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ABSTRACT Accurately evaluating channel state information (CSI) is an extremely important precondition
for wireless communication to effectively obtain exact sending data. In order to fast obtain CSI, channel
prediction tends to get its popularity in obtaining CSI as a result of the advantages of lightweight calculation
and negligible feedback delay. In this paper, a jointly optimized extreme learning machine (JOELM) is
proposed for the short-term prediction of fading channel. The JOELM scheme consists of two key steps:
intelligent optimization and targeted repair. First, in order to gain high prediction accuracy, the firefly
algorithm is imported to intelligently optimize the traditional extreme learning machine. Second, the
Savitzky–Golay filter is innovatively adopted for reducing potential prediction errors. Extensive experiments
about computational complexity, influences of repair coefficient and weight coefficient, contributing degree
of two key steps, amplitude, transmission bit/symbol error rates, root-mean-square errors, and four typical
statistical properties are given in final simulation section. The analyzed results indicate that the proposed
JOELM can more accurately and efficiently deal with the short-term prediction of fading channel.

INDEX TERMS Fading channel, short-term prediction, channel state information (CSI), extreme learning
machine (ELM).

I. INTRODUCTION
In wireless communication, fading is variation of a signal
with various variables since barriers exist ubiquitously in
transmitting path. This phenomenon of strength attenuation
of wireless signal is called channel fading, which is divided
into long-term (slow) fading and short-term (fast) fading [1].
The former mainly pertains to power average attenuation
caused by environmental profile, while the latter is mainly
caused bymultipath reflections. Think of there were no noise,
fast fluctuation of the receiving signal is inevitably due to the
existence of time-variant multipath effects. Besides, different
attenuations and the random nature of the signal potentially
lead to inter-symbol interferences [2]. Short-term fading thus
receive more attention for its great importance in obtaining
channel state information (CSI), so as to evaluate the perfor-
mance of wireless communication systems.

Traditionally, CSI in short-term fading can be estimated by
adaptive estimation algorithms, and CSI also can be traced
when system parameters of CSI vary [3]. However, they are
also reported to be suffered with computational complexity

and unavoidable feedback delay [4]. Short-term prediction
of fading channel emerges as the times require. Due to
acceptable complexity and lower feedback delay, it has been
applied to analyze CSI in wireless communication. Some
preliminary studies have been done to build short-term pre-
diction methods of fading channel. Mainly based on the
regressing calculation, Eyceoz et al. [5] proposed an autore-
gressive (AR) algorithm to describe (also predict) channel
characteristics. Inspired by AR scheme, Sharma and Chandra
built an improved second-order autoregressive (AR-2) to
predict CSI [6]. However, the accumulated prediction errors
in iteration process limit its applications to some extent [7].
Another technology roadmap of channel prediction is
mainly based on nonlinear transformation. Support vector
machine (SVM) was successfully applied on path loss pre-
diction in airplane cabin scenarios. The simulation results
indicate that higher prediction accuracy was achieved than
those of conventional curve fitting methods [8]. Further,
a hybrid channel prediction method based on SVM and
recurrent least squares was proposed, then fading channel
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samples in one-dimensional time domain could be mapped to
high dimension by embedding phase space (EPS) theory [9].
Just one year later, Xiang et al. [10] found that random
characteristic of fading channel was similar to chaos in
some respects. Hence, a combinational short-term predictor
of fading channel was established based on EPS and chaos
theory. But it is difficult to determine the optimal dimension
and specific delay for EPS, especially when encountering
various complex scenarios. In recent report [4], echo state
network (ESN) was first applied to short-term prediction in
Ricean fading scenarios, performing better simulation results
than those of conventional AR- or SVM-based methods. The
aforementioned method needs to handle a common issue,
that several key parameters (i.e., size of internal reservoir,
sparse degree in internal reservoir, et al.) should be carefully
determined by repeated training or only by empirics [11].

Compared with the conventional neural networks, extreme
learning machine (ELM) exhibits faster learning speed and
higher convergence precision, due to its special single hidden
layer feed-forward structure [12]. Consequently, ELM is
widely applied to solve regression and classification issues
in various areas, such as electric power system [13], distri-
bution grid [14] and visual image [15]. There are already
some preliminary research reports in the field of wireless
communication. ELM has been used for path loss analysis in
complex fading environment [16] and outdoor propagation
scenarios [17]. It is worth mentioning that, experimental
results produced in [17] indicate ELM outperformed BPNN,
Okumura–Hata, and COST-231 algorithms. Nevertheless,
the room for ELM-based channel prediction is still large,
further theoretical and empirical studies for wireless com-
munication are required.

In this paper, a jointly optimized extreme learning machine
(JOELM) is proposed for short-term prediction of fading
channel. The main contributions are as follows.

1) A swarm intelligent optimization algorithm, firefly
algorithm (FA) is imported to enhance the tradi-
tional ELM. Then the random generation procedure
of weights and biases is replaced by parameter opti-
mization procedure. Hence, more accurate and efficient
prediction can be achieved.

2) The Savitzky-Golay (S-G) filter is innovatively
adopted for reducing potential prediction errors.
Predicted channel data are carefully estimated by
S-G filter, the detected abnormal data are repaired in
targeted manner.

3) Extensive evaluations (i.e., computational complexity,
influences of coefficients, contributing degree of opti-
mization step and repair step, amplitude, transmis-
sion bit/symbol error rates, root mean square errors
(RMSEs) and four typical statistical properties) are
carried out and discussed.

The structure of this paper is as follows. In section II, basic
theories of Rayleigh channel are described briefly. Section III
outlines JOELM from two perspectives, intelligent opti-
mization and targeted repair. In section IV, simulations and

discussions are presented in detail. Finally, section V
concludes this paper.

II. CHANNEL MODEL
Using the classic Rayleigh channel as an example, a basic
channel model is introduced briefly in this section.

Due to the multipath effect, the receiving signals are super-
posed by envelope signals with various delays, and local fast
fading exists. Therefore, a channel is modeled as follows:

R(t) = h(t)S(t)+ λ-(t) (1)

where R(t), h(t) and S(t) are the receiving signal, the channel
parameters and the transmitting signal, respectively. λ-(t) is
added white Gaussian noise (AWGN). In the classic Rayleigh
Jakes model, h(t) is modeled for low-pass fading in a statisti-
cal process, which can be defined by

h(t) =
9∑
ς=1

0ςej(2π fς t+ϑς ) (2)

where ς is the transmitting path index number, 9 is the total
transmitting path number, 0ς is the amplitude of the channel
and ϑς is the phase angle. fς is the Doppler frequency shift,
which is determined by the relative velocity V of the wireless
signals’ receiver with a transmitter, that is,

fς =
V
C
fd cosφ (3)

where C is the transmitting speed of the electromagnetic
wave, fd is the maximum Doppler frequency shift. φ is the
angle calculated by the straight-line distance Ds and vertical
distance Din from transmitter to receiver in Fig. 1.

FIGURE 1. Figure for calculation of cosφ.

For a Rayleigh channel, the probability density func-
tion (PDF) is

f (z) =
z
$
e−

z2

2$2 , z ≥ 0 (4)

and the cumulative distribution function (CDF) is

F(z) = 1− e−
z2

2$2 (5)

where $ 2 is the power of the scatter components in a
Rayleigh channel.
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III. THE PREDICTOR OF SHORT-TERM FADING
CHANNEL BASED ON JOELM
In this section, the short-term predictor of fading channel,
JOELM, is introduced in detail from two steps: intelligence
optimization and targeted repair. First, the traditional ELM is
optimized by the swarm intelligence algorithm FA to obtain
the optimal weights and biases. Then, the predicted data of
optimal ELM is estimated by the S-G filter and repaired by
the repair strategy, which further improves the performance
of the prediction mechanism and reduces prediction errors.

A. INTELLIGENT OPTIMIZATION
As an effective and simple machine learning tool, ELM
exhibits excellent advantages over traditional neural net-
works. The ELM algorithm has some special features, such
as a simple structure, high learning speed and satisfactory
convergence precision. As shown in Fig. 2, the typical struc-
ture is a single hidden layer feed forward structure. Hence,
output weights are obtained by random initial input weights
and biases.

FIGURE 2. Typical structure of ELM.

Therefore, the corresponding expression is

Hβ = Y (6)

where H , β and Y are given by

H =

 g(µ1, ν1, x1)g(µ2, ν2, x1) . . . g(µL , νL , x1)
...

g(µ1, ν1, xo)g(µ2, ν2, xo) . . . g(µL , νL , xo)


o×L

β =

 β1...
βL


L×1

, Y =

 y1...
yo


o×1

where (X,Y ) are theN input data and the output data of ELM
with X ∈ Ro×N and Y ∈ Ro×1. H , β and Y are the output of
the hidden layer, the output weights and the output of ELM,
respectively. o and L are the dimension of input data and the
neurons number in hidden layer. µ ∈ RN×L , ν ∈ Ro×L and
β ∈ RL×1 are input weights, biases and output weights.

It is noted that µ and ν are commonly assigned randomly,
and once they are chosen, output weights are confirmed
by (6).

However, the random method of generating input weights
and biases limits the accuracy of prediction and regres-
sion fitting in traditional ELM. To address this drawback,
the FA is motivated to be imported for handling the param-
eter optimization of its weights and biases. It is noted that
the intelligent optimization can be implemented offline to
reduce computation complexity and can be applied in various
scenarios with new optimization processes.

Inspired by swarming of fireflies in summer, FA arrived
in 2008 [18], and then becomes a typical biological swarm
intelligent algorithm. It has continuously drawn increas-
ing attention in various fields, such as multi-objective
optimization [19], image processing [20] and optimization
control [21].

The algorithm is presented by the following expressions:

ϕi(t + 1) = ϕi(t)+ τ (ϕj(t)− ϕi(t))+ α(rand −
1
2
) (7)

ζ = ζo × e−γ rij , τ = τo × e
−γ r2ij (8)

where ϕi(t) is the spatial vector of the ith firefly in the tth
iteration. In addition, ζ and τ are the lightness and attraction
of the firefly. α and rand are a random coefficient and a
random value in (0,1).

According to the explanations above, the state H of the
hidden layer and the ELM predictor are conformed when
only input weights and biases are confirmed. Hence, to obtain
an optimal short-term predictor, the FA is used to optimize
the input weights and biases in ELM. Hence, the intelligent
optimization and prediction are shown in Fig. 3. According to
(6), N samples in time t are regarded as input data of ELM,
and the output data y are defined as h((t+N+1)Ts). Therefore,
we can obtain a series sample data as follows:{

x(t) = [h(tTs), h((t + 1)Ts), . . . , h((t + N )Ts)]T

y(t) = h((t + N1)Ts)
(9)

where t ∈ {1, 2, . . . ,NT } and NT is the total number of
samples using the equation above. Then, the sample data are
divided into two parts, the training sample data xc and the
testing sample data xs, and the ELM is constructed using
those data.

Hence, the intelligent optimization and prediction pro-
cesses are as follows:
Initialization:
Step 1: Obtain the training data xc and the testing data xs.
Step 2: Initialize the parameters of ELM, such as the num-

ber neurons in the input layer N and the number of neurons
in the hidden layer L. It is noted that the number of neurons
in the input layer N is same as in (9).

Step 3: Initialize related parameters of FA, such as the
firefly size }, the spatial dimension of fireflies D, the max-
imum number of iterations n, the random coefficient α and
the reference accuracy ε, and generate and update the spatial
vectors of all firefliesX(µ, ν). Note that the spatial dimension
of fireflies D is calculated by

D = N ∗ L + L (10)
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FIGURE 3. Intelligent optimization and prediction in proposed JOELM.

Optimization
Step 4:Calculate the lightness and attraction of all fireflies

using (8).
Step 5: Calculate the output training samples ŷ according

to (6).
Step 6: Obtain the root mean squared error (RMSE) by

RMSE =

√√√√1
o

o∑
i=1

(ŷi − yi)2, i = (1, 2, . . . , o) (11)

where o is the length of the output training samples.
Step 7: Update the global optimal firefly.
Convergence
Step 8: Determine whether the current iteration T is equal

to the maximum iterations n, and determine whether the
current RMSE value r is equal to or less than the defined
convergence precisionε. If so, output optimal weights µopt
and biases νopt , or T = T + 1, and go back toStep 3.

Step 9: Construct ELM with optimal weights µopt and
biases νopt , and verify the algorithm’s performance using the
testing samples xs.

B. TARGETED REPAIR
Because prediction errors are unavoidable, approaches to
minimize them are considered. In order to further improve
the performance, a repair mechanism based on S-G filter is
employed to repair the output data of ELM.

Proposed by Savitzky and Golay in 1964, S-G filter has
been widely applied for data denoising. Due to its use of

polynomial least squares fitting for local data, the filter
requires less computation and achieves better performance.

Assuming that the interval of the abscissa in the data is
homogeneous, defined as1ζ , and there are nr data to the left
of χi and, similarly, nl data to the right of χi, the fitting value
is

χ̂i =

k∑
j=0

bj(
χ − χi

1χ
)j (12)

where k = nl + nr . Therefore, assuming that an optimal bj
exists, such that

min
i+nr∑
j=i−nl

[pi(χj)− tj]2→ 0 (13)

then A, B and T are defined as follows:

A =



−nkl · · · −nl · · · 1
...

0 · · · 0 · · · 1
...

nkr · · · nr · · · 1

 ∈ R
(nr+nl+1)

B =


bk
...

b1
b0

 ∈ R(k+1), T =



tj−ni
...

tj
...

tj+nr

 ∈ R
(nl+nr+1) (14)
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Therefore, we can obtain ATAB = ATT . that is,

min
i+nr∑
j=i−nl

[pi(xj)− tj]2 = min ‖AB− T‖ (15)

Assuming that the equation above is optimal,AB = T . that
is,ATAB = ATT . Based on the positive definite matrixATA,
it follows that

B = (ATA)−1ATT (16)

Finally, the estimated value is

T estimate = A(ATA)−1ATT (17)

In JOELM, the targeted repair includes four key steps:
initialization, preprocessing, detection and processing for
abnormal prediction channel data and updating data in Fig. 4.
Based on the explanations and introductions above, the
targeted repair is followed.

FIGURE 4. The flow chart of targeted repair in proposed JOELM.

Initialization:
Step 1: Obtain predicted data ŷ from the modified ELM.
Step 2: Initialize related repair parameters, such as the

upper threshold value υu and the inferior threshold value υi
in the preprocessing part. Initialize the sampling window

length l, the reference repair mean square error σ , and the
maximum number of repairing iterations ℵ.
Step 3: Obtain the window samples ŷwin(t), t ∈

(1, 2, 3, . . . , I ), where t contributes the window sampling
number and I is the maximum sample number. Note that,
here, t is different from its counterpart in the prediction
algorithm due to the different meaning in each context, and
the maximum sample window number I is determined by the
sampling window length l and the obtained prediction data ŷ
from the modified ELM. that is,

I = 8[
ŷ
l
]

where 8[•] is the rounding function.
Preprocessing:
Step 4:Determine whether the number of samples is

greater than the upper threshold value υu or less than the
inferior threshold value υi. If so, replace the values υu and υi
accordingly. Conspicuous abnormal predicted channel sam-
ples can be preprocessed in this way.
Detection and processing:
Step 5:Calculate the estimated window samples ŷwinesti

by S-G filter using (17). Because local fitting samples are
calculated by partial least squares, a smooth curve can also
be obtained.

Step 6: Determine whether the current window is equal to
the maximum I . If not, t = t + 1, and go back to Step 3.

Step 7: Obtain the estimated prediction samples ŷesti.
Step 8: Detect abnormal values.
Because local fitting samples are calculated by partial least

squares in (17), a smooth curve can also be obtained. Hence,
to detect abnormal values, detection errors can be calculated
by

1 =

∣∣ŷesti − ŷ∣∣
ŷ

(18)

If some sample errors exceed the standard error, they are
regarded as abnormal samples and will be repaired in the next
process. The error standard 4 is an empirical value and can
be calculated by

4 =
κ

ln(ŷ+ e)
(19)

where κ is the repair coefficient in [0.2,0.67]. Obviously,
with the decrease in κ , the error standard 4 decreases corre-
spondingly.

Step 9:Repair the abnormal values. When abnormal values
are identified in Step 7, they are repaired in the next pro-
cess using the repair strategy. Hence, the repair strategy is
followed by

ỹ(k) = λy(k)+ (1− λ)
y(k − 1)+ y(k + 1)

2
(20)

where ỹ(k) is the repair value of the kth sample, k ∈
(2, 3, . . . , l ∗ I ) and λ is the weight coefficient in [0.2,0.91].
Therefore, the repaired samples are the sum of the sample’s
original value and the average value of its nearby samples.
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In addition, when proper and more training samples xc are
available, the reliability of the original value is higher and the
weight of the coefficient λ is greater. Note that only abnormal
prediction samples are repaired by the repair strategy, and
normal prediction samples are reserved.

Step 10: Update the predicted channel samples ŷrepair .
Step 11:Calculate abnormal rate P in the current jth repair

process.
Step 12: Determine whether P is less than or equal to the

reference error σ or whether the current repair number j is less
than or equal to the maximum ℵ. If not, i = 1 and j = j+ 1,
and return to Step 3. Note that the abnormal rate P is optional
for reducing computational complexity.

Step 13: Output the repair prediction channel samples
ŷrepair .

C. COMPLEXITY ANALYSIS
When to estimate performances of algorithm, some metrics
are employed, such as convergence rate, accuracy and robust-
ness. Besides, calculation complexity also is a valid perspec-
tive to estimate computational demand for some algorithms.
It denotes how many memory capacity are required. Hence,
it is vital to analyze complexity relative to that of existing
channel prediction algorithms, such as AR, BPNN and SVM
in our paper.

To reduce the complexity of JOELM, the intelligent opti-
mization is implemented offline to reduce system overhead
and cost. Thus, optimal input weights, biases and output
weights are obtained offline. Furthermore, ELM has a sim-
ple hidden layer structure, in contrast to traditional back-
propagation neural networks. According to (6), the main
computation complexity includes two parts, H and Y in
the prediction part. For H , the computation includes input
calculation and active function calculation. The former is (X∗
µ + v) ∈ RN×o and its computation complexity is O(oNL).
For the latter, the calculation number is oL, so its calculation
complexity isO(oL). Similarly, when to obtain Y , the compu-
tation complexity isO(oL).Moreover, because the total repair
number is I ∗ ℵ in targeted repair, the computational com-
plexity is O(Iℵ). Here, I and ℵ denotes the maximum sample
window number and maximum repair number. Therefore,
the total computation complexity is O(max(oNL, oL, oL) +
Iℵ). Due to oNL > oL, the total computation complexity is
O(oNL + Iℵ). According to [22] and [23], the computational
complexity of SVM is O(o3), where o is the number of
input data. Moreover, the computation complexity of AR is
O(NAR), where NAR is the order number in AR [4]. Because
o� N , the complexity of our proposed short-term prediction
method is comparable to the complexity of AR and BPNN
and is lower than the complexity of SVM.

IV. SIMULATIONS AND DISCUSSIONS
In this section, the classic Rayleigh channel is used to test
and verify the performance of proposed short-term prediction
mechanism of fading channel.

A. PARAMETER CONFIGURATIONS AND ROBUSTNESS
ANALYSIS
1) COEFFICIENT AND WEIGHT COEFFICIENTS SETTING
As explained above, two vital parameters are drawn into
targeted repair of JOELM, the repair coefficient κ and
the weight coefficient λ. The former determines how
many abnormal prediction channel samples are detected.
Obviously, a large repair coefficient κ indicates a high repair-
ing standard, and fewer abnormal prediction samples are
detected in turn. Similarly, the latter determines the repair
values for abnormal prediction channel samples.

To discuss effects on the performance of targeted repair,
the RMSE values with repair coefficient κ and weight coeffi-
cient λ are plotted in Fig. 5. In addition, the related parameters
are set as follows: classic Rayleigh channel: fd = 500 Hz,
Ts = 5∗10−5s, fs = 20 kHz, and C = 3∗108m/s, extreme
learning machine: NT = 3000, xc = 2400, xc = 600, N = 5,
and L = 10, firefly algorithm: h̄ = 30, ζo = 1, τo = 1,
n = 50, α = 10, and ε = 1∗10−4, and S-G filter: l = 5,
σ = 1∗10−4 and ℵ = 50.

FIGURE 5. RMSE after targeted repair with repair coefficient κ and weight
coefficient λ.

As shown, when the repair coefficient κ is 0.1, the RMSE
after targeted repair is worse when the weight coefficient λ
is increased. This effect occurs because almost of all pre-
diction channel samples are regarded as abnormal values,
which causes the normal prediction channel samples to decay.
Then, when repair coefficient κ and weight coefficient λ
are increased, the repair channel prediction samples mainly
depend on their own predicted values according to (20).
Hence, the RMSE values are higher than those with the
appropriate weight coefficient λ. For example, when κ = 0.4,
the RMSE is 0.009753 at λ = 0.55, which is less than
the value of 0.01129 at λ = 1 and less than the value of
0.01 at λ = 0.1. In addition, when repair coefficient κ is
greater than 0.7, the error standard 4 is higher than error
value in (18), which indicates few normal prediction channel
samples are detected and only the preprocess is applied for
predicted data. Hence, according to the explanations above,
we can conclude that excellent performances can be obtained
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only by proper ranges of the repair coefficient κ and the
weight coefficientλ. Their proper ranges are [0.2, 0.67] and
[0.2, 0.91] in JOELM.

2) AMPLITUDE
In order to further estimate the performance of JOELM, repair
coefficient κ and weight coefficient λ are set to 0.2 and 0.7 in
this subsection. The other related parameters are the same as
those described in Subsection B.
The related curves are clearly drawn in Fig. 6∼ Fig. 10.

As shown, with the continuous iteration process in the FA,
the optimal weights and biases are found in the 14th iter-
ation, and the optimal fitness value is 0.007014. Due to
FA and targeted repair, five abnormal samples are detected,
that is, the 27th, 111th, 112th, 113th and 246th samples
(marked by red circles) in Fig. 7. Fig. 8 shows the
abnormal prediction samples detected by the repair process.
Obviously, the number of detected abnormal channel samples
is the same as that shown in Fig. 7. Hence, the abnormal sam-
ple curve with the repair iterations also indicates that these
five abnormal samples existed in the initial condition before
the repair process. Based on Fig. 7 and Fig. 8, we observe

FIGURE 6. Fitness curve in the firefly algorithm.

FIGURE 7. Predicted data and repaired data.

FIGURE 8. Abnormal samples in repair process.

FIGURE 9. Errors in the repair process.

that the number of abnormal samples are reduced drastically,
and no abnormal sample are remained in the second repair
iteration. Thus, the errors before and after targeted repair and
the repair standards indicated by (9) are as shown in Fig. 9.
As shown, for 600 predicted channel samples, the 27th, 111th,
112th, 113th and 246th values are detected as abnormal
prediction samples (marked by red circles in Fig. 7).

Then Fig. 10 shows the RMSE value curve with the repair
process in view of the actual testing channel data. As clearly
shown, RMSE is reduced to 0.006562. Compared to initial
0.007014 in Fig.6, the prediction performance is improved
about 6.44%, demonstrating the validity of the proposed
mechanism. It is noted that abnormal predicted sample is a
relative concept rather than an absolute concept. Hence, not
all abnormal predicted samples are remained in all targeted
repair of JOELM, and the number of detected abnormal
prediction channel samples is determined by the repair coef-
ficient κ and the weight coefficient λ.

3) ANALYSIS OF INTELLIGENT OPTIMIZATION AND
TARGETED REPAIR
As is explained above, JOELM consists two key steps,
that is, the intelligent optimization and targeted repair,
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FIGURE 10. RMSE in the repair process.

which contribute the whole prediction performance. Hence,
in order to estimate contributions of those two steps, a series
of simulations are implemented. The simulation is the per-
formances of RMSE with signal to noise ratio (SNR) under
ELM, optimized extreme learning machine (OELM) and
JOELM. Repair coefficient κ and weight coefficient λ are
set as 0.2 and 0.5, and other defined parameters are same to
subsection B. It is noted that the RMSE with SNR of ELM
can be implemented independently and taking the consistency
into considerations, a rand seed is required when to randomly
generate weightsµ and biases ν. As for the RMSEs of OELM
and JOELM are obtained simultaneously in intelligent opti-
mization and targeted repair.

Hence, RMSEs with SNR of ELM, OELM and JOELM are
showed in Fig.11. As we can see, the RMSE is 0.2163 with
ELM, while the value is 0.16 after optimization using FA.
Then when the targeted repair is added, RMSE is reduced to
0.1437. So the improved rates of intelligent optimization and
targeted repair are 10.71% and 4.78%, respectively in Fig.12.
Based on this, the contributions of intelligent optimization
and targeted repair are 69.14% and 30.86%. It is obvious that

FIGURE 11. RMSEs with SNR using ELM, OELM and JOELM.

FIGURE 12. Improved rates of OELM and JOELM for ELM.

the former holds more contributions than the latter. When to
decrease SNR, contribution of the former tends to decrease.
Such aswhen SNR= 12dB, thewhole improved performance
is 5.783% and RMSEs of ELM, OELM and JOELM are
0.3238, 0.3193 and 0.3051, respectively. Hence, the contri-
butions of intelligent optimization and targeted repair are
1.389% and 4.394%, and the contributions are 24.02% and
75.98% in turn. Then when SNR = 4dB, RMSEs of ELM,
OELM and JOELM are 0.7216, 0.7146 and 0.6928. So the
whole improved rates of two steps are 0.97% and 3.044% and
their main contributions are 32.08% and 67.92%. As we can
see, when SNR is high, excellent prediction performances are
obtained and main contributions of improved performances
are given by intelligent optimization, targeted repair plays
an assistant role. Since the noise power increases, the whole
performances tend to decay and the targeted repair gives
main contributions to improve whole performances and the
optimization part plays assistant role. Hence, a conclusion
is given that when SNR is bigger than 8dB, the intelligent
optimization gives more contributions than targeted repair in
whole performances, and when SNR is less than 8dB and big-
ger than 0dB, the targeted repair plays main role to improve
prediction performances, the intelligent optimization is an
assistant role. Due to RMSE is more than 1 when SNR is
less than 0dB, valid channel data are decayed for severe
noise power. So in order to obtain better prediction accuracy,
necessary denoising algorithms are required in this case.

B. PREDICTED PERFORMANCE EVALUATIONS
1) BIT ERROR RATE AND SYMBOL ERROR RATE
When data are sent through wireless channel, received data
often are decayed due to unavoidable noise. In order to
evaluate quality of data transmission, bit error rate (BER)
and symbol error rate (SER) are often employed, and the
mightier noise power is, the higher values of BER and SER
are, which indicate communication quality is worse. Based on
BER and SER, necessary strategies are required to improve
communication quality.
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FIGURE 13. BER/SER evaluations in perfect CSI and predicted CSI.

Hence, comparisons of BER and SER in perfect CSI
and predicted CSI are given in Fig.13. In this subsection,
2-ary differential phase-shift keying (2-DPSK) is employed
and we assume a coherent receiver is adopted for signal
detection. Parameters are same to the subsection B, and
repair coefficient κ and weight coefficient λ are 0.1 and 0.5,
respectively. As we can see, when to increase Eb/N0(dB)
(i.e., bit energy to noise power spectral density ratio), BER
and SER are decreasing from 0.3592 to 0.003916 and
0.5833 to 0.007801 in perfect CSI, respectively, which indi-
cate communication quality is more better. Then for predicted
CSI, its BER and SER are close to perfect CSI. So we can
get a conclusion that valid and exact CSI can be obtained by
JOELM.

2) ROBUSTNESS COMPARISONS
Robustness is a vital parameter to estimate performance of
algorithm, especially in wireless signal with noise. In order
to estimate performance of JOELM, the robustness is added
in this paper.

AR is a classic strategy for predicting a short-term fad-
ing channel. Thus, in this subsection, AR is implemented
with AR filter of order 6. To compare with other existing
machine learning tools, BPNN and SVM are also discussed
in this subsection. The BPNN is implemented using the
neural network toolbox in MATLAB, and its parameters are
as follows: the training function is TRAINLM, the adaption
learning function is LEANGOM, the performance function
is set to MSE, the number of layers in the BPNN is 2, and
the transfer function is TANSIG. The SVM is implemented
using limsvm-3.22 developed by Chih-Chung Chang, and its
parameters are as follows: the type of SVM is epsilon-SVR,
the epsilon in the loss function of epsilon-SVR is 0.01, and
the kernel function type is radial basis function, where the
gamma value is 2.8. The simulation environment isMATLAB
2016a in aWindows 7, Intel(R) CPUE5-1620@3.6 GHzwith
8.0 GB of RAM.

Hence, RMSEs with various SNR for AR, SVM, BPNN
and JOELM are showed in Fig.14. As we can see, although
JOELMhas similar RMSEs to BPNNwhen the SNR is bigger
than 12dB, it still precedes AR and SVM. Then when SNR is
less than 12dB, JOELM has less RMSE values than BPNN,
AR and SVM. Hence, a conclusion is given that when SNR
is bigger than 12dB, JOELM has similar robustness to BPNN
and has better robustness than AR and SVM. Then SNR is
less than 12dB, JOELM holds better robustness than BPNN,
SVM and AR.

FIGURE 14. RMSEs with various SNR for AR, SVM, BPNN and JOELM.

3) PROBABILITY DENSITY FUNCTION (PDF) AND
CUMULATIVE DISTRIBUTION FUNCTION (CDF)
The PDF and CDF are two statistical properties used to
estimate the quality of a wireless communication channel.
It is known that various channels yield different PDFs and
CDFs. Hence, the theoretical PDF and CDF curves of AR,
BPNN, SVM and JOELM are shown in Fig. 15. In addition,
RMSEs of the PDF and CDF values are calculated in Table 1.

TABLE 1. RMSE of estimated PDF, CDF, LCR and ADF in AR, BPNN, SVM
and JOELM.

As shown, the curves pertaining to AR, BPNN, SVM and
JOELM are very close to the theoretical curve in Fig. 15(a),
indicating that the four channel short-term prediction meth-
ods are valid and accurate. Moreover, according to Table I,
JOELMyields the best RMSE value of 0.0297 comparedwith
those of the three methods, i.e., 0.0307 for AR, 0.0370 for
SVM and 0.0497 for BPNN with respect to the PDF, indi-
cating that the four channel short-term prediction methods
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FIGURE 15. Comparisons of PDF (a) and CDF (b) with theory, AR, BPNN,
SVM and JOELM.

are valid and accurate. Moreover, the four CDF curves
nearly overlap the theoretical curve in Fig. 15(b). Moreover,
the RMSE of JOELM is 0.0129, which is better than
0.0196 for SVM and0.0369 for BPNN and only worse than
AR. Therefore, we can conclude that for PDF, JOELM yields
better performance than AR, BPNN and SVM, whereas for
CDF, JOELM is only worse than AR.

4) LEVEL CROSSING RATE (LCR) AND AVERAGE
DURATION OF FADES (ADF)
Similar to PDF and CDF, LCR and ADF also are two sta-
tistical parameters used to estimate the positive direction in
wireless communication. The former represents the expected
rate at which the fading envelope crosses a specified signal
level in a positive-facing direction, while the latter represents
the average duration crossing below a certain threshold in the
receiver.

Hence, the LCR and ADF curves of AR, BPNN, SVM
and JOELM are illustrated in Fig. 16, and the RMSEs of
LCR and ADF for the four channel prediction algorithms are
shown in Table. 1. As indicated, the four curves of the LCR

FIGURE 16. Comparisons of LCR (a) and ADF (b) with theory, AR, BPNN,
SVM and JOELM.

in AR, SVM, BPNN and JOELM are close to the theoretical
curve in Fig. 16(a). Similarly, the ADF curves for the AR,
BPNN, SVM and JOELM are close to the theoretical curve
in Fig.16 (b), which indicates the validity of four channel pre-
diction methods with respect to LCR and ADF. Furthermore,
although the RMSE value of 68.2691 for JOELM is greater
than 38.9651 for AR, 38.0607 in BPNN and 26.3857 in SVM
for LCR, RMSE value of 2.64∗ 10−4 of ADF in JOELM is
only inferior to that of the BPNN and is superior to those of
the AR and SVM, which also validates JOELM.

V. CONCLUSION
Our paper focuses on short-term prediction for fading chan-
nel. In particular, a novel prediction strategy (JOELM) based
on ELM, FA and the S-G filter is proposed. The JOELM con-
sists of two key steps, intelligent optimization and targeted
repair. In the former, FA aims at the optimization of input
weights and biases of ELM, preserving these key parameters
from being randomly determined. In the latter, the S-Gfilter is
innovatively adopted for reducing potential prediction errors,
so as to further improve the final performance of JOELM.

49038 VOLUME 6, 2018



Y. Sui et al.: JOELM for Short-Term Prediction of Fading Channel

Comprehensive characteristics of the JOELM framework
are evaluated and discussed through performing all-around
simulation tests. The recommended parameter settings and
implementation processes are also given in detail. The com-
parison experiments prove that our proposed JOELM per-
forms better than AR, BPNN and SVM, which promise it
can be potentially applied in short-term prediction of fading
channel for wireless communication systems.

REFERENCES
[1] N. M. Tomasevic, A. M. Neskovic, and N. J. Neskovic, ‘‘Short-term

fading simulation using artificial neural networks,’’ AEU—Int. J. Electron.
Commun., vol. 65, no. 7, pp. 641–649, Jul. 2011.

[2] N. M. Tomasevic, A. M. Neskovic, and N. J. Neskovic, ‘‘Short-term fading
simulator based on artificial neural networks,’’ in Proc. IEEE EUROCON,
May 2009, pp. 1681–1688.

[3] T. Eyceoz, A. Duel-Hallen, and H. Hallen, ‘‘Deterministic channel model-
ing and long range prediction of fast fading mobile radio channels,’’ IEEE
Commun. Lett., vol. 2, no. 9, pp. 254–256, Sep. 1998.

[4] Y. Zhao, H. Gao, N. C. Beaulieu, Z. Chen, and H. Ji, ‘‘Echo state network
for fast channel prediction in ricean fading scenarios,’’ IEEE Commun.
Lett., vol. 21, no. 3, pp. 672–675, Mar. 2017.

[5] T. Eyceoz, A. Duel-Hallen, and H. Hallen, ‘‘Prediction of fast fading
parameters by resolving the interference pattern,’’ inProc. IEEEConf. Rec.
31st Asilomar Signals, Syst. Comput., Pacific Grove, CA, USA, Jan. 1997,
pp. 167–171.

[6] P. Sharma and K. Chandra, ‘‘Prediction of state transitions in Rayleigh
fading channels,’’ IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 416–425,
Mar. 2007.

[7] T. Ding and A. Hirose, ‘‘Fading channel prediction based on combination
of complex-valued neural networks and chirp Z-transform,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 25, no. 9, pp. 1686–1695, Sep. 2014.

[8] N. X. Zhao, C. Hou, and Q. Wang, ‘‘A new SVM-based modeling
method of cabin path loss prediction,’’ Int. J. Antennas Propag., vol. 2013,
Apr. 2013, Art. no. 279070.

[9] J. Sun, T. Zhang, and L. Feng, ‘‘Novel nonlinear prediction algorithm for
fast fading channel,’’ (in Chinese), J. Beijing Univ. Aeronaut. Astronaut.,
vol. 31, no. 5, pp. 499–503, Mar. 2005.

[10] Z. Xiang, T. Zhang, and J. Sun, ‘‘Prediction algorithm for fast fading
channels based on the chaotic attractor,’’ (in Chinese), J. Xidian Univ.,
vol. 33, no. 1, pp. 145–149, Feb. 2006.

[11] H. Jaeger and H. Haas, ‘‘Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication,’’ Science, vol. 304,
no. 5667, pp. 78–80, Apr. 2004.

[12] M.-B. Li, G.-B. Huang, P. Saratchandran, and N. Sundararajan, ‘‘Fully
complex extreme learning machine,’’ Neurocomputing, vol. 68, nos. 1–4,
pp. 306–314, Oct. 2005.

[13] B. Jing, Z. Qian, Y. Pei, and J. Wang, ‘‘Ultra short-term PV power fore-
casting based on ELM segmentation model,’’ J. Eng., vol. 2017, no. 13,
pp. 2564–2568, 2017.

[14] M. Shafiullah, M. Abido, and Z. Al-Hamouz, ‘‘Wavelet-based extreme
learning machine for distribution grid fault location,’’ IET Gener.,
Transmiss. Distrib., vol. 11, no. 11, pp. 4256–4263, Nov. 2017.

[15] Y. Yang, M. Yang, S. Huang, Y. Que, M. Ding, and J. Sun, ‘‘Multifocus
image fusion based on extreme learning machine and human visual sys-
tem,’’ IEEE Access, vol. 5, pp. 6989–7000, 2017.

[16] J. Liu, X. Jin, F. Dong, L. He, and H. Liu, ‘‘Fading channel modelling using
single-hidden layer feedforward neural networks,’’Multidimensional Syst.
Signal Process., vol. 28, no. 3, pp. 885–903, Jul. 2017.

[17] I. S. Popool, S. Misra, and A. A. Atayero, ‘‘Outdoor path loss predictions
based on extreme learning machine,’’ Wireless Pers. Commun., vol. 99,
no. 1, pp. 441–460, Mar. 2018.

[18] X.-S. Yang, ‘‘Analysis of algorithms,’’ in Nature-Inspired Optimization
Algorithms. Oxford, U.K.: Elsevier, 2014, ch. 2, pp. 23–44.

[19] P. Baumgartner et al., ‘‘Multi-objective optimization of Yagi–Uda antenna
applying enhanced firefly algorithm with adaptive cost function,’’ IEEE
Trans. Magn., vol. 54, no. 3, Mar. 2018, Art. no. 8000504.

[20] Y. Guo, B. Z. Li, and N. Goel, ‘‘Optimised blind image watermarking
method based on firefly algorithm in DWT-QR transform domain,’’ IET
Image Process., vol. 11, no. 6, pp. 406–415, Jun. 2017.

[21] D. F. Teshome, C. H. Lee, Y. W. Lin, and K. L. Lian, ‘‘A modified firefly
algorithm for photovoltaic maximum power point tracking control under
partial shading,’’ IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 2,
pp. 661–671, Jun. 2017.

[22] A. Abdiansah and R. Wardoyo, ‘‘Time complexity analysis of support
vector machines (SVM) in LibSVM,’’ Int. J. Comput. Appl., vol. 128, no. 3,
pp. 28–34, Oct. 2015.

[23] L. Gupta, M. Samaka, R. Jain, A. Erbad, D. Bhamare, and C. Metz,
‘‘COLAP: A predictive framework for service function chain placement in
a multi-cloud environment,’’ in Proc. IEEE 7th Annu. Comput. Commun.
Workshop Conf. (CCWC), Las Vegas, NV, USA, Jan. 2017, pp. 1–9.

YONGBO SUI received the B.E. degree in electri-
cal engineering from Xiangtan University, Xiang-
tan, Hunan, in 2014. He is currently pursuing the
Ph.D. degree with the Hefei University of Tech-
nology, Hefei, Anhui, China. His research inter-
ests include intelligent algorithms and wireless
communication channels.

WENXIN YU received the B.Sc. degree in applied
mathematics from Hebei Normal University,
Shijiazhuang, China, in 2005, the M.S. degree in
wavelet analysis from the Changsha University of
Science and Technology, Changsha, in 2008, and
the Ph.D. degree in electrical engineering from
Hunan University, Changsha, in 2015. He joined
the Hunan University of Science and Technology,
where he is currently a Lecturer with the School
of Information and Electrical Engineering. He also

holds a post-doctoral position with the School of Electrical and Information
Engineering, Hunan University. His interests include fault diagnosis, signal
processing, and wavelet analysis and its applications.

QIWU LUO (M’17) received the B.S. degree
in communication engineering from the National
University of Defense Technology, Changsha,
China, in 2008, and the M.Sc. degree in elec-
tronic science and technology and the Ph.D. degree
in electrical engineering from Hunan University,
Changsha, in 2011 and 2016, respectively.

He was a Senior Engineer of instrumentation
with Wasion Group Co., Ltd., Changsha, and the
Deputy Technical Director with Hunan RAMON

Technology Co., Ltd., Changsha. He is currently a Lecturer with the School
of Electrical Engineering and Automation, Hefei University of Technology,
Hefei, China. His research interests include the research of real-time infor-
mation processing, parallel hardware architecture design and reconfigurable
computing, and fault testing and diagnosis of large-scale analog circuits.

VOLUME 6, 2018 49039


	INTRODUCTION
	CHANNEL MODEL
	THE PREDICTOR OF SHORT-TERM FADING CHANNEL BASED ON JOELM
	INTELLIGENT OPTIMIZATION
	TARGETED REPAIR
	COMPLEXITY ANALYSIS

	SIMULATIONS AND DISCUSSIONS
	PARAMETER CONFIGURATIONS AND ROBUSTNESS ANALYSIS
	COEFFICIENT AND WEIGHT COEFFICIENTS SETTING
	AMPLITUDE
	ANALYSIS OF INTELLIGENT OPTIMIZATION AND TARGETED REPAIR

	PREDICTED PERFORMANCE EVALUATIONS
	BIT ERROR RATE AND SYMBOL ERROR RATE
	ROBUSTNESS COMPARISONS
	PROBABILITY DENSITY FUNCTION (PDF) AND CUMULATIVE DISTRIBUTION FUNCTION (CDF)
	LEVEL CROSSING RATE (LCR) AND AVERAGE DURATION OF FADES (ADF)


	CONCLUSION
	REFERENCES
	Biographies
	YONGBO SUI
	WENXIN YU
	QIWU LUO


