattern of the IWPs.

Let ψe
k,j(t) be the impulse response function associated with

IWPik (n), EVk,j be the abstract sub-space generated by the
translations of, and Rk,i be the sub-space generated by the
dual tree wavelet functions {ψC

k,i(t)}. According to the paving
pattern shown in Figure 2, the following properties for the
TFMRA can be summarized.

(1) {0} · · · ⊂ EVk+1,4j ⊂ EVk,2j ⊂ EVk−1,j ⊂ · · · ⊂
L2(R);

(2) lim
k→+∞

∪j∈{1,...,2j−1−1}EVk,j = L2(R);

(3) x(t) ∈ EVk,2j ⇔ x(2t) ∈ EVk−1,j, ∀ (k, j) ∈ Z2;
(4) For arbitrary (k, j,m) ∈ Z3, there is an equivalent

relation shown as below

f (t) ∈ EVk,j ⇔ f (t − 2k−1 · m) ∈ EVk,j;

(5) For ∀ j ∈ Z, the relation EVj+1,i = Rj,2i ⊕Rj,2i+1 can
be satisfied;

(6) lim
k→+∞

⋂
j∈{1,...,2j−1−1} EVk,j = L2(R).

To make formal descriptions of the special properties
of TFMRA, a novel concept of nested centralized wavelet
packet cluster is proposed with definitions.
Definition 1 (Topological Fractal Multi-Resolution

Analysis, TRMRA):
(1) Nested centralized wavelet packet cluster (NCWPC),

defined as:
For ∀ j = 1, 2, . . . , 2k and k ≥ 2, the order of an element

in an NCWPC is determined by the value of the index k:

NCWPCk,j{CAFk,j, 1fk} = {ψe
k ′,j′ (t)| k

′
≥ k, j′ = 2k

′

},

(11)

where CAFk,j = fs/2k+1 + (j − 1) · 1fk denotes the shared
central analyzing frequency of a NCWPC and 1fk = fs/2k

denotes the passing band width of the first element in the set
NCWPCk,j;

(2) Augmented nested centralized wavelet packet clus-
ter (ANCWPC), defined as

ANCWPCk,j = {ψk−1,j} ∪ NCWPCk,j, (12)

(3) Nested centralized topological set

ANCWPSCk,j = Ø ∪ ANCWPSCk,j ∪ {[0, fs/2]}. (13)

In the above definitions,ANCWPCk,j is called as the principal
part of ANCWPCk,j.
(4) The passing band of ψe

k,j(t) is[
2j− 1
2k+2

,
2j+ 1
2k+2

]
fs. (14)

It can also be named as the support of ψe
k,j(t), which can be

expressed as supp(ψe
k,j) or suppk,j(i).

More detailed introductions about these concepts and def-
initions will be addressed in the following parts.

III. FUNDAMENTAL THEORY OF TOPOLOGICAL
FRACTAL MULTIRESOLUTION ANALYSIS
In this section, we attempt to illustrate special characteris-
tics of TFMRA from viewpoints of filers, algebra, as well
as geometry. In order to reveal the intrinsic properties of
frequency-scale paving pattern generated by IWPs, the dia-
gram in Figure 2 is equivalently expressed in Figure 3.
As marked in the right side of the paving pattern in Figure 3,
the height of each scale is reduced by a factor of 2 iter-
atively (such as ‘1’, ‘1/2’, ‘1/4’, ‘1/8’, and etc). However,
in viewing of visual convenience, they are plotted with an
identical height.

FIGURE 3. An equivalent expression of the frequency-scale paving
pattern of the IWPs in Figure 2.

A. VERIFICATIONS OF PROPERTIES OF TFMRA
As illustrated in Figure 3, a Jstage wavelet packet decompo-
sition engenders 2J wavelet packets. Moreover, (2J−1 − 1)
additional IWPs are produced. Inferred form this diagram,
the first set of nested centralized wavelet packet cluster,
NCWPS1,1, is produced at the stage of which J = 2.
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While two sets of nested centralized wavelet packet clus-
ter, NCWPS2,1 and NCWPS2,2, are generated at the stage
of which J = 3. As such, we can make the following
conclusions.

(1) All elements in a set of nested centralized wavelet
packet cluster, NCWPSk,j, share an identical CAF, while their
spectral resolutions are continuously refined by a factor of 2.

(2) Comparing Figure 2 with Figure 3, wavelet packets,
generated by a J stage dyadic decomposition, can be associ-
ated with implicit wavelet packets at the stage of (J + 1) due
to their common spectral resolutions. It can be observed that
2J−2 new sets of NCWPS are produced at this stage .
(3) The initial element of NCWPCk,j is associated with the

IWP function ψe
k,2j−1(t). For successive elements in this set,

the values of the indices also satisfy a dyadic scaling relation.
That is, they can be denoted as {ψe

k+k ′,(2j−1)·2k′
(t)} for k ′ ≥ 0;

(4) Similar with the conventional dyadic wavelet packet
transform, adjacent wavelet functions of the same NCWPC
satisfy two-scale relationship approximately regarding their
waveform shapes of impulse responses.

FIGURE 4. Time-frequency atoms of the first four IWPs of the set
NCWPC1,1.

In order to make verifications of the above properties,
in Figure 4 four wavelet functions of with their envelopes,
belonging to the set of NCWPC1,1, are plotted in the time
domain. Observing from the waveforms, we find that each
function consists of a main lobe and a few side lobes. On the
other hand, their main lobes approximately satisfy the cel-
ebrated two-scale relationship in classical wavelet theory,
although there are slight phenomena of asymmetry. Accord-
ing to the filtering structure of quasi-analytic wavelet packet
theory [28], [29], the asymmetry is induced by the asymmet-
ric orthonormal wavelet bases adopted at the first stage.

B. TOPOLOGICAL DESCRIPTION OF NCWPC COMBINED
WITH SUBSPACE OF ORIGINAL SIGNAL
In theory of real analysis, definitions of topology space are
shown in Dilemma 1.
Dilemma 1 (Topological Space, TS): A non-empty set X ,

together with a collection of open subsetsD is called a topo-
logical space, denoted as (X ,D), if D satisfy the following
requirements:

(1) The empty set Ø ∈ D and the original set X ∈ D;
(2) If Gα ∈ D(α ∈ A),

⋃
α∈A Gα ∈ D;

(3) If Gi ∈ D, i = 1, 2, . . . , n,
⋂n

i=1 Gi ∈ D. �
In the frequency-scale paving pattern shown in Figure 3,

according to the definitions of nested centralized topological
set ANCWPSk,j, it is consolidated that the first requirement
in Dilemma 1 is satisfied. Let a non-empty integer set A be
denoted as

A = {i1, i2, . . . |i(·) ∈ Z+ ∪ {0}}. (15)

In this set, elements are sorted in numerical order. A nesting
property exists as

suppk,j(i1) ⊃ suppk,j(i2) ⊃ . . . ⊃ suppk,j( lim
`→∞

i`), (16)

where lim`→∞ i` denotes the index of the last element in the
set A (for finite geometry). The support of this element is
[CAFk,j − ε,CAFk,j + ε]. The length of the support is so
short that is can be regarded as a signal value equivalent to
the CAFs of NCWPCs. As such, the following relations⋃

α∈A
ANCWPSk,j(α) = suppk,j(i1) ∈ ANCWPSk,j, (17)⋂

α∈A
ANCWPSk,j(α) = suppk,j(∞) ∈ ANCWPSk,j (18)

validate property (2) and property (3) in Dilemma 1. Based on
the above arguments, it is sufficient to say that the constructed
ANCWPSk,j are topological spaces according to strict mathe-
matical definitions.

C. TOPOLOGICAL DESCRIPTION OF NCWPC
In Figure 3, the colored areas within the special trapezium-
rectangle pattern (TRP) represent the supports of NCWPC.
Observing the special TRPs indicated in this figure, we can
conclude two essential properties.

(1) Two NCWPCs generated at adjacent scales, for exam-
pleNCWPC1,1 andNCWPC2,1, are strictly similar in the geo-
metric aspect. If we scale the shape of TRP associated with
NCWPS2,1 by a factor of 2, the resultant shape is identical to
that of the TRP associated with NCWPC1,1.

(2) A dyadic property also exists for numbers of NCWPC
sets generated at adjacent scales. At the first scale, only one
set (NCWPC1,1) is generated. While at the next scale, two
new sets of NCWPC, NCWPC2,1 and NCWPC2,2, are pro-
duced. If arbitrary zoom-in operations are enabled for other
TRPs in Figure 3, it can be inferred that the above phenomena
also exist for other stages. Therefore, let this TRP be a basic
geometrical pattern, it is feasible to conclude that the shapes
of the generated NCWPCs are strictly similar with each
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other geometrically. The mentioned TRPs can be employed
to construct fractal sets in the frequency-scale plane.

IV. UNIFORM EXTENSION OF DYADIC WAVELET
THEORY TO TOPOLOGICAL FRACTAL THEORY
Based on the presented materials, it is validated that theory
TFRMA can be established using the concept of NCWPC.
Geometrically, this claim can be reflected by the frequency-
scale plane paved by TRPs of different scales. For classical
dyadic wavelet theory, self-symmetry properties also exist for
wavelet packets. However, the frequency-scale plane cannot
be paved by geometric patterns in the framework of frac-
tal theory. As a result, we manage to establish an essential
relation between the proposed TFMRA and classical dyadic
wavelet theory. This relation is defined by the following
Theorem 1.
Theorem 1: Each dyadic wavelet packet can by uniquely

associated with a specific NCWPCk,j. Equivalently, a one-to-
one mapping exists for dyadic wavelet theory and TFMRA.

Proof: For each dyadic wavelet packet Rk,i, let its cor-
responding impulse response be denoted byψk,j(t). The CFA
and the support of ψk,j(t) are computed as

CAF{ψ̂k,j(w)} =
2j− 1
2k+2

fs, (19)

and

supp{ψ̂k,j(w)} =
[
j− 1
2k+1

,
j

2j+1

]
fs. (20)

Comparing CAFs of dyadic wavelet packets with those of
NCWPCs, we have the following equation

fs
2k ′+1

+ (j′ − 1) ·
fs
2k ′
=

2j− 1
2k+2

fs. (21)

Inferred from the identity, it is deduced that k ′ = k + 1
and j′ = j. On the other hand, the band width of the initial
element of NCWPCk+1,j is fs/2k+2. It exactly equals one half
of passing band width of ψ̂k,j(w) in value. As such, there
is an implicit one-to-one mapping revealed by the theory of
TFMRA, which can be expressed as

ψk,j 7→ NCWPSk+1,j. (22)

Without loss of generality, the wavelet space of the original
signal x can be written as ψ0,1, whose wavelet function is the
Dirac impulse function δ (t). Equation (22)(22) reveals that
each dyadic wavelet packet (ψk,j) can be uniquely associated
with the set NCWPCk+1,j. By adding ψk,j to NCWPCk+1,j,
a generalize set NCWPC can be obtained without violating
definitions of topology space. This is the reason why we
propose the concept of ANCWPS in Definition 1.

According to the above arguments, except for the areas
marked by the white color in Figure 3, there is a strict one-
to-one mapping connecting classical dyadic wavelet theory
and the proposed TFMRA. The former can be regarded as a
special proper subset of the latter one. Equivalently, the novel
multi-resolution theory is compatible with the classical one.

V. SMART FAULT FEATURE EXTRACTION
BASED ON TFMRA
For rotating machinery operating at constant speed, the
presence of localized faults developed on mechanical com-
ponents will produce periodic impulsive transients in the
vibration measurement. Inspired by the ideal of fault feature
ratio (FFR) proposed by He et al. [27], we attempt to present
an improved sparsity estimation indicator. Moreover, this
indicator is combined with the proposed TFMRA to diagnose
mechanical faults.

Let x, the measured vibration signal, be the input of the
proposedmethodology. The flow chart of this smart diagnosis
algorithm is illustrated as below.

Step 1). Compute characteristic frequencies of potential
mechanical faults (fc) based on information of machinery
structure.

Step 2). Decompose the input signal {x(n)} using the pro-
posed TFMRA such that filtered signals of WPs and IWPs
subspaces are obtained. These signals are represented as
{ψk,j(n)} and {ψe

k,j(n)}.
Step 3). Estimate the sparse indicators of these recon-

structed signals.
Step 3.1) Firstly, compute the kurtosis value of each signal

in the time domain, as shown in Equation (23)(23).

K [ψ (·)
k,j] =

µ4

σ 4 =
E[(ψ (·)

k,j − µ)
4]

(E[(ψ (·)
k,j − µ)

2])2
, (23)

where µ stands for the mean value of input signal; µ4 stands
for the fourth order moment of input signal; and σ stands for
the standard deviation of input signal.

Step 3.2) Secondly, compute the kurtosis of the envelope
of each wavelet series, denoted as Ke[x(n)]. The definition of
Ke[x(n)] is given as

Ke[x(n)] = K
[√

x2 + [H{x}]2
]
. (24)

where the operator H{·} performs Hilbert transform on
the input series. The definition of H{·} are shown in
Equation (25).

Ĥ{x}(ω) =
{
−j · x̂(ω), ω > 0
j · x̂(ω), ω < 0.

(25)

Step 3.3) Thirdly, a value indicating comprehensive sparsity
of each signal is computed using the above information. The
sparsity indicator is defined as

SparGroup{x} = K {x} · sgn (KE{x} − T ), (26)

where T is a threshold value selected based on engineering
experiences. In this paper, according to our expertise, this
value was selected as 20. Moreover, in the procedure, only a
finite frequency range of x is utilized. According to the results
in the paper by He et al. [27], a feasible frequency range can
be selected as [1.5fc, 3.5fc].
Step 4)After obtaining all sparse indicator values of signals

derived by TFMRA, we can plot them in a two dimensional
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distribution diagram. A subspace with greatest sparsity esti-
mation value is selected as the optimal feature. Plots regard-
ing the time domain waveform, the Fourier spectrum and
the instantaneous frequency/amplitude of the optimal feature
are used to extract fault signatures. Other subspaces within
the NCWPC containing the optimal feature, together with
neighboring wavelet packets of these NCWPC, may also be
useful as they can provide other fault information.

The improved indicator is devised based on the following
facts. Firstly, evenly spaced spectral bins will appear in the
envelope spectra of the reconstructed signals. It will result
in high kurtosis value in the frequency domain. Secondly,
envelope spectra of noises are comparatively flat in shape
and thus produce low kurtosis values. Thirdly, for a sporadic
impulse with extremely localized energy in the time domain,
due to lack of periodicity, its envelope spectrum is also flat in
shape, hence producing low kurtosis values. Proper selections
of parameters in Equation (26) are very important to analysis
results.

VI. EXPERIMENTAL VERIFICATION AND
ANALYSIS OF EFFECTIVENESS
A. INTRODUCTION OF EXPERIMENT
In order to verify the effectiveness of the proposed method, a
rub-impact experiment was conducted. The single span rotor
test rig is shown in Figure 5. In the tests, incipient faulty
components were produced by periodic contacts between the
rubbing screw and the rotating shaft.

FIGURE 5. Photograph of the single span rotor test rig.

In the experiment, the rotation speed of the shaft was
controlled at 2200r · min−1. The working frequency of the
rotor systemwas theoretically calculated at 36.67Hz. On each
side of the rotor there was an erection support for installing
eddy current sensors (Figure 6(a)). At each erection sup-
port, each pair of eddy current sensors were mounted per-
pendicularly. The fault source was simulated by a rubbing
screw (Figure 6(b)). When the rotor system was operating at
constant speed, artificial knockings were made on the metal
surface of the test rig in order to simulate stochastic sporadic
impulses occurring in actual measurement.

B. PROCESSING RESULTS OF MEASURED SIGANL
USING ORDINARY METHODS
In Figure 7, we plot the displacement signal collected from
the eddy current sensor mounted in the X direction. In the

FIGURE 6. (a) Deployment of eddy current sensors; (b) installation of
rubbing screw.

FIGURE 7. Time domain waveform of the displacement signal collected
by the eddy current sensor.

FIGURE 8. Frequency domain waveform of the displacement signal
collected from the eddy current sensor.

measurement, the sampling frequency was set as 2000Hz and
the sampling length was set as 1000. The waveform in the
time domain shows that a sinusoidal wave related to the work-
ing frequency of the system (fc) is the dominant component.
Similarly, the amplitude of its associated spectral bin is of
extremely high energy in the Fourier spectrum (Figure 8).
From the zoom-in plot, we an observe the high order tones
of fc in the frequency range of [50,400]Hz.

Applying Hilbert transform on the original vibration signal
shown in Figure 7, the curve of instantaneous frequency (IF)
of the displacement signal is shown in Figure 9. The averaged
value of IF in the time interval of [0.05,0.45]s is calculated
at 36.7068Hz, very close to the theoretical value of sys-
tem working frequency. The periodical oscillations of the
IF curve are also important phenomena. At the time instant
of t=0.1975s there is a special sudden frequency change.
As stated above, this sudden change was caused by the artifi-
cial knocking.

C. SINGLE MODE COMPONENT EXTRACTION
USING THE PROPOSED SMART METHOD
In this subsection, we illustrate processing results of the
displacement signal by using the proposed smart method.
The characteristic frequency of the rotor system is selected
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FIGURE 9. Change of the instantaneous frequency of the raw
displacement signal.

FIGURE 10. Distribution of the sparsity estimation indicators calculated
from decomposition results of the raw vibration signal.

as fc = 36.7Hz. As shown in Figure 10, the wavelet sub-
space wp23(t) (passing band: [125,250]Hz, central analyzing
frequency: 187.5Hz) is recognized to possess the highest
sparsity estimation value.

FIGURE 11. Time domain wave of the optimal subspace of the raw
displacement signal.

The time domain waveform of the optimal wavelet sub-
space is plotted in Figure 11, in which periodical damping
components spaced at 0.0271s are very prominent. The corre-
sponding fault frequency is calculated at 36.68Hz. In consid-
eration of permissible error range, this calculated frequency is
much closed to the theoretical characteristic frequency. From
the envelope spectrum shown in Figure 12, the fundamental
tone, second order tone, and third order tone of the system
working frequency are revealed as dominant components.

Comparing the diagrams in Figure 9 and Figure 11,
we found occurrences of the damping components are in

FIGURE 12. Envelope spectrum of the optimal subspace of the raw
displacement signal.

significant synchronism with those of sudden IF changes.
This phenomenon demonstrates the extracted fault features
are actually produced by the rub-impact faults.

FIGURE 13. Instantaneous frequency of waveform of the optimal
subspace signal.

In Figure 13, the IF of the extracted signal is plotted. In this
figure, periodical IF changes are also found. The occurrence
instants of the IF changes are also simultaneous with those of
the original signal.

From zoom-in plots of Figure 13, it can be seen that
two strong IF permutations are found in each revolution
of the shaft, meaning that this signal may be composed of
more than one vibration mode. Investigating the neighboring
wavelet subspaces of the optimal wavelet subspace wp23(t),
two wavelet subspace of significant modulation effect were
found. The waveforms of the two wavelet subspaces, whose
passing bands are [125,187.5]Hz and [187.5,312.5]Hz, were
plotted in Figure 14 and Figure 15.

Implementing demodulation using Hilbert transform on
the waveforms in Figure 14 and Figure 15, the corresponding
IF cures are shown in Figure 16 and Figure 17 respectively.
The sudden IF changes of the two curves happen simultane-
ously. In each revolution of shaft, there is only one strong IF
change. What’s more, judging from the IF change instants,
it is inferred that the wavelet subspace characterized by
[125,187.5]Hz contains a single vibration mode of amplitude
modulation and the other wavelet subspace characterized by
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FIGURE 14. Time domain waveform of the wavelet subspace whose
passing band is [125, 187.5]Hz.

FIGURE 15. Time domain waveform of the wavelet subspace whose
passing band is [187.5, 312.5]Hz.

FIGURE 16. Instantaneous frequency cure of the wavelet subspace
characterized by [125, 187.5]Hz.

[187.5, 312.5]Hz contains a single vibration mode of fre-
quency modulation.

D. PROCESSING RESULTS BY COMPARISON METHODS
In order to demonstrate the superiority of the proposed
method, we employed three other comparison methods to
process the original displacement signal.

(1) Comparison with method using other fault feature sen-
sitive indicator

As comparison, we employ another intelligent feature
extraction method using an indicator named as spatial-
spectral ensemble kurtosis [29]. The signal was also decom-
posed using the proposed TFMRA. The distribution of
the sparsity indicator is shown in Figure 18. The wavelet
subspace characterized by [500, 1000]Hz was recognized
as the optimal wavelet subspace. Unfortunately, as shown

FIGURE 17. Instantaneous frequency cure of the wavelet subspace
characterized by [187.5, 312.5]Hz.

FIGURE 18. Processing results using a method which employs the
indicator of spatial-spectral ensemble kurtosis.

in Figure 19(a), a component containing a sporadic impulse
happening at t=0.1975s, was extracted. Such component was
supposed to be suppressed by the indicator but failed in
doing so. This strong impulse produces a high kurtosis value
of 8 in the time domain.

The component containing the sporadic impulse was suc-
cessfully suppressed by the proposed method. As shown
in Figure 19(b), the envelope spectrum of this component is
flat in shape and produces low kurtosis value in this domain.
Therefore in the proposed method, due to the threshold pro-
cessing in Equation (26), interferences caused by the sporadic
impulse are removed.

In order to locate the source of the sporadic impulse in the
time domain, in Figure 20 we display a zoom-in plot of the
original displacement signal. At the time instant of 0.1975s,
a singularity of small energy was found. However, compared
with energy of the dominant sinusoidal wave related to the
system working frequency, the singularity is so weak in
energy that we hardly recognize it in the time domain without
zoom-in operations.
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FIGURE 19. Information of the optimal subspace in Figure 18: (a) time
domain waveform; (b) envelope spectrum.

FIGURE 20. Sporadic impulse (caused by artificial knocking) in the time
domain.

FIGURE 21. Processing results by group sparsity technique.

(2) Comparison with a group sparsity technique
Group sparsity is reported to be an advanced technique

to extract periodic impulsive components in the presence of
observation noises [29], [31]. The pre-required knowledge
of this technique is also the system characteristic frequency.
The processing results are shown in Figure 21. The denoised
signal after processing is also similar to the raw displacement
signal in shape. Owing to the strong interferences caused
by the dominant system working frequency, the repetitive
impulses were not identified despite this comparison tech-
nique employs stronger non-convex regularizer.

(3) Comparison with TQWT based resonance sparse signal
decomposition

Tunable Q-factor wavelet transform is a new type of
wavelet dictionary whose time-frequency atoms can be
parameterized by quality factor (Q), redundant factor (r) and
decomposition stage (J ). Resonance sparse signal representa-
tion based on TQWT emerges as an effective way to separate
fast varying components and slow varying components from
single sensor observations [26], [32]. In this paper, for the
fast varying wavelet dictionary the parameters were chosen as
Q=4 and r=3, while for the slow varying wavelet dictionary
the parameters were chosen asQ=1 and r=3. The processing
results are shown in Figure 22. Similar to the case of group
sparsity technique, owing to the presence of harmonic wave
of extremely high energy, both of the extracted fast varying
component (Figure 22(a)) and the extracted slow varying
component (Figure 22(b)) are very similar to the original
displacement signal in shape. Using other parameter combi-
nations {Q,r ,L} for the two dictionaries, results are similar to
those in Figure 22.

FIGURE 22. Processing results by TQWT based resonance sparsity
decomposition technique: (a) fast varying component; (b) slow varying
component.

Based on the comparison demonstrated above, due to the
interferences in the raw displacement signal, the comparison
method based on sparse representation fail in extracting incip-
ient periodic impulsive transients in the experiment. These
comparisons demonstrate the superiority of the proposed
method in overall performance.

VII. CONCLUSION
In order to enhance the fault diagnosis performance in inves-
tigating vibration signal containing multiple modes, we pro-
pose a smart technique based on the combination of TFMRA
and an improved sparsity promoted indicator. TFMRA dis-
tinguish itself from classical wavelet theories by enabling
continuous refinement of spectral resolution around specific
central frequencies. Major findings of the paper are listed as
below.
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(1) On the basis of quasi-analytic wavelet packet transform,
a novel theory of topological fractal multi-resolution analysis
is proposed with concrete construction example. With the
novel concept of nested centralized wavelet packet cluster,
TFMRA is able to realize multi-target pursuit via multi-
resolution analysis around specific spectral focuses. This
merit has not been reported in the literature.

(2)We give rigorous mathematical proofs for the following
properties of TFMRA: each NCWPC can be regarded as a
topological subset of the frequency domain of the original sig-
nal; fractal sets can be constructed by NCWPCs. The intrinsic
isomorphism between classical dyadic wavelet theory and
TFMRA is also revealed. That is, each dyadic wavelet packet
can be uniquely associated with a specific NCWPC according
to definitions of TFMRA. In the framework of TFMRA,
dyadic wavelet analysis can be regarded as a proper subset
of TFMRA.

(3) A smart fault feature extraction method is put forward.
Based on TFMAR and sparsity characteristics of periodic
impulsive components in the envelope spectrum domain,
it is able to suppress stochastic interferences as well as
deterministic interferences more effectively. Combining the
recognized optimal wavelet packet with its instantaneous
information, we found it more feasible to identify vibration
modes of complete physical meaning. A rub-impact experi-
ment on a rotor test rig was used to verify the superiority of
the proposed method.
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