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ABSTRACT Wi-Fi-based indoor localization system needs to construct a radio map by site surveys.
The process of site surveys is time-consuming and crowdsourcing is one feasible option to tackle this
issue. Meanwhile, privacy protection has drawn concerns from both industry and academia. In this paper,
we propose two incentive mechanisms to stimulate mobile users (MUs) to contribute indoor trajectory data
for crowdsourcing-based indoor localization with differential privacy to prevent MUs’ privacy leakage. The
first mechanism considers fixed reward for MUs and incomplete information, where each MU’s sensitivity
level of the data privacy is unknown to the crowdsourcing platform (CP). The interaction between MUs and
CP is formulated into a two-stage Stackelberg game to maximize MUs’ utility and CP’s profit. The second
mechanism jointly considers the variable reward for MUs and assumes CP knows each MUs’ sensitivity
level of the data privacy. A demand function is used to model the relationship among CP, MUs, and
service customer. The optimization problem of maximizing CP’s profit is studied to show the impact of
the price fluctuation. Comprehensive simulations are presented to evaluate the performance of the proposed
mechanisms and show some insights of the crowdsourced indoor localization incentive mechanism with
privacy protection.

INDEX TERMS Crowdsourcing, indoor localization, incentive mechanism, game theory, privacy protection.

I. INTRODUCTION
Localization can help people easily access to information
like navigation and product promotion in various indoor
environments such as shopping malls, airport terminals,
and railway stations, and has drawn great attentions from
both industry and academia. Yassin et al. surveyed various
indoor positioning techniques and discussed different indoor
localization-based applications with the challenges in terms
of cost, security and accuracy [1]. In particular, most existing
approaches adopt Received Signal Strength indicator (RSSI)
fingerprinting for location determination [2]–[4], where the
RSSI fingerprinting records the RSSIs of the access points
at each known location. Without requiring installation of
additional positioning infrastructures in indoor environments,
RSSI fingerprinting based indoor localization can be easily
implemented and hence is widely used.

However, it is time-consuming to conduct a site survey
in order to build the fingerprinting database for the indoor
scenario. To reduce the effort of a manual calibration for the

site survey, especially in a multi-floor building, various kinds
of crowdsourcing-based indoor localization methodologies
have been successfully applied [5], [6]. These approaches
leverage the data collected by mobile devices’ embedded
sensors to obtain users’ trajectory or indoor traces. Then these
collected data is merged into the database of the RSSI fin-
gerprinting for position inquires. These crowdsourcing-based
indoor localization methodologies successfully collect suf-
ficient RSSI data and provide good performances compar-
ing with other ways to reduce the fingerprint construction
cost such as constructing fingerprinting using amplitude fea-
ture deep convolutional generative adversarial network and a
small amount of collected data [7].

To address these challenges, the recent active researches
focus on the crowdsourced data collected by mobile devices
to construct a floor plan and achieve indoor positioning.
For example, the indoor movement records or activities con-
tributed by a large amount of mobile users (MUs) were uti-
lized to specifically depict the interior layout of a building and
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construct a fingerprint database [8]. Zhou et al. [9] mapped
MUs’ crowdsourcing activities collected by smartphones sen-
sors into an indoor map by using a pose graph optimization
algorithm.

The success of these aforementioned crowdsourcing-based
indoor localization systems heavily depends on MUs’ sens-
ing data, i.e. without adequate MUs’ participations, it is
impossible to obtain a good performance. The inherent prob-
lem then becomes how to motivate MUs to participate and
the studies for incentive mechanism design attract great
attentions [10], [11].

When MUs participate to help contribute the trajec-
tory or indoor traces, plenty of valuable sensing data may
include individuals’ sensitive information (e.g. identity, loca-
tion information, activity trace and so on), and this may cause
unexpected privacy leakage [12]. For example, by integrating
users’ sensed indoor movement records, it is possible to infer
which restaurants or shops a specificMU visits and thus some
improper advertisements or promotion information may be
marketed to this user. Hence, many researchers concentrate
on the issue of the individual’s privacy protection and attempt
to adopt anonymization techniques to conceal sensitive infor-
mation so that personal privacy can be protected. For instance,
differential privacy is one state-of-the-art approach that can
be utilized to prevent the leakage of users’ indoor locations
during the process of data integration [13].

The privacy issue also affects the incentive mechanism
design. As far as the authors understand, however, existing
incentive mechanisms with privacy considerations mainly
focus on economical objectives such as utility maximization
and truthfulness. These schemes lack good performance and
do not consider the features of indoor localization.

This paper would like to address the aforementioned issues
and help attract more users’ participation in the preven-
tion of MUs’ privacy leakage. With fixed/variable reward
offered to MUs and incomplete/complete information of
MU’s sensitivity level of the data privacy (we use user
type to denote this in this paper), two incentive mechanisms
for crowdsourcing-based indoor localization are proposed.
Specifically, when eachMU’s precise user type is unknown to
the crowdsourcing platform (CP) and with fixed total rewards
paid to the MUs, the designed incentive mechanism defines
the trajectory utility with privacy protection, and formulates
the interaction between MUs and CP as a two-stage Stack-
elberg game [14] with the aim to maximize CP’s profit and
MUs’ utility. When the CP knows each MU’s user type,
CP uses variable reward to further attract MUs’ participation,
the designed incentive mechanism uses a demand function
to model the interaction between CP and service customers
(SCs). The optimization problem of CP’s profit is studied to
show the impact of the price fluctuation. Extensive simula-
tions are conducted to evaluate the performance of the pro-
posed incentive mechanisms and show some design insights
of the crowdsourced indoor localization incentive mechanism
with privacy protection. To the best of our knowledge, this is
the very first time to design incentive mechanisms to collect

MUs’ sensed trajectory for indoor localization with privacy
preservation.

The rest of this paper is organized as follows. The related
schemes are summarized in Section II. Section III describes
and analyzes the incentive mechanism with fixed reward and
incomplete user type information. In Section IV, we repre-
sent the incentive mechanism based on variable reward and
complete information of user’ sensitivity of data privacy.
Simulations are conducted to evaluate the performance and
the results are shown in Section V. Finally, Section VI makes
a conclusion of this article.

II. RELATED WORK
Wi-Fi fingerprinting-based indoor localization methods have
become prevalent in recent years since they do not need
to deploy extra infrastructure. However, these existing solu-
tions are hindered by the requirements of manual efforts
to collect RSSI data from known locations to create a
radio map. Thanks to the rapid development of hardware,
state-of-the-art mobile devices have good communicating
and sensing abilities. Equipped with various built-in sen-
sors, mobile devices play an important role in connecting
humans and environment, which can be used to collect
RSSI data and the inertial data such as the acceleration,
turning.

On the other hand, crowdsourcing as a new paradigm is
firstly used in economic area, where a complicate task is com-
pleted through recruiting a large amount of workers. Then,
inspired by this, many crowdsourcing applications have been
developed to achieve a wide variety of services, and the
results critically depend onMUs’ participation [15], [16]. For
example, since lane-based road network information plays a
critical role in the intelligent transportation, based on crowd-
sourcing data collected by various vehicles, Tang et al. [17]
presented a method called as ‘‘CLRIC’’ to extract detailed
lane structure of roads, which can be used to assist reliable
and safe driving.

Motivated by these observations, lots of researchers make
use of crowdsourced data measured by mobile devices to cre-
ate the radio map, and then determine the location. For exam-
ple, a crowdsourcing-based indoor location system denoted
as ‘‘Zee’’ [18] utilized the mobile phones carried by users in
normal course to enable crowdsourcing of location-annotated
Wi-Fi measurements in indoor environment. Wu et al. [19]
investigated novel sensors integrated in smartphones and
leveraged users’ motion to construct the radio map for a
known floor plan.

However, these mentioned methods mainly depend on
users’ voluntary participation and in general, users are unwill-
ing to participate, as participating in a task will experience
extra operational costs such as the comsumption of battery
power, computing power, communication cost and so on.
Hence, how to design a suitable incentive mechanism to
motivate mobile users (MUs) can help improve the crowd-
sourcing accuracy [20], promote its applications and draw
much efforts to study this topic. For instance, Yang et al. [21]
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proposed the crowdsourcer-centric model based on game
theory, and the user-centric model based on reverse auction to
motivate smartphone users to participate in the crowdsensing
task. Xu and Low [22] presented the Vickrey-Clarke-Groves
mechanism for wholesale electricity markets and its result
demonstrated that the proposed mechanism can achieve a
good performance under higher electricity prices. To con-
tinuously motivate users, a crowdsourcing tournament was
designed to achieve winner ranking [23].

Many of existing proposed incentive mechanisms for
crowdsourcing-based applications are aware of users’ loca-
tions, which can incur the leakage of users’ personal privacy.
To protect users’ privacy, various methods have been pro-
posed including k-anonymity [24], l-diversity [25] and dif-
ferential privacy [26]. While using k-anonymity, it is difficult
to determine the identity of individuals during the collection
of data set that contains personal information, and l-diversity
is suitable for background knowledge attacks. Without the
knowledge of an adversary, differential privacy protection
schemes can be used to prevent from being recognized from
the collected differentially-private data.

The incentive mechanism should also be studied jointly
with the privacy protection investigation. One typical
work is introduced by Wang et al. [27], who pro-
posed an auction-based incentive mechanism with location
privacy-preserving to stimulate workers to participate in
the tasks and behavior truthfully. However, this scheme is
more general and the features of indoor localization are not
captured.

For convenience, Table 1 lists frequently used notations in
this paper.

TABLE 1. Notations.

III. INCENTIVE MECHANISM WITH FIXED AWARD AND
INCOMPLETE USER PRIVACY INFORMATION
When users carry out usual indoor activities in the indoor
environment, trajectory sensed by users’ mobile devices can
be collected. Trajectory is a MU’s record that includes walk-
ing steps, sampled RSS readings and barometer data when a
MUwalks from a starting spot to an ending spot within a con-
sidered time slot T . Then, the tuple including walking steps,
RSSI sequence, barometer reading and time slot indicator
forms the MU’s trajectory vector. Based on the magnitude of
the accelerator records, the normalized auto-correlation based
step counting method utilized in [18] is adopted to calculate
walking step S. Meanwhile, the altitude changes of barometer
recorded by mobile devices can be used to recognize floor
transition among different floors in a building. These data
can be incorporated to construct the corresponding radiomap.
Then, indoor location-based services (LBS) such as indoor
tracking and navigation are provided to customers.

To attract more MUs to contribute indoor trajectory in
order to increase the localization accuracy, in this section,
a fixed reward based incentive mechanism with privacy
preservation is proposed. This system has N MUs, denoted
as a set 5 = {1, 2, . . . ,N }, and one CP as shown in Fig. 1.

FIGURE 1. The system illustration for the incentive mechanism with fixed
award and incomplete user privacy information.

To attract MUs’ involvement, CP firstly announces a task
that collects users’ indoor trajectory under a time slot T and
broadcasts a fixed reward R to MUs. Then, MUs will decide
whether or not to participate in the task. From the perspective
of CP, through integrating the trajectory data contributed by
MUs to build a radio map, CP can benefit from offering
location-based service for customers.

If MU i decides to take participation in the task, it can
receive a reward based on the length di of its trajectory
data (the unit of di is meter), where di is the product of
MU i’s walking steps S and step stride. However, due to
the differences in height and walking style, people usually
have different stride lengths. In practice, Rai et al. [18] found
that MUs generally exhibit up to ±10% variations for their
stride length within a single walk. Hence, to account for this
variation, we could use a distributed random variable which
is added to the stride length to capture the estimation error.
Meanwhile, to prevent MUs from receiving more reward by
faking their trajectory through the way called as ‘‘U-Turn’’
where a user just turns around a fixed point [28], we harness
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the heading value measured by digital compass equipped
with mobile phones and adopt the peak detection algorithm
studied in [29] to differentiate normal turn and U-Turn. Thus,
the extra length incurred by ‘‘U-Turn’’ can be effectively
eliminated, which is of great importance for MUs’ accurate
trajectory length.

Then, ε-differentially privacy [26] is utilized to prevent the
leakage of MUs’ privacy, and the following definitions are
given to illustrate ε-differentially privacy algorithm.
Definition 1 (γi-Adjacency): Two continuous trajectory

data Trai and Tra′i are γi-adjacency, if |Trai − Tra′i| ≤ γi,
where γi is the range of MUs’ trajectory data Trai.
Definition 2 (εi-Differential Privacy):A random algorithm
{r : R → R|r(Trai) = Trai + ηi} achieves εi-differential
privacy, if for all pairs of γi-adjacency data Trai and Tra′i, and
all possible outputs r satisfies (1):

log
Pr(r|Trai)
Pr(r|Tra′i)

≤ εi (1)

where εi ∈ [0, 1] is called privacy budget and ηi is the cal-
ibrated noise. According to the characteristic of differential
privacy, it is notable that a lower value of ε means stronger
privacy guarantee and a larger perturbation noise.

When adopting εi-differential privacy, both Trai and Tra′i
can result in outputs rwith certain probability. Hence, it is dif-
ficult for an attacker to distinguish MU i’s raw sensing trajec-
tory data with high confidence when observing r. Moreover,
although some encrypted approaches have been adopted,
the encrypted sensing trajectory data still may reveal MUs’
sensitive information, or ultimately disclose MUs’ identity
via de-anonymization attacks, which can incur MUs’ privacy
loss. Xu et al. [30] has demonstrated that MUs have differ-
ent privacy preferences. This paper uses the ε-differential
privacy.

If each MU’s privacy preference (the sensitivity of the
data privacy) is unknown to CP, it results in the incom-
plete information case, which means there exists information
asymmetry between MUs and CP. With the fixed reward,
MU i’s unit cost for privacy loss is denoted by τi ∈ 2,
where 2 = {θ1, θ2, ..., θk} is the set of MUs’ unit cost with
ε-differential privacy. Based on the knowledge of differential
privacy by (1), we can use the factor ε to characterize the
relationship between the expected utility of two neighboring
trajectory vectors. Similar to [31], we define the unit cost
for privacy loss as the difference between the raw trajec-
tory vector’s utility and the encrypted or perturbed trajectory
vector’s utility. This also can reflect how MUs care about
their privacy. Moreover, the knowledge of 2 can be learnt
from historical data. In this scheme, to address the issue of
information asymmetry, we make the following assumption
that the probability distribution of each type for MUs is
known to CP, i.e.,µj MUs belong to type θj. Therefore, MUs’
total number can be denoted as N =

∑
θj∈2

µj.
According to Definition 1, if the value of ε is smaller, more

noises are added toMUs’ raw sensing data and trajectory util-
ity decreases. Similar to [32], we propose an utility function

g(di, εi) as follows to describe the relationship between tra-
jectory utility and ε. It meets the following two requirements:
1) g(�) is proportional to ε so that ∂g(�)

∂ε
> 0 can be guaranteed;

2) g(�) is proportional to the length d of MUs’ trajectory.

g(di, εi) = [π1 − π2eπ3(1−εi)]di (2)

where π1 > 1 and π3 ∈ (0, ln π1
π2
] keep g(�) positive. Here,

we define π2 = π1−1 to denote that when there is no privacy
preservation measure is taken i,e., ε = 1, there should be
no utility loss for MUs. To better show the validity of (2) in
capturing the trajectory utility, here a simulation is conducted
by setting π1 = 1.2, π3 = 0.55, and the result is shown
in Fig. 2.

FIGURE 2. Impact of ε on trajectory utility.

From the results shown in Fig. 2, we can observe that
trajectory utility decreases when the value of ε increases,
and an increase in the length d can result in an increase in
trajectory utility.

Then, MU i’s utility function can be denoted as follows.
(1) MU i’s utility function:

UMU
i =

g(di, εi)∑
j∈5 g(dj, εj)

R− εiτidi (3)

where R is the fixed reward determined by CP, and τi ∈ 2
represents MUs’ unit cost for privacy loss.

MUs’ contributed data benefits the CP and based on the
previous work in [21], CP’s profit function can be written by
as follows:
(2) CP’s profit function:

UCP
= χ log(1+

∑
θj∈2

µj log(1+ dj))− R (4)

whereχ is a system parameter which denotes CP’s preference
on MUs’ contributed data. Here, the inner log function is uti-
lized to reflect CP’s diminishing return on the length; and the
outer log function is used to reflect CP’s diminishing return
on the number of MUs participating in the crowdsourcing.

In this incentive mechanism, we formulate the relationship
between MUs and CP as a Stackelberg game to maximize
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MUs’ utility and CP’s profit, where CP is the leader and
MUs are the followers. In this game, two-stages are included:
Stage I, the fixed reward R is announced by CP; Stage II,
MUs can achieve their own maximal utility by adjusting its
strategy d . Hence, both CP and MUs are players whereby the
strategy of CP is its reward.

As mentioned before, to deal with the information
asymmetry, we make an assumption that the crowdsourc-
ing platform has known the knowledge of the probability
distribution of MUs’ types in terms of the sensitivity of
data privacy. We analyze the formulated Stackelberg game
through backward introduction, and compute MU i’s Nash
Equilibrium (NE) strategy.

CP can achieve its maximal profit by using (4). The deriva-
tives of UMU

i with respect to di are computed in Stage II and
we have:

∂UMU
i

∂di
= −

(π1 − π2eπ3εi )(π1 − π2eπ3εj )diR(∑
j∈5(π1 − π2e

π3εj )dj
)2 − εiτi

+
(π1 − π2eπ3εi )R∑
j∈5(π1 − π2eπ3εi )dj

(5)

∂2UMU
i

∂d2i
= −

∑
j∈5−i (π1 − π2e

π3εj )2djR(∑
j∈5(π1 − π2e

π3εj )dj
)3

× 2(π1 − π2eπ3εi ) < 0 (6)

where 5−i denotes MUs’ set excluding MU i. According
to (6), MUs’ utility function is strictly concave in length di.
Hence, when given reward R > 0, MU i can achieve its

unique best response strategy, only if it has existed. When
setting the first derivative of UMU

i to 0, we can solve for di
can be calculated as follows:

di =
1

(π1 − π2eπ3εi )

√
R
∑

j∈5−i dj
τi

−

∑
j∈5−i

dj (7)

According to MUs’ different types, we can sort MUs’ unit
privacy loss cost τi by ascending order to ensure τi ≤ τ2 ≤
... ≤ τN . Meanwhile, by summing up (5) over MUs, we can
get: ∑

j∈5

(π1 − π2eπ3εj )dj =
(N − 1)R∑

j∈5 τj
(8)

Then, we substitute (8) into (5):

dNEi =
(N − 1)R∑

j∈5 τj(π1 − π2e
π3εj )

(
1−

(N − 1)τi∑
j∈5 τj

)
(9)

In Stage I, by integrating dNEi into (4), we have

UCP
= χ log

(
1+

∑
θj∈2

µj log(1+9jR)
)
− R (10)

where

9j =
(N − 1)∑

j∈5 τj(π1 − π2e
π3εj )

(
1−

(N − 1)τi∑
j∈5 τj

)
(11)

The second-order of UCP about R can be computed as
follows:

∂2UCP

∂R2
= −χ

∑
θj∈2

µj
92
i

(1+92
i R)

2

1+
∑
θj∈2

µj log(1+9jR)

−χ

(∑
θj∈2

µj
92
i

1+92
i R

)2
(
1+

∑
θj∈2

µj log(1+9jR)
)2 < 0 (12)

Thus, (12) demonstrates that CP’s profit function is strictly
concave with respect to R. We adopt Newton’s method [33]
to obtain the optimal reward R∗. The first-order of UCP with
respect to R is computed:

∂UCP

∂R
= χ

∑
θj∈2

µj
9j

1+9jR

1+
∑
θj∈2

µj log(1+9jR)
− 1 (13)

For convenience, we set G(R) = UCP(R) and the steps are
denoted as follows:

Algorithm 1 Algorithm: Newton’s Method
given start point R0, and tolerance η > 0.
repeat
1. Compute the Newton step and decrement.a
Rkt = −

`2G(R)−1; ε2 := ∇G(R)T∇2G(R)−1∇G(R)
where

`
G(R) = ∂G(R)

∂R and
`2 G(R) = ∂2 G(R)

∂R2

2. Stopping criterion. quit if ε2 ≤ η.
3. Line search. Choose step size t by backtracking line
search.
4. Update. R := R+ t

a
Rkt

IV. INCENTIVE MECHANISM WITH VARIABLE AWARD
AND COMPLETE USER PRIVACY SENSITIVITY
INFORMATION
Section III formulates the interaction between MUs and CP
as a noncooperative game, where each MU competes for
the fixed reward. When selling service to service customers
(SCs), the price to purchase sensing data from MUs will be
affected by the service price decision. In this section, to study
the price influence, an incentive mechanism with variable
award and complete user privacy sensitivity information is
proposed and the framework is shown in Fig. 3.

FIGURE 3. Framework illustration of the incentive mechanism with
variable award and complete user privacy sensitivity information.

Given there are different options of ε, CP provides a price
menu for MUs to make the best choice. Here, the complete
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information scenario is taken into account, where each MU’s
precise type in terms of the sensitivity to the data privacy is
known to CP. Similar to [30], we make an assumption that CP
is trusted.

We assume that MU’s unit cost θ for privacy loss is uni-
formly distributed over the interval [θ, θ ] where θ and θ
are the lower bound and upper bound of MUs’ unit cost
θ incurred by privacy loss, respectively. Similarly, we only
consider MUs’ unit cost incurred by privacy loss and other
type of costs like sensing cost can be incorporated in this
paper with some modifications. The utility of MU i is given
by the reward from CP minus the cost incurred by privacy
loss:

UMU
i = p− εθi (14)

where p is the price for purchasing trajectory data from MUs
and it is a variable determined by CP. θi represents MU i’s
unit cost for the loss of privacy.

As to the SCs, increasing the service selling price q
decreases SCs’ willingness to use the service. On the other
hand, increasing p attracts more MUs to contribute the tra-
jectory data, this results in higher service quality and more
SCs are willing to buy service. To reflect this, we utilize the
linear demand function [34] to formulate this relationship as
follows:

Q = Q0 + V (p)− βq (15)

where Q > 0 denotes quantity of service subscribed by
SCs and Q0 is the basic service demand. The mid term
V (p) represents positive externality and denotes the impact of
buying price p. This positive externality satisfies the follow-
ing requirements that the first-order derivative of V (p) with
respect to p is nonnegative and the the second-order derivative
of V (p) with respect to p is zero. β > 0 is the slope of
the demand curve, which shows the impact of price q on the
demand. Then, CP’s profit can be denoted as follows:

UCP
= Qqδ log(1+

∑
i∈�

log(1+ di))−
∑
i∈�

p (16)

where� denotes the set of MUs whose utility is nonnegative
and its number is denoted as ω. δ is CP’s preference on
MUs’ trajectory data. The inner function log reflects the CP’s
diminishing return on MUs’ trajectory data, and the outer
log function reflects CP’s diminishing return on participating
MUs.

CP’s profit maximization problem can be derived by using
following equation:

max
p,q

(UCP)

p > 0

q > 0

ε ∈ [0, 1] (17)

Given the buying price p, according to (14), the num-
ber of MUs ω who sell data to CP can be calculated as

follows:

ω(p) =
N∑
i=1

1p−εθi>0 (18)

where N is the number of potential MUs, and 1p−εθi>0 is the
indicator function that returns 1 if MU i’s utility is greater
than 0.

In this scheme, a basic model V (p) = αp is used to denote
the positive externality, where α is nonnegative. By merging
(15) and (18) into CP’s profit function (16), we have:

UCP
= [Q0 + αp− βq]qδ log(1+

ω(p)∑
i=1

log(1+ di))− ω(p)p

(19)

The derivatives of UCP with respect to q can be computed:

∂UCP

∂q
= [Q0 + αp− 2βq]δ log(1+

ω(p)∑
i=1

log(1+ di))

(20)

∂2UCP

∂q2
= −2βδ log(1+

ω(p)∑
i=1

log(1+ di)) < 0 (21)

Since the second-order derivative of UCP with respect to
q is negative, UCP is strictly concave in q. Moreover, in the
next section, the numerical method is adopted to verify the
concavity of UCP in p and q.
We also study a special case to illustrate the concavity of

CP’s profit in p and q. In this case, we assume MUs’ unit cost
θ follows a uniform distribution, then ω(p) = NP

ε(θ−θ)
when

P
ε(θ−θ)

< θ , and its derivatives with respect to p satisfy that

ω′(p) = k1 > 0 where k1 = N
ε(θ−θ)

and ω′′(p) = 0. MUs are
willing to contribute the trajectory when the price p increases,
and this results in longer trajectory length. Here, we use the
following equation to derive the relationship between the
buying price p and the trajectory length:

di = d0(eηip − 1) (22)

where d0 is the basis trajectory length that can be obtained
from MUs’ historical data and ηi ∈ (0, 1) denotes MUs’
heterogenous preferences of the buying price p on trajectory
where

∑
i∈� ηi = 1.

For ease of exposition, we set G(p, di) = log(1 +∑ω(p)
i=1 log(1 + di)). Because of 1 + di � 1, we can have

G(p, di) = log(1 +
∑ω(p)

i=1 log di). Combining with (22),
we can know that G(p, di) = log[1 +

∑ω(p)
i=1 log(d0eηip −

d0)]. Then, by approximating
∑ω(p)

i=1 log(d0eηip − d0) to∑ω(p)
i=1 (log d0 + log eηip), the derivatives of G(p, di) with

respect to p can be computed as follows:

∂G(p, di)
∂p

=
k2

1+ k2p
(23)

VOLUME 6, 2018 54047



W. Li et al.: Incentive Mechanism Design for Crowdsourcing-Based Indoor Localization

where k2 = 1+ k1 log(d0)

∂G2(p, di)
∂p2

=
−k22

(1+ k2p)2
(24)

The derivatives of UCP with respect to p can be calculated:

∂UCP

∂p
= αqδ log(1+ k2p)+ [Q0 + αp− βq]qδ

k2
1+ k2p

− 2k1p (25)
∂2UCP

∂p2
= 2αqδ

k2
1+ k2p

+ [Q0 + αp− βq]qδ
−k22

(1+ k2p)2

− 2k1 (26)

From (26), we can note that when given the price p > 0,
the second-derivative of UCP < 0, and UCP is concave in p.
When setting ∂UCP

∂q = 0 and ∂UCP

∂p = 0, we can obtain the
solution (p∗, q∗).

V. SIMULATIONS
Comprehensive simulations are presented to evaluate the per-
formance of our proposed mechanisms and to show some
insights of the crowdsourced indoor localization incentive
mechanismwith privacy protection. The simulation setup and
results are introduced in this section.

A. INCENTIVE MECHANISM WITH FIXED AWARD AND
INCOMPLETE USER PRIVACY INFORMATION
We vary MUs’ number N from 100 to 1000 with the incre-
ment of 100, and set the value range of unit cost τ to ∈
[1, 10]($ · m−1). Here, the symbol $ denotes Unite States
dollar. Meanwhile, the value of CP’s preference χ on MUs’
contributed data is set to 10$. For convenience, the simulation
settings are listed in Table 2.

TABLE 2. Simulation settings.

The platform-centric mechanism studied in [21] models
the interaction between users and the platform as a game,
where a fixed reward is adopted. But it ignores the impact
of privacy. Here, this mechanism is served as a benchmark.
To verify the performance of our proposed fixed reward based
mechanism, comparison simulations are conducted, where
we fixed τmax = 10$ and the results are shown as follows:

Fig. 4 shows the impact ofMUs’ number on CP’s profit and
we can observe that the platform’s profit obviously demon-
strates diminishing marginal returns as the number of MUs
increases. Meanwhile, when keeping MUs’ number constant,
CP’s profit of our proposed scheme is higher than that of the
platform-centric mechanism. The simulation result shows the
superiority over the platform-centric mechanism. The impact

FIGURE 4. Impact of N on CP’s profit.

FIGURE 5. Impact of N on R∗.

of MUs’ number on the optimal reward R∗ is shown in Fig. 5.
Compared with the platform-centric mechanism without pri-
vacy protection, it is notable that our proposed mechanism
with privacy protection can achieve a better performance due
to the designed mechanism and consideration of the privacy
protection.

In order to show the impact of MUs’ unit cost for privacy
loss on CP’s profit, MUs’ number N is fixed at 1000. Based
on the analytics presented in Section III, we know that differ-
ent value ofMUs’ unit cost τ actually presentsMUs’ different
types. FromFig. 6, we can see that CP’s profit decreases when
the range of unit cost τ for MUs’ privacy loss becomes larger,
which also denotes that MUs’ types become more diverse.

Fig. 7 shows the impact of MUs’ unit cost τ on the optimal
reward R∗. We can observe that as the value of MUs unit cost
τ increases, the optimal reward R∗ decreases severely.We can
also observe that the optimal reward’s value in our proposed
mechanism has a lower decreasing rate.

B. INCENTIVE MECHANISM WITH VARIABLE AWARD AND
COMPLETE USER PRIVACY SENSITIVITY INFORMATION
We also conduct simulation for the incentive mechanism
with variable award and complete user privacy sensitivity
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FIGURE 6. Impact of τ on CP’s profit.

FIGURE 7. Impact of τ on R∗.

information. For convenience, the notations and simulation
parameters are shown in Table 3.

Fig. 8 shows CP’s profit defined in (16) under varied buy-
ing price p and service price q.We can observe that CP’s profit
is strictly concave in p and q. In this case, a low buying price p
will lead to fewer MUs who want to sell data, and CP can not
charge a higher service price for SCs. Due to the existence

TABLE 3. Simulation parameters.

FIGURE 8. CP’s profit.

FIGURE 9. Impact of N on CP’s profit.

of Q0, CP still can gain some profit. If CP determines a too
high buying price p, more MUs participate in contributing
data. Although the quality of service can improve, the pay-
ment to MUs increases and CP’s profit plunges. Similarly,
when charging a low service price q, the revenue from SCs is
small. If q is high, according to the defined demand function,
fewer SCs will buy the service, As a result, CP’s profit will
tumble.

Then we study the impact of potential number of MUs.
Here, we fix MUs’ total number as N = 500, N = 1000 and
N = 1500. The simulation results are shown in Fig. 9.
From Fig. 9, we can observe that the increasing price

p attracts more MUs’ participation, which increases CP’s
profit. When the price p is too high, CP’s cost incurred by
paying to MUs decreases the profit. Meanwhile, with a same
price p, since MUs’ total number N increases, CP’s cost
increases and the profit plunges. Fig. 10 shows how the tuple
(α, β) affects CP’s profit. As shown in Fig. 10, on the one
hand, CP can obtain the maximal profit since the price p
increases; on the other hand, if given same p, CP can gain
a higher profit when α is larger than β. Generally speaking,
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FIGURE 10. Impact of (α, β) on CP’s profit.

the number of participating MUs is decided by the same data
selling price, althoughMUs are heterogenous incurred by dif-
ferent unit cost for privacy loss. According to the function of
the defined service demand, we know that the impact of data
buying price p and service subscription price q are denoted by
α and β, respectively. Hence, the increasing α can increase
the service demand, CP can make higher profit. Similarly,
when β decreases, larger service demand can achieve, higher
profit CP can obtain.

VI. CONCLUSION
This paper studied the crowdsourced indoor localization
incentive mechanism with privacy protection, and proposed
two incentive mechanisms to stimulate MUs to contribute
indoor trajectory data. The first mechanism considered fixed
reward and incomplete information where each MU’s sen-
sitivity level of the data privacy was unknown to CP. The
interaction between MUs and CP was formulated into a
two-stage Stackelberg game to maximize MUs’ utility and
CP’s profit. The second mechanism jointly considered the
variable reward and assumed CP knew each MUs’ sensitivity
level of the data privacy. A demand function was used to
model the relationship among CP, MUs and SCs. The opti-
mization problem of CP’s profit was studied to show the
impact of the price fluctuation. Extensive simulations were
conducted to demonstrate the performance of our proposed
mechanisms.
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