
Received June 16, 2018, accepted August 8, 2018, date of publication September 10, 2018, date of current version October 8, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2869094

Hypervisor-Based Multicore Feedback Control
of Mixed-Criticality Systems
ALFONS CRESPO 1, PATRICIA BALBASTRE 1, JOSÉ SIMÓ1, JAVIER CORONEL2,
DANIEL GRACIA PÉREZ3, AND PHILIPPE BONNOT3
1Institut d’Automàtica i Informàtica Industrial, Universitat Politècnica de València, 46022 Valencia, Spain
2Fent Innovative Software Solutions S.L., 46022 València, Spain
3Thales Research & Technology, 91120 Palaiseau, France

Corresponding author: Alfons Crespo (acrespo@ai2.upv.es)

This work was supported in part by the H2020 Euro-CPS, FP7-ICT DREAMS EU Project under Grant 610640, in part by the Spanish
National R&D&I Project M2C2 under Grant TIN2014-56158-C4-01/02, in part by the Spanish Government and FEDER funds
(AEI/FEDER, UE) under grant TIN2017-86520-C3-1-R (PRECON-I4), and in part by the Generalitat Valenciana PROMETEOII/2014/031.

ABSTRACT One of the most promising approaches to mixed-criticality systems is the use of multi-core
execution platforms based on a hypervisor. Several successful EU Projects are based on this approach and
have overcome some of the difficulties that this approach introduces. However, interference in COTS systems
due to the use of shared resources in a computer is one of the unsolved problems. In this paper, we attempt
to provide realistic solutions to this problem. This paper proposes a feedback control scheme implemented
at hypervisor level and transparent to partitions (critical and non-critical). The control scheme defines two
controller types. One type of controller is oriented towards limiting the use of shared resources by limiting bus
accesses for non-critical cores. A second type measures the activity of a critical core and acts on non-critical
cores when performance decreases. The hypervisor uses a performance monitor unit that provides event
counters configured and handled by the hypervisor. This paper proposes two control strategies at hypervisor
level that can guarantee the execution of critical partitions. Advantages and drawbacks of both strategies are
discussed. Control theory requires to identify the process to be controlled. In consequence, the activities of
the critical partitions must be identified in order to tune the controller. A methodology to deal with controller
tuning is proposed. A set of experiments will show the impact of the controller parameters.

INDEX TERMS Cyber-physical systems, feedback control, hypervisor, mixed-criticality systems.

I. INTRODUCTION
The increasing computing capacity of multi-core embedded
systems allows the integration of multiple software parti-
tions on a single shared hardware platform, even if some of
them are time-critical applications. In this paper, we consider
a software partition as a bundle of application code and
required runtime support. So, a partition can be an application
compiled to be executed on a bare-machine, a real-time appli-
cation with its real-time operating system or an application
running on top of a general purpose operating system.

Under these circumstances, time-critical and non-critical
applications should be integrated with the same hardware,
given the increased computing power of current processors
in terms of the number of cores and frequency. Systems that
integrate time-critical and non-critical applications are known
in the community as mixed-criticality systems (MCS) [1].
In [2], a review of the MCS status is presented analyzing the
research trends and challenges.

Although the concept of Integrated Modular Avion-
ics (IMA) [3] was developed for single-core platforms,
the increasing importance of multi-core platforms provides
additional relevant value to this approach. In this line,
researchers and industry are making significant efforts to
analyze and exploit the capabilities of these platforms tak-
ing into account their advantages and limitations. Greater
performance increased computing power, and stricter cost-
containment are countered by the difficulty of computing
exact execution time due to the effects of shared resources
on code execution.

In the IMA approach, several software applications can
be executed in a common platform on top of a parti-
tioning kernel under a common application programming
interface (API) [4]. A partitioning kernel is an operating
system with specific extensions to increase the temporal and
spatial isolation of the applications. A partitioning kernel can
be replaced by a virtualization layer (hypervisor) providing

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

50627

https://orcid.org/0000-0002-6606-7406
https://orcid.org/0000-0001-9458-4083


A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

the partitioning services and including an operating system
as part of the application environment.

Hypervisor-based systems have demonstrated their ability
to provide basic properties andmechanisms to execute several
partitions, including their operating system, in a common
hardware. These properties deal with the spatial and temporal
isolation of software partitions (application and operating
system) running on top of the hypervisor. Hypervisor mecha-
nisms provide the services for visualizing hardware resources
to partitions (e.g. virtual CPUs, virtual interrupts, etc.). The
XtratuM hypervisor [5], [6] is an open-source bare-metal
hypervisor for embedded real-time systems. It has been used
in several EU projects and is currently being used on several
space missions. Initially developed for LEON processors,
it has been adapted to other platforms such as ARM Cortex
R4/R5, A9, and PowerPC. In the FP7 EU MultiPARTES
project [7], XtratuM was adapted for use in multi-core het-
erogeneous platforms. The FP7 EU DREAMS project [8]
extended XtratuM to work on multiple multi-core nodes
connected through NoC (Network on Chip) and TTEthernet
networks.

One of the crucial expected features when using multi-
core processors for safety-critical systems is temporal isola-
tion. While the hypervisor can guarantee the exact allocation
of resources to partitions, the execution of a partition can
be affected by the interferences generated by the execu-
tion of other cores. This problem, due to the use of shared
resources (cache, bus, memory, etc.), can affect the execution
of a critical partition jeopardizing execution in the speci-
fied deadline. These interferences introduce an unpredictable
factor in the execution of a critical task and do not permit
estimation of worst-case execution time (WCET) in a multi-
core system introducing timing anomalies [9], [10].

In this paper, we focus on the execution control of
partitioned mixed-criticality systems running on top of a
hypervisor. We propose a scheduling control co-design
technique with two controllers implemented at hypervisor
level.

This paper extends and completes a preliminary version
of the controller scheme [11] where the basic controller was
presented where sections V and VI are completely new while
sections IV and VII are almost entirely new.

The main technical contributions of this paper include:
• A proposed controller scheme at hypervisor level, trans-
parent to applications, to control the execution of critical
partitions in a hypervisor-based partitioned multi-core
system.

• The controller scheme includes two types of controllers
for critical and non-critical partitions.

• Two control strategies and their configuration
parameters.

• An analysis of the cost of these strategies and the over-
heads introduced.

• With a set of experiments, we show that with the con-
troller scheme and proposed tuning, we achieve the
expected goals.

The rest of the paper is organized as follows. Section II
presents the performance counters used by the hypervisor to
implement the control. Section III provides a basic under-
standing of the hypervisor scheduling model. In Section IV,
we present the hypervisor controller goals and the mecha-
nisms used. Section V presents two strategies for controlling
the execution of critical activities and how the controllers
are tuned. Section VI describes the new hypervisor functions
and analyses the cost of the proposed strategies. Section VII
presents the evaluation of the control schemes in different
situations and evaluates the proposed control strategies using
a multi-core processor board. Section VIII reviews the state-
of-the-art of related techniques. Finally, Section IX presents
our conclusions and suggestions for future work.

II. PERFORMANCE MONITOR COUNTERS
Current processors can provide measurements of how the
system is performing. Measurements can be global or per
core in the case of multi-core platforms. The Performance
Monitor Unit (PMU) is a hardware device that provides this
service. It supports execution profiling [12] and can be found,
among others, on the T2080 multi-core processor on the NXP
QorIQ T2080RDB board. The T2080 processor includes four
64-bit e6500 cores and multi-threaded implementations of
the resources for embedded processors defined by Power
ISA. The e6500 core includes a PMU that provides a set of
performance monitor counters (PMCs) per core for defining,
enabling, and counting conditions that can trigger the perfor-
mance monitor interrupt. Each core can configure up to six
32-bit counters that can count specific events.

In x86’s architectures, the PMU was introduced with the
Intel Pentium processor and is nowadays available in all
modern processors [13]. It provides per core a set of coun-
ters for fixed events that cannot be changed and another
set of programmable counters can be set to count one of
the supported hardware events. A set of instructions allows
to programming or reading these registers. The number of
counters and the programmable events can vary depending
on the specific x86 processor model.

In ARM processors, the PMU is an optional but recom-
mended feature for A and R implementations [14]. It provides
two specifications to this unit but the basic form provides one
cycle counter and up to 31 programmable event counters per
core. Instructions allow controlling by enabling and resetting
counters and enabling interrupts on counter overflow.

For this work, all the architectures described above offer
the required services. These requirements can be detailed
in terms of having a set of independent counters in each
core, selecting the events to be monitored, defining limits
and enabling interrupts when limits are reached. The selected
events in this work are available in all these processors.

The selected platform in this work is the T2080 because the
scope of the study has been focused on avionics applications
and it is relevant in this context. Additionally, the T2080 pro-
vides hardware extensions for virtualization and defines a
hypervisor processor mode for executing the hypervisor.

50628 VOLUME 6, 2018



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

The XtratuM hypervisor has been ported to this platform and
provides, using the virtualization services, full virtualization
to partitions. XtratuM handles the PMCs to count specific
events during the system execution. Using the PMU, XtratuM
provides the ability to count predefined events per core asso-
ciated with particular operations such as processor cycles,
executed instructions, L1 and L2 cache misses, data and
instructions bus accesses, in order tomeasure the efficiency of
the application running on a core. Also, performance events
can be restricted to the guest or hypervisor domain.

A threshold value can be defined for any counter to trigger
interrupts when a specified value is reached. Counters can be
enabled or disabled under hypervisor or application needs.

III. HYPERVISOR SCHEDULING MODEL
XtratuM is a bare-metal hypervisor specifically designed for
embedded real-time systems that uses para-virtualization or
full-virtualization techniques depending on the hardware sup-
port. The XtratuM hypervisor enforces the logical division
of software components into independent execution envi-
ronments (partitions) so faults are isolated and contained.
These software partitions are spatially isolated in addition to
the temporal allocation of processor resources to partitions.
XtratuM supports the concept of virtual CPU (vCPU). Virtual
CPUs are abstractions that model hardware CPU behavior
and are managed in an analogous way but can be allocated to
any of the existing cores. XtratuM abstracts as many virtual
CPUs on the system as physical cores. Partitions can be
mono-core or multi-core when using one or several vCPUs.
The allocation of vCPUS to real CPUs is decided in the
configuration file where the global system is fully specified:
hardware, devices, scheduling plan, communication chan-
nels, etc. Multi-core application will require an SMP guest
operating system and allocate several virtual CPUs to the
partition.

FIGURE 1. Partitioned architecture in multi-core platforms.

The software architecture in a multi-core partitioned sys-
tem is presented in Fig. 1. It shows a system integrated by
five mono-core partitions and one multi-core partition. In the
scheduling plan, the allocation of vCPUs to real CPUs is
defined and shown in the figure. P0 and P1 are allocated to

the real CPU0, P3 and P4 to CPU1, P5 to CPU2 and the two
vCPUs of P6 to CPU2 and CPU3, respectively. All threads
in a partition are executed in the associated CPU. The SMP
partition will schedule internally which threads are associated
to each vCPU and, consequently, in which real CPU they will
be executed.

ARINC-653 [4] defines a cyclic schedule for partitions.
In a multi-core environment, the cyclic schedule can be
extended to all cores by allocating partitions to cores and
defining a cyclic schedule per core. XtratuM implements a
multi-plan cyclic scheduling for multi-core systems.

Generation of the cyclic schedule should consider the
impact on task execution due to shared resources such as bus
access, L2 caches and memory. In Xoncrete tool [15], most of
these issues are modeled. In [16], a methodology to generate
cyclic schedule plans for multi-core mixed-criticality systems
is proposed. From a set of critical and non-critical partitions,
it performs a partition to core allocation and generates a cyclic
schedule for each core.

A. SYSTEM MODEL
The system model described in terms of a set of partitions (P)
that are composed by the dupla Pi = (τ,L), where L is the
level of criticality and τ is the set of tasks of the partition.

Two levels of criticality are considered: High and Low.
A partition with a higher level of criticality is defined by
τi = (Ci,Pdi,Dli) where Ci is the worst-case execution time,
Pdi is the period and Dli is the deadline.

Partitions with low criticality are modeled by only one
task or server that integrates all internal activities. It can be
seen as a server with a bandwidth defined by λ = (Bsi,Psi)
where Bsi is the budget or maximum execution time per
period and Psi is the period. Additionally, other resources
such as communication channels between partitions should
be considered and avoided in this definition for the sake of
clarity.

B. SCHEDULING GENERATION
Cyclic schedule generation consists of three steps:
Step 1 Core distribution: determination of the number of

physical cores for high and low criticality level
partitions.

Step 2 Allocation of partitions to cores.
Step 3 For each core perform the schedule generation based

on a limited preemption EDF with Stack Protocol
Reservation (SPR) as detailed in [15].

In step 1, the number of cores is determined by computing
the utilization of each partition. The algorithm computes the
total utilization of the high and low critical partitions as the
sum of all task utilization (Ci/Pdi) or the (Bsi/Psi) in the case
of low criticality partitions. The result of these computations
is UH and UL as global utilization of high and low criticality
load which determines the number of cores NH and NL for
high and low criticality, respectively.

The goal of step 2 is to perform a static allocation of parti-
tions to cores. High and low-level partitions will be allocated
in NH and NL cores, respectively. In order to perform this

VOLUME 6, 2018 50629



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

allocation, bin packing techniques are used. Worst fit policies
for bin packing partition to cores produces more uniform load
distribution [16]. A final optimization of the allocation is
performed using greedy techniques based on the discrepancy
of the core loads.

The plan generated achieves:
• All critical partitions are allocated to a subset of cores.
We use the termCritical Core (CC) to identify cores with
critical partitions.

• Non-critical tasks are allocated to another subset of
cores. These cores are considered to be Non-Critical
Cores (NCC).

• Each task in a partition has its own temporal window
or slot in a core.

• Slot duration of partitions takes into account the mea-
sured worst-case execution time increased by a fac-
tor (design criteria) that models the interference.

In this paper, we assume that one core can allocate all
critical partitions while the non-critical partitions can use
several cores. However, the proposed controller scheme is
also compatible with the execution of non-critical partition
on CC. Moreover, the constraint of only one critical core will
be relaxed in section IV-D.

IV. GENERAL CONTROLLER SCHEME
The main goal of the controller scheme is to limit the inter-
ference of Non-Critical Partitions (NCP) on shared resources
that can impact on the execution of Critical Partitions (CP).

While CP should not be limited because a worst case
analysis has been performed and a static schedule fitting the
temporal constraints has been generated, the execution of
NCPs should be controlled to limit the interference on CP.

The control scheme depicted in Figure 2 is proposed.

FIGURE 2. General controller scheme.

Initially, two cores are considered (we will remove this
restriction in following sections), CC and NCC. Two con-
trollers have been designed. The Non-Critical Core Con-
troller (NCC-C) reads the performance monitor bus requests
of the NCC and compares it with a specified reference of
a number of bus requests. If the reference value is reached
the controller can take actions on the NCC. The Criti-
cal Core Controller (CC-C) reads the performance monitor
cycles and instructions from the CC, computes the cycles per

instruction (CPI), compares the result with the reference for
this relation and takes a decision on theNCCs. The controllers
are characterised as follows:

• CC-C: an event-based controller.

– Goal: To guarantee the execution of a critical
task (partition) within the slot allocated to its ser-
vice.

– Event: Interrupt generated from the PMU based on
number of instructions (NIN).

– Inputs: Number of cycles (NCS).
– Reference: Specified maximum relation between

Cycles and Instructions. This corresponds to the
cycles per instruction (CPI).

– Action: Suspend the NCC during the remaining
partition execution.

• NCC-C: an event-based controller.

– Goal: To limit access to shared resources during
execution.

– Event: Interrupt generated from the PMU based on
Number of bus requests (NBR).

– Inputs: Number of bus access requests.
– Reference: Specified maximum number of bus

requests from the non-critical partition.
– Action: Suspend the NCC.

As these controllers have to be implemented at hyper-
visor level, it is relevant to understand the impact of the
controller on the partition execution. Ideally, an event-based
controller enables controller activity to be limited only when
a significant event occurs. This is the case of the NCC-C
that will only act once during partition control in an NCC.
As soon as an event arrives the core suspends the partition
execution. However, CC-C requires periodic sampling of the
NIN or NCS because of a lack of performance monitor for the
appropriate counter. During the experimentation, we found
that cycles per instruction (CPI) can be used but they must be
calculated by the controller to take any appropriate action.

A. CONTROLLER ACTIONS
Suspension of NCC core activity is proposed as the con-
troller’s action. This has the advantage that once the action
is taken, it is definitive until the end of the execution slot.
In short, only one action is taken. Initially, two cores have
been considered. Subsequently, several NCC will be consid-
ered. In this latter, the action of suspension could be par-
tial (some cores) or total (all NCC). The proposal is that the
suspension action affects all NCC. Partial suspension has the
disadvantage that the controller’s decision must be periodi-
cally re-evaluated and future partial or total actions taken if
needed. This can lead to hypervisor overhead that can affect
the performance of the critical task. Since the controller’s
objective is to minimize the overload and impact as much as
possible on the computation time of the corresponding task,
the proposed action is: i) definitive: this means that there is no
re-evaluation of future actions, and ii) total: the action directly
affects all other cores.

50630 VOLUME 6, 2018



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

An alternative to suspension may be to decrease the fre-
quency/voltage of the other cores and, consequently, decrease
their activity on the common resources. With this approach,
the action needs to be reevaluated periodically. In addition,
the intensity of the action in terms of the number of fre-
quency/voltage levels must be determined. It should also
be noted that not all processors can manage core frequency
independently. A change in processor frequency involves all
processors so that the solution would not be valid for the
proposed goal.

B. CONTROLLER SCOPE
Let us assume that we have a system with four partitions
and two cores. P0, P1 are critical and P2, P3 are non-critical.
All partitions can have internal tasks but only tasks in critical
partitions have been considered according to the task model
defined in Section III. For simplicity, only one task is consid-
ered in the partition slot. Figure 3 shows a scenario that will
illustrate the controller’s scope.

FIGURE 3. Two cores schedule.

The generated schedule has allocated some slots to each
partition taking into account the worst-case execution time of
the task(s) inside the partition plus additional extra time to
model the interference. Thus, in isolation, the slot duration is
over-estimated.

The controllers will be implemented at the hypervisor
level. In order to specify their scope, a set of rules are
formulated:

Rule 1: When there is no activity in the CC, the NCC-C is
disabled.

Rule 2: When a critical partition starts the slot, both con-
trollers (CC-C and NCC-C) are enabled. If there is
no activity in the NCC, the enabled state remains
and will start to act when some activity in the
core is scheduled during execution of the critical
partition.

Rule 3: When the CC-C takes action to suspend NCC
activity, the current partition and future partition
slots are suspended.

Rule 4: When the NCC-C takes action to suspend its activ-
ity, the current partition is suspended. Future slots
will start at the specified time in the scheduling
plan.

Rule 5: When a critical partition finishes its slot, con-
trollers are disabled. If NCC activity was sus-
pended during its execution, NCC is resumed.

Rule 6: Communication between cores is performed
through inter-processor interrupts (IPIs).

Rule 7: Decisions and actions taken by controllers must be
performed in bounded time and low overheads.

Rule 8: Controllers should be event based and the number
of interrupts predictable.

In conclusion to these rules, the scope of the CC-C is
the slot duration in critical cores of critical partitions. Note
that if the scheduling plan includes non-critical partitions in
the critical core, the CC-C will not act during the slots of
these partitions. However, the NCC-C scope is inherited from
CC-C. In other words, the NCC-C will act in the same CC-C
scope.

Figure 4 shows a possible scenario where the scope of the
controllers is defined. A simulated evolution of the perfor-
mance parameters during controller scope is drawn. The grey
areas covering the two cores determine the <scope of the
controllers.

FIGURE 4. Execution scenario.

During initialization, the hypervisor detects the number of
cores and creates the same number of hypervisor threads.
In this case, two hypervisor threads (HT0 and HT1) are
created and allocated to cores C0 and C1 respectively. At t0,
HT0 detects the slot start of P0 and identifies (through the
configuration file) that it is critical. It enables both controllers
and sets a threshold on the number of instructions for P0 and
enables the interrupt of the PMU. Also at t0, HT1 starts the
execution of P2 and receives an IPI fromHT0 and enables the
controller and sets the threshold of the bus requests counter
to a specified reference. In the interval [t0, t i1], HT0 can
receive several interrupts from the PMU when the number
of instructions has been completed and computes the slope of
the execution (cycles/instruction). If the computed value is in
a specified range, no action is performed.

At t i1, as consequence of the interrupt received byHT1 from
the PMU informing that the maximum number of bus
accesses has been reached, HT1 suspends partition P2, stores
its status and sets the core to suspended.

At t1, P0 slot finishes and HT0 executes the partition
context switch. HT0 stores the status of P0, sends an IPI
to HT1 to resume the core activity and identifies the next
partition to be executed P1. As P1 is critical, HT0 enables
the controller, sets the threshold of the performance monitor
register and executes P1. HT1 has received the IPI to resume
core activation, analyses the scheduling plan to know which

VOLUME 6, 2018 50631



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

partitions have to be executed (P3), recover their status, sets
the core to active and writes the NBR threshold.

At t i2, as consequence of the interrupt and computed
value (out of the specified range), the action taken by
CC-C is to suspend the execution of NCC (Core 1).
HT0 sends an IPI to HT1 to perform the action. HT1 sus-
pends the current partition (P3), stores its status, disables the
controller and sets the status of the core to suspended.

At t2, HT0 finishes the P1 slot, stores its status and sends
an IPI to HT1 to resume the core. HT0 reads the next slot
to be executed and detects that it will occur at t3. It sets the
timer to be awake at that time and waits for it. HT1, as a
consequence of the IPI, resumes core activity by identifying
the partition to be executed (P3) in the scheduling plan and
executes it.

At t3, HT0 starts the P0 slot and performs the actions when
the slot of the critical partition slot starts (detailed at t0).
At t i3, HT0 receives the interrupt and performs the actions to
suspend the NCC.

At t4, HT0 stops the P0 slot and performs the actions when
a slot of a critical partition is finished. HT0 selects P1 slot in
the scheduling plan and perfoms the corresponding actions.
HT1 receives the IPI and executes P2. At t i4, HT1 receives the
interrupt and performs the actions to suspend itself.

C. MULTIPLE NON-CRITICAL CORES
The previous scenario can be extended to multiple NCCs.
Figure 5 presents the controller extension to deal with multi-
ple NCCs.

FIGURE 5. General controller scheme for multiple non critical cores.

Each NCC controller is an event-based controller. The
event is generated when the number of bus requests reaches
the reference value. The action of the NCC-C is self-
suspending. The core executing a critical slot (critical par-
tition) executes a CC controller. Actions taken by the CC-C
are applied to all NCCs. So, when CC-C takes the decision
to suspend NCCs activities, it sends IPIs to all of NCC in
the same way as the two cores description. IPSs can be
individually sent to each core or broadcasted. Suspending the
activity of a core means that each suspended core does not
execute partition code and remains in an idle state. In this
state, it waits for an IPI at the end of the critical slot to resume
the core activity.

D. AVOIDING CONSTRAINTS
So far we have assumed that one core is critical (it executes all
critical partitions) and others are non-critical. However, that
assumption is not strictly required. The main constraint is to
avoid overlap in temporal slots of critical partitions. In that
case, critical and non-critical partitions can be allocated in
any core according to load requirements.

The generation of scheduling has to build a static schedule
where critical partition slots do not overlap with other slots of
other critical partitions allocated to other cores. In such cases,
a core is critical when it is executing critical partitions where
the remaining cores are non-critical.

FIGURE 6. Scope extension.

Figure 6 shows a schedule where P0 and P1 are critical
partitions and P2 and P3 are non-critical ones. P0 is allocated
to core 0 while P1 is allocated to core 1.

Shadowed regions represent the time intervals in which
P0 or P1 are under execution and, consequently, when cores
0 and 1 are considered critical cores.

V. CONTROLLER STRATEGIES AND TUNING
In this section we attempt to provide guidelines for controller
strategies and tuning.

A. NCC CONTROLLER (NCC-C)
Our proposal for these controllers is based on how a non-
critical partition uses the bus. The diversity of the non-critical
applications is very high. If it can be measured in isolation,
a rule that has been applied in the previous example is to
limit the execution of each non-critical core when it reaches
a number of bus requests in isolation. As controllers are only
active when critical cores are executing critical applications,
the reference of an NCC-C is set to the proportional number
of bus requests restricted to the overlap interval with the
critical partition. Thus during the overlap interval of a non-
critical partition with a critical one the number of requests
non-critical partition will use in isolation during the overlap
interval is calculated.

A more in-depth analysis of non-critical partition needs
could improve control performance.

B. CC CONTROLLER (CC-C)
While NCC-Cs are oriented towards limiting their use of the
bus, the CC-C focus should be on the deadline guarantee for
the critical applications by applying the controller to their
slots.

50632 VOLUME 6, 2018



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

Two strategies for the CC controller have been analyzed:
Limit and Linear controller.

1) LIMIT CONTROLLER STRATEGY
Figure 7 draws the slot duration allocated in the plan to
the critical partition in the critical core. The grey area
sketches the secure area in which partition execution can
finish before the end of the slot. If at any moment the exe-
cution of the critical partition reaches the right-hand side of
the secure area, there is a strong risk of reaching the end of
the slot without finishing its computation.

FIGURE 7. Limit controller strategy.

If the partition execution reaches that secure limit, an
action suspending the other cores will enable computation to
finish before the end of the slot duration.

The behavior of the CC-C, as described in Section IV,
is an event-based controller and should not be periodically
executed due to the overheads. In order to control execution,
the hypervisor will set the threshold of the PMU register
to I1. When the event is generated, the hypervisor will read
the cycles register and determine the CPI. If the value is
greater than the slope of point P1 (in the drawing), the con-
troller suspends all cores. If execution is in the secure zone,
the hypervisor sets the next threshold to I2. These points are
the limit of the secure zone. Depending on the number of In
points, the detection of a limit situation will be too late to
reach the desired deadline. In these cases, a secure margin
can be defined as drawn in Figure 7 by means of parallels to
the limit line.

2) LINEAR CONTROLLER STRATEGY
The action of CC-C can be considered a strong action:
suspend NCCs activities for the remaining CPart execu-
tion. Another less aggressive strategy could be considered.
Figure 8 shows an alternative criterion for CC-C design.
It considers that the relation between the total cycles of the
slot duration and the number of instructions to be executed in
the worst case defines a limit line between the secure and non-
secure zones. While the CPI is in the secure zone, NCCs are
active. As soon as the non-secure zone is reached, the NCCs

FIGURE 8. Linear controller strategy.

are suspended. As a result of this action (suspendNCC cores),
the CPI can return to the secure area and the action will
resume NCCs activities. These actions can generate, even
using a limit line threshold, several sequential suspend and
resume actions.

The advantage of this strategy is that the CPI of the exper-
iments does not need to be determined. Directly, the slot
duration in cycles permits determination of the CPI. However,
this controller can produce several suspend/resume actions
significantly increasing hypervisor overhead.

C. CC-C PARAMETERS
In order to control critical partitions, a process identification
of the tasks included in each critical partition must be per-
formed. As pointed out in Section IV, task execution has to
be scheduled in a slot. Slot duration determines the deadline
for executing the corresponding task.

The first step in the tuning is to perform a process
identification based on how the task performs in isolation.
All tasks in the critical partitions must be characterised.
A task is identified by measuring the selected registers during
execution time. In order to limit the effects of the performance
monitor registers access and store, only one performance
monitor counters read is performed in each slot. The mech-
anism used to collect the measurements during the execu-
tion is to set the event PME_PROCESSOR_CYCLES with
a threshold generating an interrupt that is handled by the
hypervisor logging register values. As only one interrupt per
slot is allowed until the interrupt handling occurs, there is no
interference due to monitoring the counters. Considering the
processor frequency (1800Mhz), the increment of each slot
threshold is defined to sample the counters every 10 ms in the
experiments. This value can be adjusted depending on task
execution time.

The log generated by the hypervisor is analyzed off-line
in order to extract two parameters: the maximum number of
instructions executed by the task and the cycles per instruc-
tion (CPI). From this logged information, a linear minimum
mean square error is calculated. Based on the linear approxi-
mation obtained, the CPI value is determined.

The hypervisor must be booted with a configuration file.
The configuration file is an XML file that specifies all the

VOLUME 6, 2018 50633



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

details about the hardware platform (number of cores, fre-
quency, memory areas, devices, etc.) as well as partitions,
communication channels and the scheduling plan. It allows
several scheduling plans to be specified covering systems
with multiple modes. Each scheduling plan specifies, per
core, the sequence of slots in a major frame (MAF). All cores
share the same MAF. Details about the specification of the
configuration file for the XtratuM hypervisor can be found
in [17]. An execution slot is described by a set of parame-
ters such as the slotIdentifier, the partition to be scheduled,
the starting time as an offset with respect to MAF origin and
slot duration.

Three optional additional parameters have been added to
inform the hypervisor about the controllers. When the slot
corresponds to a critical task, two parameters are included:
number of instructions and the CPI. If the slot is associated
with a non-critical partition, the parameter to be included is
the maximum number of bus accesses allowed during the slot
duration. If this parameter is not provided for non-critical par-
titions, the assumption is that no limitation is imposed. This
will affect the NCC-C and the hypervisor will not activate the
controller in this slot.

VI. HYPERVISOR PERFORMANCE ANALYSIS
The XtratuM hypervisor has been enriched with the mech-
anisms to incorporate the proposed controllers. XtratuM
implements as many kernel threads as real cores. Each kernel
thread is executed in its core and controls partition execution
according to the static plan defined for each core. All kernel
threads share a set of protected data structures. One of them
refers to the status of the core, which includes an additional
field that informs when a core has been suspended or resumed
by the CC-C.

The suspension of a core implies that the kernel thread
that manages it preempts the running partition and goes to
the idle state. In this state, the kernel thread disables parti-
tion interrupts and runs an empty loop until it receives the
interrupt (IPI) from the critical core at the end of the critical
partition slot. When it arrives, the kernel thread determines
the partition to be executed according to the execution plan.
Figure 9 shows an example of how the action of suspend-
ing different cores might affect to NCC cores according
to the execution plan. When the critical partition execution
slot (Core0) starts, the NCC-C of each core becomes active
and will remain in this state until the critical partition slot
ends. Core1 was already running a partition. As soon as the
status becomes active, the thread will set the reference value
in the limit value register for the number of bus requests,
taking into account the overlap between its slot and Core0,
and enable the PMU interrupt. Core2 thread is not running
any partition and will wait until its next partition (point a)
is planned to set the reference of the bus requests. In Core3,
the slot start coincides with the Core0 slot start. So, it will
act as described for the others NCC-C. At the end of its slot
(point b), the PMU interrupt is canceled. In point c, CC-C
decides to suspend the NCCs. Core1 and Core2 preempt the

FIGURE 9. Suspension of multiple cores.

running partition. On the other hand, the core3 is not running
any partition andwill not run it (point d) even if it is scheduled
in its plan. At the end of the critical slot, each core recovers
its execution.

A. KERNEL THREAD COMMUNICATIONS
Communication between kernel threads is performed by
means of IPIs. A kernel thread can send an inter-processor
interrupt to another core which is attended by the associated
kernel thread. IPIs to several cores can be broadcasted avoid-
ing the need for loops in the code to send as many IPIs as
NCCs. So, CC-C will broadcast only one IPI to inform the
NCCs. Modifications in the hypervisor affect the partition
context switch (PCS) between partitions. When the end of
a slot is reached in the CC scheduling plan, the associated
kernel thread performs the PCS as described in the Listing 1
pseudocode.

LISTING 1. Partition context switch.

The function to setup the critical core and the interrupt han-
dler to deal with the PMU interrupt are described below, and
their pseudo-code presented in Listing 2. Note that variables
MARGIN and CCC_LEVELS are defined during hypervisor
configuration before its compilation. The hypervisor binary
holds the configured parameters.

NCC kernel threads have to deal with the interrupts from
CC-C to activate the NCC-C and suspend and resume the
partition activities. It is important to point out that the kernel
thread of the NCCs does not suspend kernel activities dur-
ing core suspension. Thus the kernel thread remains under

50634 VOLUME 6, 2018



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

LISTING 2. Setup CC controller.

execution but suspend and resume only affects the partition
execution defined in their scheduling plan.

The PCS of the NCC kernel threads works in the same way
as the CC except that the threshold is set to the bus access
requests counter rather than the instruction counter. Interrupt
management includes three interrupts: from the PMU (bus
access requests) and from the CC to suspend and resume
partition activities.

B. OVERHEAD ANALYSIS
The analysis focuses on the CC kernel thread because it
executes the critical activities in the system. It has to con-
sider two costs: controller setup and controller execution.
Controller setup is included in the PCS and introduces very
few instructions. The cost in terms of cycles has been mea-
sured with an increase of 268 cycles with respect to the
39653 cycles (approximately 22 µsec at 1800MHZ ) of the
original PCS.

The cost of execution impacts on critical activity execu-
tion. The worst case corresponds to exhausting all levels of
the number of interrupts. Currently, this number of inter-
rupt levels is configurable at hypervisor compilation time.
When an interrupt occurs, the CC kernel threads execute the
previously defined interrupt handler. The measured cost in
terms of cycles is 64 when no IPIs are sent to NCC and
182 when they are sent. As the number of interrupts that can
be generated is defined at compilation time, the overload due
to this mechanism is bounded to the number of levels. The
worst scenario corresponds to the case where the last level
performs the suspending actions in the rest of the cores. In that
case, all levels except the last one have been handled and the
last one performs the actions.

On the basis of the costs of the operations, it is possible to
evaluate the performance of the two proposed schemes. Let L
be the number of instruction levels configured for the CC-C.
The control based on the limit strategy will execute the action
of suspending all the NCC cores only once. The worst-case
scenario will be to run it after exhausting the L-1 interrupts.
The cost for this situation is (L − 1) ∗ 64 + 182 cycles. The
best case, from the point of view of critical partition, would
take the action when the first interrupt occurs. In this case,
the best case would be 182 cycles. In the case of the linear

controller, the worst case is that every time an interruption
occurs, an action of suspending or resuming is performed
alternately. In this case, the cost is L ∗ 182 cycles. The
best case would be that no action is taken on any of the L
interrupts (L∗64 cycles). Assuming an L = 15, the worst cases
in the two schemes would be 0.5 and 1.5 µsecs, respectively.

This analysis corresponds to the impact on the critical par-
tition. However, a higher impact can be produced on the non-
critical partitions. In the limit controller, only one suspension
can be produced. It implies that the partition context is saved
and the kernel thread goes to idle. The cost is approximately
less than half PCS (approximately 8 µsec). In the Linear
controller, the partition in the NCC can be suspended and
resumed several times. A suspension and resume actions have
a similar cost of one PCS. So, it means that the non-critical
partition can suffer L partition context switches during the
critical partition execution. It can imply a reduction of perfor-
mance of non-critical partitions. A more thorough analysis of
the proposed strategies and new ones are considered as future
work,

VII. EXPERIMENTAL RESULTS
This section describes the scenarios evaluated considering
the proposed controllers. Controllers use PMU counters.
After comprehensive analysis of the more than 60 events
available in the PMU of the platform used, we selected
three events for controller implementation. These events are:
PME_PROCESSOR_CYCLES that counts the number of
cycles, PME_INSTR_COMPLETED that counts the number
of instructions executed and BIU_MASTER_REQUESTS
that provides the number bus accesses requested. The number
of bus requests is strongly dependent on the bus collision
generated. This measure is significantly higher when the core
is executed at the same time as other cores than when it is
executed in isolation. All events can be applied to the guest,
hypervisor or both domains. Depending on the domain, they
count the selected domain(s) processor cycles, instructions
executed, or bus requests.

The experimentation has analysed the behaviour of the pro-
posal using a Flight Control demonstrator provided by Thales
comprising two partitions and several tasks. We selected spe-
cific tasks for the experimentation. Although there are tasks
with a computation time of milliseconds, we selected one
task with a computation time of two hundred of milliseconds
to show better the effects of the interference of other cores.
Also, the selected task was more representative of control
tasks where different sections in the execution correspond to
data acquisition (input) or data delivery (output). Input and
output phases have more intensive access to memory while
computation performs fewer external accesses (data can be
cached).

Each scenario was executed on the T2080 platform with a
critical partition (CPart) and a range of 0 to 3 NCC executing
dummy applications. These dummy applications or partitions
are executed in temporal windows that can overlap with
CPart partition in an interval. CPart starts in all scenarios at

VOLUME 6, 2018 50635



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

time 0. The goal is to measure the response time of this par-
tition. Four scenarios have been defined. In SC1 controllers
are not active. SC2 uses NCC-Cs while SC3 defines a CC-C.
In SC4, both types of controllers are active.

A. SCENARIOS EVALUATION
In all scenarios, CPart is executed in core 0 which is consid-
ered the critical core while Dummy partitions are executed in
cores 1, 2 and 3 (non-critical cores). We useDP to refer to all
Dummy Partitions andDPn when a specific Dummy Partition
is referenced.

FIGURE 10. Execution evolution when controllers are not active.

Figure 10 shows the execution of Scenario SC1. Timemea-
surements are performed in processor cycles but we present
it as time (processor frequency is 1800MHz) to facilitate plot
representation. The x-axis represents the time in milliseconds
while the y-axis draws the number of CPart instructions.
As can be seen, if CPart is executed without the interference
of other partitions (identified in the plot as Inst-0D), it finishes
its computation at 243 milliseconds (ms). When CPart is
executed with DP1 starting at 0 ms (Inst-1D in the plot), the
interference introduces a delay in the CPart execution which
requires 346 ms to complete its number of instructions (com-
putation). Inst-2D shows the evolution of CPart instruction
count when 2 DP are started at the same time as CPart.
In this case,CPart finishes its computation at 517ms. Inst-3D
plots the evolution of CPart when 3 DP are executed starting
at time 0 ms. CPart completes its execution in 634 ms.

TABLE 1. NCC-C active. CPart response and action time.

Tables 1 and 2 present the results when NCC controllers
and CC controllers are independently active. The scenario
includes three cases with 1, 2 or 3 DPs starting at 0, 80 and
120 ms. The third column provides the response time of
CPart when no controllers are active. In the case thatCPart is
executed in isolation, the response time is 243 ms. Columns
4 and 5 present the results when only NCC Controllers are

TABLE 2. CC-C active. CPart response and action time.

active. In that case, the response time ofCPart is 286, 327 and
387 ms, as result of the actions taken by NCC Controllers
shown in column 5. For instance, when 2 DPs are defined,
actions are taken at 154 ms by NCC-C in core 1 and 235 ms
by NCC-C in core 2.

Columns 4 and 5 in table 2 show the results when only a
CC Controller is active. In that case, CPart finishes at 290,
324 and 337 ms, respectively. Actions have been taken at
140, 174 and 187 ms suspending running non-critical cores.
Column 5 shows the time the action is taken and the affected
cores (in brackets).

TABLE 3. CC-C and NCC-C active. CPart response and action time.

Table 3 show the results when CC and NCC controllers are
active. Using the same scenarios, columns 3, 4 and 5, show
the response time of CPart , the action taken by NCC and CC
Controllers. In the case of 2 DPs starting at 0 and 80 ms,
CPart finishes its execution at 317ms. At 154ms, the NCC-C
of core 1 suspends its execution. At 167ms, the CC-C decides
the suspension of the rest of the cores (core 2 in this case).

A more detailed analysis and justification for the instant
the action is taken by CC-C is presented in the next
section.

The conclusion of this experimentation is that: i) it is pos-
sible to control the execution of critical cores, ii) a character-
ization of CPart and DP is required to adjust the references.
The reference for NCC-Cs should limit the number of bus
accesses. So, an estimation of the number of accesses in iso-
lation restricted to the overlap interval with critical partition
is a good starting point for setting the reference that limits the
NCC bandwidth.

The CC-C tuning has to consider the number of control
points (increment of the number of instructions) and the
relation between cycles and instructions (CPI). These val-
ues should take into account the way CPart executes the
instructions.

B. STRATEGY ANALYSIS
Using the previous example of the critical partition, the worst
observed execution time of a task is 243 ms. As it has to
be executed in parallel with other cores, at design phase an

50636 VOLUME 6, 2018



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

FIGURE 11. Local and Global controller. 15 instruction levels.

interference overload should be assumed. Let us suppose that
the system integrator of the partitioned system decides that
execution time plus an additional 20% of its time is allocated
to the task. In that case, when the cyclic scheduling plan is
generated, the slot to allocate the task will be 290 ms.

TABLE 4. CC-C and NCC-C active. CPart response and action time.

TABLE 5. CC-C and NCC-C active. CPart response and action time.

Tables 4 and 5 show the behavior of two controllers with
different configurations in the same set of scenarios. The
scenarios are composed of three DSs with starting times
at [0, 0, 0], [0, 50, 100] and [50, 100, 200], ms respectively.
Columns 3, 4 and 5 show the response time ofCPart , the time
where the action suspend itself is taken by each NCC-C and
the time where the action applied by the CC-C, suspending
the running cores, is executed. This CC Controller is con-
figured with 5 instruction levels. Same columns (4, 5 and 6)
of table 5 show the control results when the CC Controller
is configured with 15 instruction levels. Figure 11 plots the
evolution of CPart execution in the case of the CC Controller
with 15 levels.

C. ALTERNATIVE STRATEGY
Table 6 summarises three cases with the start times,
the instants at which control decisions to suspend and resume
NCCs are taken and NCC controller decisions (time and
core). In second case, slots of NCC start at 0, 50, and 100 ms.
A 10 ms, the CC-C decides to suspend all NCCs which
are resumed at 24 ms. This situation is repeated several

TABLE 6. Time results when Linear controller is used.

FIGURE 12. CC: Linear controller.

times until the end of the slot is reached or the cores are
self-suspended. In this case, the actions of suspending and
resuming NCCs are taken up to five times, resulting in an
overload higher than when using the Limit Controller strat-
egy. Figure 12 plots these scenarios in which the Linear
Controller has been applied.

The advantage of this strategy is that the CPI of the experi-
ments does not need to be determined. Directly, the slot dura-
tion in cycles permits determination of the CPI. However, this
controller can produce several core suspension and resume
significantly increasing hypervisor overhead.

D. ANALYSIS OF THE CONTROLLER PARAMETERS
In order to select the appropriate parameters for the CC-C,
a set of experiments with random scenarios has been per-
formed. The scenario is generated by defining random start
times for NCC slots. DP1 will randomly start in the interval
[0, end of the first third], DP2 in [0, end of the second
third] and DP3 in [0, end of the execution of CPart].
All the scenarios were executed 10 times with a configuration
of N levels of Instructions (N= [2, 18, 2]) and decision limit
ranged in [1.0, 0.9, 0.2]. As an example, the configuration
N= 10 and decision limit= 0.92, means that the total number
of instructions has been split in 12 limits and the decision to
stop cores is taken if the CPI relation is higher than 0.92*CPI
calculated as the limit of the secure zone.

The figures below show the results of this evaluation.
Figure 13 shows the number of the CPart misses. A missed
deadline is considered when CPart execution does not finish
during the slot duration. Figure 14 shows NCC activity. The
maximum CPU time is calculated as the sum of the three
NCCs during the intervals in which they should be executed

VOLUME 6, 2018 50637



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

FIGURE 13. Number of misses in CPart.

FIGURE 14. CPU utilisation of NCCs.

and overlaps with the CPart slot. The minimum time corre-
sponds to the minimum CPU utilisation of NCC during the
interval of which are active during the execution of CPart.
Average value is the mean execution time of NCCs in all
experiments under the same configuration parameters.

As can be seen, if N is higher than 10 and the margin
is lower than 0.95 then the controller can allow the CPart
computation to finish on time.

VIII. RELATED WORK
Different methods have been proposed or are pursued to
derive guarantees for the timeliness of sets of tasks in a
parallel workload setting when performance isolation is not
given. Techniques can be static or measurement-based. The
static analysis of an entire set of concurrently executed
applications may deliver a sound and precise guarantee for
timing behaviour. The problem is the huge complexity of
this approach. Measurement-based methods are, in general,
not able to derive guarantees in either the monocore or the
multicore case. However, someworks have demonstrated that
with some constraints they can generate results good enough
to be used in industry.

To cope with the resource constraints in computer systems
control and scheduling codesign has been considered as a
relevant topic. The integration of feedback control and real-
time constraints has been extensively studied in the literature.
Scheduling control co-design is a topic that combines
the scheduling of real-time tasks and feedback control

solutions [18], [19]. One of the first works [20] considered
the period selection problem by means of a cost function.
Other issues related to the control of real-time activities were
analysed in several works such as task rate optimization with
deadline constraints [21], feedback-based control of thermal
management and control of media tasks [22], the use of linear
quadratic Gaussian controllers for controlling the response
time, memory as resource [23] and adjusting the task periods
in given intervals to minimize the hyperperiod [24].

While previous works considered the control or adjustment
of task-related parameters (period or deadline), other works
focused on CPU utilisation as a resource. In [25] a framework
was presented to deal with CPU control using PID controllers.
The goal was to achieve higher CPU usage with a lower
deadline miss ratio. A Constant Bandwidth Server (CBS) was
proposed in [26] as a way of controlling the processing time
of some tasks. In [27] a control server model based on the
CBS approach was developed. Extensions to this CBS have
been proposed in the literature [28]. In [29] an extension for
multi-processors is presented. In [30] the optimal choice of
scheduling parameters for control tasks is presented, assum-
ing CBS scheduling.

Several works have pointed out the problems of shared
resources in multi-core systems. In [31] and [32], there
are reviews of the impact of shared buses, caches, and
other resources on performance and performance prediction.
In [33], an approach for WCET computation considering
variable access delay due to shared resources is proposed.
It also introduces techniques to analyse how applications
use resources and compute the interference delay. In [34],
it is proposed a technique to determine the bounded inter-
ference in multi-core systems. This technique requires to
generate a profile of the execution and determine the WCET.
In [35], a bus protocol based on TDMA-based memory
arbiter jointly with a second, dynamic arbitration layer facil-
itates the interference-free integration of mixed-criticality
applications. In [36] a global time-triggered scheduling
approach with barrier synchronization is proposed for
multicores.

In [37], a control of the running tasks accessing shared
resources is presented. In [38], a memory guard mechanism
is defined that regulates memory accesses. It is a regulation
oriented mechanism that allocates a maximum bandwidth
usage per timeslot. In [39], a distributed run-time WCET
controller is proposed that stops low-criticality tasks (running
on other cores) whenever it determines that their continued
execution could cause a high-criticality task to fail to meet a
deadline. In [40] this controller is combined with quality-of-
services strategies to improve processor utilisation based on
controller execution history.

IX. CONCLUSIONS
In this paper, we have proposed a feedback control imple-
mented at hypervisor level that can control the execution
of the critical applications on a multi-core platform under
hypervisor execution. The controller scheme and its scope

50638 VOLUME 6, 2018



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

have been defined. The proposed scope enables effective con-
trol only when critical applications are executed. The actions
proposed to control the execution of critical applications are
simple: suspend the execution of non-critical cores.

Two control strategies have been proposed and compared.
First, it makes decisions to suspend non-critical cores as late
as possible. This allows a single control action to be taken
and reduces overload. The second one makes the decision to
suspend when the performance line (CPI) is separated from
the expected one, while if it is recovered, the non-critical
cores are resumed.

The action of suspending all non-critical cores has two
motivations: hypervisor decisions must be extremely simple
in order to facilitate the future certification and to avoid
complex decisions that can increase overheads.

Also, we proposed a controller tuning technique for the
controllers. Experimentation has made it possible to analyze
the influence of the controller configuration parameters on
the control of the response time achievement. Experimenta-
tion has been carried out in a representative computer system
used in avionics. Finally, we detailed the impact in terms of
execution cycles that the proposed scheme adds to the original
hypervisor services.

Future work is focused on: i) other control strategies for
critical and non-critical cores, ii) different controller actions
such as core frequency reduction, iii) how to reduce or remove
the constraint of only one critical core executing critical parti-
tions at any time, iv) extend the evaluation to other platforms,
and vi) to analyse the effect of enabling/disabling cache can
impact on the approach.

REFERENCES
[1] A. Burns and R. I. Davis, ‘‘Mixed criticality systems—A review,’’ Dept.

Comput. Sci., Univ. York, York, U.K., Internal Rep., 2017. [Online].
Available: www-users.cs.york.ac.uk/burns/review.pdf

[2] R. Ernst and M. di Natale, ‘‘Mixed criticality systems—A history of
misconceptions?’’ IEEE Design Test, vol. 33, no. 5, pp. 65–74, Oct. 2016.

[3] J. Rushby, ‘‘Partitioning in avionics architectures: Requirements, mecha-
nisms, and assurance,’’ NASA Langley Res. Center, Hampton, VA, USA,
Tech. Rep. NASA/CR-1999-209347, 1999.

[4] Avionics Application Standard Software Interface, Standard ARINC-653,
Airlines Electronic Engineering Committee, Mar. 1996.

[5] A. Crespo, I. Ripoll, andM.Masmano, ‘‘Partitioned embedded architecture
based on hypervisor: The XtratuM approach,’’ in Proc. EDCC, 2010,
pp. 67–72.

[6] M. Masmano, I. Ripoll, A. Crespo, and J. Metge, ‘‘XtratuM: A hypervisor
for safety critical embedded systems,’’ in Proc. 11th Real-Time Linux
Workshop, Dresden, Germany, Sep. 2009, pp. 263–272.

[7] Multi-Cores Partitioning for Trusted Embedded Systems, document FP7-
ICT-287702, MultiPARTES, 2011.

[8] Distributed Real-Time Architecture for Mixed Criticality Systems, docu-
ment eU FP7-ICT-610640, DREAMS, 2013.

[9] T. Lundqvist and P. Stenström, ‘‘Timing anomalies in dynamically sched-
uled microprocessors,’’ in Proc. IEEE Real-Time Syst. Symp., Dec. 1999,
pp. 12–21.

[10] C. Cullmann et al., ‘‘Predictability considerations in the design of multi-
core embedded systems,’’ in Proc. Embedded Real Time Softw. Syst., 2010,
pp. 1–10.

[11] A. Crespo, A. Soriano, P. Balbastre, J. Coronel, D. Gracia, and P. Bonnot,
‘‘Hypervisor feedback control of mixed critical systems: The XtratuM
approach,’’ in Proc. Workshop Oper. Syst. Platforms Embedded Real-Time
Appl. (OSPERT), Dubrovnik, Croatia, Jun. 2017, pp. 35–40.

[12] User Manual, FreeScale, Austin, TX, USA, 2010.

[13] Intel 64 and IA-32 Architectures. Software Developer’s Manual, vol. 3C,
Intel Corp., Santa Clara, CA, USA, 2011.

[14] ARM Architecture Reference Manual, ARMv7-A and ARMv7-R Edition,
Issue C, document ARM DDI0406C, 2012.

[15] V. Brocal, M. Masmano, I. Ripoll, A. Crespo, P. Balbastre, and J.-J. Metge,
‘‘Xoncrete: A scheduling tool for partitioned real-time systems,’’ in Proc.
Embedded Real-Time Softw. Syst., 2010, pp. 1–8.

[16] A. Crespo, P. Balbastre, J. Simo, and P. Albertos, ‘‘Static scheduling
generation for multicore partitioned systems,’’ in Proc. Int. Conf. Inf. Sci.
Appl. (ICISA), vol. 376, 2016, pp. 511–522.

[17] XtratuM User Manual, fentISS, València, Spain, Dec. 2015.
[18] K.-E. Årzén and A. Cervin, ‘‘Software and platform issues in feed-

back control systems,’’ in Cyber-Physical Systems. Reading, MA, USA:
Addison-Wesley, 2017, pp. 165–195.

[19] R. S. Fernández, J. E. S. Ten, J. L. N. Herrero, J. Poza-Lujan, and
J. Posadas-Yagüe, ‘‘Núcleo de control: Controladores modulares en
entornos distribuidos,’’ Rev. Iberoamer. Autom. Inf. Ind., vol. 13, no. 2,
pp. 196–206, 2016.

[20] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, ‘‘On task schedulability
in real-time control systems,’’ in Proc. 17th IEEE Real-Time Syst. Symp.
(RTSS), Washington, DC, USA, Dec. 1996, pp. 13–21.

[21] E. Bini and M. Di Natale, ‘‘Optimal task rate selection in fixed priority
systems,’’ in Proc. 26th IEEE Real-Time Syst. Symp. (RTSS), Miami, FL,
USA, Dec. 2005, pp. 399–409.

[22] M. Lindberg and K.-E. Årzén, ‘‘Feedback control of cyber-physical sys-
tems with multi resource dependencies and model uncertainties,’’ in
Proc. 31st IEEE Real-Time Syst. Symp. (RTSS), San Diego, CA, USA,
Nov./Dec. 2010, pp. 85–94.

[23] A. Marchand, P. Balbastre, I. Ripoll, R. Masmano, and A. Crespo,
‘‘Memory resource management for real-time systems,’’ in Proc. 19th
Euromicro Conf. Real-Time Syst. (ECRTS), Pisa, Italy, Jul. 2007,
pp. 201–210.

[24] V. Brocal, P. Balbastre, R. Ballester, and I. Ripoll, ‘‘Task period selection to
minimize hyperperiod,’’ in Proc. IEEE 16th Conf. Emerg. Technol. Factory
Automat. (ETFA), Toulouse, France, Sep. 2011, pp. 1–4.

[25] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, ‘‘Feedback control real-
time scheduling: Framework, modeling, and algorithms,’’ Real-Time Syst.,
vol. 23, nos. 1–2, pp. 85–126, 2002.

[26] L. Abeni and G. C. Buttazzo, ‘‘Integrating multimedia applications in hard
real-time systems,’’ in Proc. 19th IEEE Real-Time Syst. Symp., Madrid,
Spain, Dec. 1998, pp. 4–13.

[27] A. Cervin and J. Eker, ‘‘The control server: A computational model for
real-time control tasks,’’ in Proc. 15th Euromicro Conf. Real-Time Syst.
(ECRTS), Porto, Portugal, Jul. 2003, pp. 113–120.

[28] L. Marzario, G. Lipari, P. Balbastre, and A. Crespo, ‘‘IRIS: A new reclaim-
ing algorithm for server-based real-time systems,’’ in Proc. 10th IEEE
Real-Time Embedded Technol. Appl. Symp. (RTAS), Toronto, ON, Canada,
May 2004, pp. 211–218.

[29] S. K. Baruah, J. Goossens, and G. Lipari, ‘‘Implementing constant-
bandwidth servers upon multiprocessor platforms,’’ in Proc. 8th IEEE
Real-Time Embedded Technol. Appl. Symp. (RTAS), San Jose, CA, USA,
Sep. 2002, pp. 154–163.

[30] D. Fontanelli, L. Palopoli, and L. Greco, ‘‘Optimal CPU allocation to a
set of control tasks with soft real–time execution constraints,’’ in Proc.
16th Int. Conf. Hybrid Syst. (HSCC), Philadelphia, PA, USA, Apr. 2013,
pp. 233–242.

[31] A. Abel et al., ‘‘Impact of resource sharing on performance and perfor-
mance prediction: A survey,’’ in Proc. 24th Int. Conf. CONCUR, Buenos
Aires, Argentina, Aug. 2013, pp. 25–43.

[32] J. Reineke and R. Wilhelm, ‘‘Impact of resource sharing on perfor-
mance and performance prediction,’’ in Proc. DATE, Dresden, Germany,
Mar. 2014, pp. 1–2.

[33] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt, ‘‘Multi-core interference-sensitiveWCET analysis leveraging
runtime resource capacity enforcement,’’ in Proc. 26th Euromicro Conf.
Real-Time Syst. (ECRTS), Madrid, Spain, Jul. 2014, pp. 109–118.

[34] S. Esposito, M. Violante, M. Sozzi, M. Terrone, and M. Traversone,
‘‘A novel method for online detection of faults affecting execution-time in
multicore-based systems,’’ ACM Trans. Embedded Comput. Syst., vol. 16,
no. 4, pp. 94:1–94:19, 2017.

[35] B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro,
‘‘A TDMA-based arbitration scheme for mixed-criticality multicore
platforms,’’ in Proc. Int. Conf. Event-Based Control, Commun., Signal
Process. (EBCCSP), Krakow, Poland, 2015, pp. 17–19.

VOLUME 6, 2018 50639



A. Crespo et al.: Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems

[36] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, ‘‘Scheduling
of mixed-criticality applications on resource-sharing multicore systems,’’
in Proc. Int. Conf. Embedded Softw. (EMSOFT), Montreal, QC, Canada,
2013, pp. 17:1–17:15.

[37] S. Girbal, X. Jean, J. L. Rhun, D. G. Pérez, and M. Gatti, ‘‘Deterministic
platform software for hard real-time systems using multi-core cots,’’ in
Proc. 34th Digit. Avionics Syst. Conf. (DASC), Prague, Czech Republic,
Sep. 2015, pp. 8D4-1–8D4-15.

[38] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, ‘‘Memguard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms,’’ in Proc. 19th IEEE Real-Time Embedded Tech-
nol. Appl. Symp. (RTAS), Philadelphia, PA, USA, Apr. 2013, pp. 55–64.

[39] A.Kritikakou et al., ‘‘Distributed run-timeWCET controller for concurrent
critical tasks inmixed-critical systems,’’ inProc. 22nd Int. Conf. Real-Time
Netw. Syst. (RTNS), Versaille, France, Oct. 2014, p. 139.

[40] S. Heywood, ‘‘Scheduling mixed-criticality multi-core systems to max-
imise resource utilisation,’’ Ph.D. dissertation, Dept. Comput. Sci. Eng.,
Univ. Gothenburg, Gothenburg, Sweden, 2016.

ALFONS CRESPO received the Ph.D. degree in
computer science from the Universitat Politèc-
nica de València (UPV), Spain, in 1984. He is
currently a Professor with the Department of
Computer Engineering, UPV. He also leads the
group of Industrial Informatics and has been
the responsible of several national and European
research projects including OCERA (coordina-
tor), FRESCOR, ARTIST2, OVERSEE, Multi-
PARTES, and DREAMS. He has published over

100 papers in specialized journals and conferences in the area of real-time
systems. His main research interests include different aspects of the real-
time systems (scheduling, virtualization techniques, scheduling, and control
integration).

PATRICIA BALBASTRE received the degree in
electronic engineering and the Ph.D. degree in
computer science from the Universitat Politèc-
nica de València (UPV), Spain, in 1998, and
2002, respectively. She is currently a Professor
with the Department of Computer Engineering,
UPV. She has participated in various Spanish
and European projects including OCERA, FRES-
COR, VOS4ES, MultiPARTES, and DREAMS.
Her main research interests include real-time oper-

ating systems, dynamic scheduling algorithms, and real-time control.

JOSÉ SIMÓ received the M.S. degree in indus-
trial engineering and the Ph.D. degree in computer
science from the Universitat Politècnica de Valèn-
cia (UPV), Spain, in 1990 and 1997, respectively.
Since 1990, he has been involved in several Span-
ish and European research projects mainly related
to Real-Time and Embedded Systems and Indus-
trial Collaborations. He is currently a Professor
with the Department of Computer Engineering,
UPV. His current research is focused on the devel-

opment of real-time embedded systems, autonomous systems, and robotics.

JAVIER CORONEL received the Ph.D. degree in
computer science from the Universitat Politècnica
de València, Spain, in 2014. He is currently a
Software Engineer Specialist in virtualization for
real-time multicore embedded systems. He is also
in charge of the hardware, validation, and devel-
opment activities. He has published several papers
in the topic of virtualization and scheduling for
real-time systems.

DANIEL GRACIA PÉREZ received the Ph.D.
degree in computer architecture from Paris XI
University and degrees in engineering from the
Kungliga Teckniska Högskolan, Sweden, and
the Universitat Politècnica de Catalunya, Spain.
He has participated in various French and Euro-
pean projects including ANR SoCLib (workpack-
age coordinator), ANR Hecosim (workpackage
coordinator), CATRENE COMCASS, OPEES,
ITEA TWINS, FP7 Certainty, and FP7 DREAMS.

He is currently a Research Engineer with Thales Research & Technology,
France. His current research consists on the development and application of
new multi-core architectures for safety-critical systems.

PHILIPPE BONNOT received the degree from the
Ecole Nationale Supérieure des Télécommunica-
tions de Paris in 1988. He has experience of com-
plex SOC design, parallel architecture of digital
signal processor, and associated development tools
developed in Thales Communications. He notably
involved in SIMD architectures designed for space
on-board signal processing. He has been a Man-
ager of European Project MAGICFPU. He was
a Chief Architect with the ATMEL DSP Design

Center. He initiated design of massively parallel architectures for image
processing implemented on FPGA. He has been a Coordinator of IST
FP6 MORPHEUS integrated project about reconfigurable architecture and
tools. He is currently the Leader of the Critical Embedded Systems Lab,
Thales Research & Technology.

50640 VOLUME 6, 2018


	INTRODUCTION
	PERFORMANCE MONITOR COUNTERS
	HYPERVISOR SCHEDULING MODEL
	SYSTEM MODEL
	SCHEDULING GENERATION

	GENERAL CONTROLLER SCHEME
	CONTROLLER ACTIONS
	CONTROLLER SCOPE
	MULTIPLE NON-CRITICAL CORES
	AVOIDING CONSTRAINTS

	CONTROLLER STRATEGIES AND TUNING
	NCC CONTROLLER (NCC-C)
	CC CONTROLLER (CC-C)
	LIMIT CONTROLLER STRATEGY
	LINEAR CONTROLLER STRATEGY

	CC-C PARAMETERS

	HYPERVISOR PERFORMANCE ANALYSIS
	KERNEL THREAD COMMUNICATIONS
	OVERHEAD ANALYSIS

	EXPERIMENTAL RESULTS
	SCENARIOS EVALUATION
	STRATEGY ANALYSIS
	ALTERNATIVE STRATEGY
	ANALYSIS OF THE CONTROLLER PARAMETERS

	RELATED WORK
	CONCLUSIONS
	REFERENCES
	Biographies
	ALFONS CRESPO
	PATRICIA BALBASTRE
	JOSÉ SIMÓ
	JAVIER CORONEL
	DANIEL GRACIA PÉREZ
	PHILIPPE BONNOT


