
Received July 17, 2018, accepted August 24, 2018, date of publication September 6, 2018, date of current version September 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2867931

Multi-Controller Placement Towards SDN Based
on Louvain Heuristic Algorithm
WEN CHEN , CONG CHEN , XUEQIN JIANG , (Member, IEEE), AND LEIJIE LIU
School of Information Science and Technology, Donghua University, Shanghai 201620, China

Corresponding author: Cong Chen (congchen@mail.dhu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61501108.

ABSTRACT The separation of the forwarding and control planes of software-defined networking brings a
lot of flexibility to network management. However, with the increase in network capacity, network structure
becomes more and more complicated. The controller placement problem in a large-scale network is still a
hard nut to crack because of high complexity and difficulty in the tradeoff between performance. In this
paper, a novel approach named community detection controller deployment is proposed. With the aid of
theory of complex network analysis, the network topology of the controller to be deployed is regarded as a
network composed of multiple communities, and then a suitable position is selected in each community
to place the controller, which is capable of avoiding the complexity of global deployment. In order to
balance the number of switches managed by the controller in each community, the scale constraint factor is
introduced into Louvain heuristic algorithm to limit the number of nodes in each community and balance the
differences in the number of nodes among different communities. Distinct from the existing clustering-based
approaches, this method can independently identify partitions with community attributes according to the
network structure without manual intervention. On the other hand, it can adjust the number of nodes within
communities on demand to achieve topological equilibrium partition. Experiments are performed on real
network topologies, and corresponding results show that the proposed method is more suitable for networks
with plenty of nodes and can effectively balance the controllers’ load while keeping latency at a lower level.

INDEX TERMS SDN, network structure, controller placement, scale constraint factor, topological
equilibrium partition.

I. INTRODUCTION
IP network as the underlying network that carries various
future infinite data services such as Internet of Things, cloud
computing, VR, AI, etc., its flexibility, scalability and support
for services require the network to complete its own evolution
as soon as possible. As one of the emerging network technolo-
gies, Software-Defined Networking (SDN) has the capability
to evidently improve network performance and intelligently
manage network services. Therefore, it can be one of the
solutions to the above needs. The prominent feature of this
novel paradigm is that decoupling the control plane from
the forwarding device, data plane can focus on performing
basic functionalities such as packet forwarding in high speed,
while the logically centralized control plane is in charge
of issuing control command through control protocol such
as OpenFlow [1]. This innovation on the network greatly
enhances the reconfiguration of the network.

The centralized controller-based architecture in SDN can
simplify control plane design. A single controller, however,
has limited capability to handle network events and easily
becomes a bottleneck in reliability and scalability. A solution
to this problem is adopting multiple controllers in the control
plane [2]–[4]. For example, when SDN is deployed in a data
center with a large number of network devices, administrators
can use controller cluster with software definition function
to configure the network devices. With multiple controllers,
an important concern is the controller deployment, which is
first mentioned in [5]. For data center scenarios, devices are
centralized and deployment is relatively easy. For scenarios
where the locations of devices are not concentrated, how
to determine the optimal number and appropriate location
for controller is a challenging problem. Fig. 1 shows a
large-scale network with four regions. Each region com-
posed of enterprise, school, government and data center,

49486
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-9850-5864
https://orcid.org/0000-0003-2561-3113
https://orcid.org/0000-0002-0414-4349

W. Chen et al.: Multi-Controller Placement Towards SDN Based on LHA

is geographically separated and has a complex network struc-
ture like the network infrastructure plane in Fig. 1. If the con-
troller is deployed directly from the global scope, it is difficult
to achieve network requirements for specific services. Thus,
deploying controllers in this scenarios would be tricky.

FIGURE 1. A large-scale SDN-enabled network with four regions and
complicated structure.

In recent years, research and practice around SDN have
been in full swing. Controller Placement Problem (CPP) is
regarded as the most important issue which can directly affect
the entire network performance. Thus it is also one of the
hot topics in SDN research fields. The study of CPP mainly
focuses on two aspects: the performance optimization and
the deployment model. From the view of performance opti-
mization, many network performance metrics such as prop-
agation latency [5], controller capacity [6], node failure [7],
deployment cost [8], [9], energy saving [10], have been taken
into consideration. When multiple performance metrics are
considered, the corresponding problem is generally converted
into integer programming problem, and then the controller
position satisfying the conditions is found in the global scope.
From the deployment model, clustering methods are gener-
ally used in network topology to form several clusters and
determine their cluster centers at the same time, i.e., the
controller locations [11]–[13].

Although many related studies on controller placement
have been pursued, there are still some details that have not
been taken into account. For example, some parameters such
as cluster number and density threshold need to be given
when using clustering methods. However, these manual inter-
ventions will affect the accuracy of clustering. In addition,
with the explosive growth of network capacity, the network
structure becomes so complicated that the number of con-
trollers needed in large-scale network can not be specified
in advance. Considering that the network structure itself can
be served as a clue to controller deployment, in this paper,

we study the placement of multiple controllers in complex
networks, and our contributions are summarized as follows:
• The controller deployment is combined with the theory
of complex network analysis, and the whole network
is partitioned by identifying the network structure with
community attributes in large-scale networks, as shown
four regions in Fig. 1. Louvain heuristic algorithm based
on modularity (LHA) [14] is used in this paper, which
can determine the appropriate partition according to the
network topology completely independently, rather than
prespecifying the number of partitions and other param-
eters, thus ensuring the accuracy of partitioning.

• In addition, the existing deployment schemes based on
clustering often ignore the size of cluster when clus-
tering the nodes, this is likely to lead to the uneven
division. In view of this, we introduce the scale con-
straint factors on the basis of LHA, it is able to limit
the size of sub-network and balance the number of nodes
between different sub-networks. Then the entire network
is divided into multiple communities with moderate
scale and balanced number of nodes, which improves the
load balancing performance.

• The experiments are performed on real world topologies,
and the results show that our approach is suitable for
achieving the balanced partition of large-scale networks
and can obtain a good trade-off between latency and
controller’s load.

The remainder of this paper is organized as follows.
In Section II, the related work is described in details.
In Section III, we formulate this problem mathematically.
Next, the related algorithm is introduced and the deployment
process is elaborated in section IV. Section V shows the
simulation and presents the performance analysis. Finally,
the conclusion is given in Section VI.

II. RELATED WORK
The separation of data plane and control plane in SDN
structure impel operators to consider the design of control
plane when deploying SDN. As a critical issue in the field
of SDN, controller deployment naturally arouses the interest
of researchers. According to the existing literature, CPP has
been studied from several perspectives, such as network per-
formance, deployment scenarios and so on, andmost of which
focus on network performance optimization. The following is
an overview of the works related to controller deployment.

Heller et al. [5] initiate the research on CPP and empha-
size the importance to minimize average-case and worst-case
propagation latency from switch to controller. They regard
this issue as a facility location problem, then K-median and
K-center are adopted to solve this problem. However, this
approach is limited to specific topologies and does not take
into account the capacity constraints of the controller, which
is not applicable in real network. The capacitated controller
placement problem (CCPP) in [6] considers the additional
load of controller. To solve the CCPP, Yao et al. [6] propose
an advanced capacitated K-center algorithm to search the best

VOLUME 6, 2018 49487

W. Chen et al.: Multi-Controller Placement Towards SDN Based on LHA

placement solutions. In [15] and [16], K-critical strategy is
used to achieve the minimum number of controllers as com-
paredwithmethods in [5]. Apart fromminimizing the number
of controllers, Wang et al. [11] investigate the placement
problem from the perspective of latency minimization and
an optimized K-means algorithm is presented. They cluster
nodes by improving the selection of initial centroid posi-
tions, which effectively reduce themaximum latency between
centroid and their nodes. Similar to the above approaches,
both spectral clustering [13], [17] and density-based cluster-
ing [18] are also used for controller placement to optimize
the propagation latency. As far as deployment algorithms are
concerned, they have one thing in common: the number of
clusters or controllers need to be prescribed while studying
the details of deployment. However, how many controllers
required is unknown in advance. Furthermore, determining
the number of clusters by enumeration is not feasible espe-
cially in large-scale networks with a huge amount of devices.

In addition to the performance metrics described above,
several other factors have been taken into account.
To strengthen network robustness, Killi and Rao [7] propose
a novel model that planning ahead for controller failures
to avoid drastic increase in latency and disconnections.
Sallahi and St-Hilaire [8], [9] model the CPP as integer linear
program (ILP) to solve how to build and expand the networks
at minimum cost. Hu et al. [10] address the controller place-
ment from a standpoint of energy consumption, and they can
achieve energy saving by adjusting the state of the control
link.

However, the research on controller deployment is not
confined to pure SDN network, but also in other scenarios.
Ksentini et al. [19] and Abdel-Rahman et al. [20] propose the
SDN-based wireless network architecture. The CPP is mod-
eled as ILP and solved by heuristic algorithm. Liu et al. [21]
discuss the joint placement problem for satellite gateways and
controllers in SDN-enabled 5G-satellite integrated network.
To obtain the maximum average reliability under the given
latency constraint, simulated annealing and clustering hybrid
algorithm is developed and can achieve the near optimal
reliability with much smaller running time. In [22], the CPP
is in the background of virtual environment. Different from
the usual way, the deployment method in [22] is embedding
the virtual control graph over the physical substrate, then
they propose an extensible ILP model to address the corre-
sponding problem. In addition, for deployment problem in
[17], [18], and [23], the central idea of them is to partition
the large-scale network into smaller domains by using clus-
tering algorithm. It should be mentioned that when deploy-
ing controllers in large-scale networks, clustering directly
affects network performance. These clustering algorithms
either need to specify the number of clusters, or need to
set other parameters that impact the clustering effect, which
will result in unstable partitions. Furthermore, due to the
deployment complexity, some of the models described above
are not suitable for large-scale networks with complicated
structures.

Aiming at the problems of instability in the process
of obtaining sub-networks and high complexity of global
deployment, we propose a strategy named community detec-
tion controller placement (CDCD) in large-scale networks.
To the best of our knowledge, it is the first to use the com-
munity detection in CPP. In our approach, the entire network
can be split into multiple communities independently accord-
ing to the network structure. In addition, in order to obtain
balanced communities, we limit the size of the resulting par-
tition by introducing scale constraint factors for nodes. The
work done can be summarized as follows: firstly, we divide
the topology into several sub-networks, then we place the
controller in each sub-network to obtain optimal latency. The
partition performance of the proposed approach have been
validated on real network topologies.

III. CONTROLLER DEPLOYMENT MODEL
AND FORMULATION
The mathematical model of the CPP is presented in this
section. For an SDN-enabled network, the main network ele-
ments include controllers, switches and links. Thus, the net-
work can be modeled by an undirected graph G = (V ,E),
whereV is the set of switches andE is the set of physical links
between the switches. The deployment method used in this
paper is in-band1 deployment. Assuming that the number of
controllers to be deployed throughout the SDN network is k ,
then let C = {ci|i = 1, 2, . . . , k} be the set of controllers.
ϕ(c) (c ∈ C) denotes the mapping function that connects a
single controller with a set of switches. Then the whole
network G is managed by k controllers such that

ϕ(ci) 6= ∅, ∀ ci ∈ C, (1)

ϕ(ci) ∩ ϕ(cj) = ∅, ∀ i 6= j, ci, cj ∈ C, (2)

∪
k
i=1ϕ(ci) = V , ∀ ci ∈ C. (3)

The above formulasmean that each sub-networkmust contain
at least one node, each node can be allocated to only one
sub-network and all sub-networks need to cover the whole
network, respectively.

In large-scale networks, communication timeliness is an
important factor in network performance. In our work,
the network is divided into multiple sub-networks and latency
between controller and switch is used as the key performance
metric. The latency model in this paper can be given by the
following formula, which is similar to [18],

Lavg(ϕ(c)) =
1
|ϕ(c)|

∑
s∈ϕ(c)

dijk(s, c), c ∈ ϕ(c), (4)

Lmax(ϕ(c)) = max
s∈ϕ(c)

dijk(s, c), c ∈ ϕ(c). (5)

Equation (4) means the average latency between switches
and controllers, equation (5) means the worst-case latency
between switches and controllers, where dijk(s, c) is the
dijkstra shortest path distance, corresponds to the latency

1The so-called in-band mode means that the controller is placed at the
location of node, and the control link shares the data link.

49488 VOLUME 6, 2018

W. Chen et al.: Multi-Controller Placement Towards SDN Based on LHA

from the switch s to the associated controller c, c ∈ ϕ(c)
denotes that controller c is placed at the position of one of
the switches, |ϕ(c)| is the number of switches controlled by c.
Meanwhile, in each sub-network, it should be ensured that the
control traffic at any time does not exceed the load capacity
of the associated controller [6], which is denoted by∑

n∈ϕ(c)

l(n) ≤ L(c), ∀ c ∈ C. (6)

In addition, based on (6) we take into account the load
balancing performance among all sub-networks, which can
be intuitively described as∣∣∣∣∣∣

∑
m∈ϕ(ci)

l(m)−
∑

n∈ϕ(cj)

l(n)

∣∣∣∣∣∣ ≤ ε, ∀ ci, cj ∈ C, (7)

where L(c) represents the maximum capacity of controller c,
l(n) represents the traffic required to control a switch n, and
ε indicates the maximum difference in total load between
controllers. According to (7), the load is more balanced
when ε is smaller and vice versa. Therefore, the main
objective in this paper is to minimize the latency between
controllers and switches in each control domain under the
constraints (6) and (7),

min
c∈ϕ(c)

Lavg(ϕ(c)), ∀ c ∈ C, (8)

min
c∈ϕ(c)

Lmax(ϕ(c)), ∀ c ∈ C,

s.t. constraints (6) and (7). (9)

IV. NETWORK PARTITION AND LOCATION SELECTION
In this paper, we propose a scheme named community detec-
tion controller deployment (CDCD). The controller deploy-
ment consists of two parts. One is the network partitioning,
that is, community detection, and the other is the selection
of controller position. Louvain heuristic algorithm (LHA)
is leveraged to split the large-scale SDN network into sev-
eral sub-networks with community attributes. Nodes within
the same domain are closely connected and the connec-
tion between nodes within different sub-networks is sparse.
We assume that only one controller is deployed in each
sub-network, and the communication between controller and
switch adopts the in-band mode for information exchange.
Then determining the appropriate location in each sub-
network to place the controller.

A. LOUVAIN HEURISTIC ALGORITHM
For the completeness of narrative, we need to introduce
the algorithm as our background. Given a network G(V,E)
with node set V and edge set E, the community detection
is to partition the network into disjoint communities C =
{c1, c2, . . . , ck}, such that V = c1 ∪ c2 ∪ . . . ∪ ck and that
ci∩cj = ∅ for any distinct i and j. Edge e (u, v) ∈ E hasweight
w (u, v) between node u and node v. The modularity Q [24]

is used to measure the quality of partitioning

Q =
∑
c∈C

[∑c
in

2m
−

(∑c
tot
)2

4m2

]
, (10)

where
∑c

in is sum of the internal edge weights of
community c,2 calculated as

∑
w (u, v) ,∀u, v ∈ c and

e (u, v) ∈ E,
∑c

tot is sum of the edge weights connected to
nodes in community c, calculated as

∑
w (u, v) , {u, v} ∩ c 6=

∅ and e (u, v) ∈ E, m is sum of all edge weights, calculated
as
∑
w (u, v) , e (u, v) ∈ E.

The Louvain heuristic algorithm [14] greedily maximizes
the modularity gain 1Qu→c by moving a node u into a com-
munity c of its neighbor nodes. The gain can be calculated by
the following equation

1Qu→c =
wu→c

m
−

∑c
tot ×w(u)
2m2 , (11)

where
∑c

in,
∑c

tot and m have been defined earlier, wu→c =∑
v∈c w(u, v) is sum of the weights from node u to nodes

in community c, w(u) is sum of edge weights connected
to node u. This algorithm consists of two stages. The task
of the first stage is to incorporate all nodes into the most
suitable community according to modularity gains. It should
be noted that the current communities formed at this time are
not stable. In the second stage, each community generated
in the first stage is aggregated into a super node to build a
new network, and the weights between super nodes are also
updated accordingly. Then performing these two processes on
new network until the community structure is stable. When
all the community structures reach stability, the modularity
obtained is maximum, and the structures of entire network is
the most obvious at this time.

In addition, the greater the weight between two nodes,
the more likely that these two nodes will be merged into same
community. And what’s more, in reality, if two entities are
closer, the connection between them tends to be relatively
tighter. In our work, in order to maximize the tightness of
community, we define the weight function for corresponding
edge by

w(u, v) = 1−
du,v
dmax

, (12)

where du,v represents that the distance between node u and
node v, dmax represents the maximum distance among all
node pairs. That is, the distance between two nodes is mapped
to a range from 0 to 1, which can effectively reduce the
communication latency between nodes within the same sub-
network.

B. NETWORK PARTITION BASED ON IMPROVED
LOUVAIN HEURISTIC ALGORITHM
The community detection problem is to find a division
scheme that can produce maximum modularity. Compared
with those graph-based partitioning methods that need to

2Distinct from the symbol c.

VOLUME 6, 2018 49489

W. Chen et al.: Multi-Controller Placement Towards SDN Based on LHA

give the number of partitions in advance, community detec-
tion does not need to specify this parameter. Indeed, it is
impossible to accurately determine the number of partitions
in a large-scale network. Specifically, graph-based partition-
ing methods may ignore the internal structural compactness
in order to obtain the target number of partitions. Instead,
community detection ensures that the resulting partitions
have good structures. However, the size of sub-networks
obtained by LHA varies greatly due to the unevenness of
actual network structure. In other words, there may be a sit-
uation where there are too many nodes in some communities
and too few nodes in other communities. Suppose all switches
need to send flow-request messages to controller at a cer-
tain moment (which is regarded as the worst-case scenario),
it may lead the controller to be overloaded if there are too
many switches in a sub-network. In this subsection, we will
try to eliminate the overload problem of controller under
worst-case scenario by introducing scale constraint factor,
that is, limiting the number of nodes in each community in the
process of forming communities, and ensuring that the differ-
ences between communities are within an acceptable range.

Fig. 2 shows the flowchart for obtaining a balanced com-
munity set in controller deployment. The process can be
described as the following steps:

1) Initialize the corresponding community for each node
in the topology, the number of initial communities
is the same as the number of nodes, and update the
community’s scale parameters.

2) For each node v, try to allocate node v to community
where each of its neighbor nodes is located, calcu-
late the pre-allocation and post-allocation modularity
gain 1Q, and find out the neighbor node with the
maximum 1Q. If max 1Q > 0 and scale constraint
condition is satisfied, then node v is assigned to com-
munity where the neighbor node that maximizes1Q is
located, otherwise it remains unchanged.

3) Repeat step 2) until the communities to which all nodes
belong no longer change.

4) Rebuild network topology. All nodes in the same com-
munity are compressed into a super node. The edges
that exist between two communities are converted into
a new edge, the weight of new edge is the sum of
weights between nodes in corresponding two commu-
nities, and the influence coefficient of super node on
community scale is the sum of influence coefficient of
all nodes in original community.

5) Back to step 1), and repeat these steps until the total
modularity of entire topology no longer changes. That
is, the total modularity gets the maximum value and a
balanced community set is obtained.

In the above process, step 2) is the key to achieving bal-
anced partitioning. In order to limit the size of sub-networks,
we introduce the scale constraint factors η and β, which
correspond to the controller’s maximum load capacity and
load balancing coefficient, respectively. At the same time,
we also consider the influence coefficient of each node on

FIGURE 2. Flowchart for obtaining balanced partition.

FIGURE 3. Process of finding target community for a node. (a) Initial
community. (b) Search candidate community. (c) Incorporate into new
community. (d) Retain in initial community.

community scale, λ, which corresponds to the control traffic
required by a switch. Fig. 3 illustrates the process of moving
a node to a community. The solid circle in this figure repre-

49490 VOLUME 6, 2018

W. Chen et al.: Multi-Controller Placement Towards SDN Based on LHA

sents the node, the dashed circle represents the community,
the black dot represents the centroid of community, and the
colored point represents the node to be moved. Only the
edges incident to node v11 are shown in Fig. 3. In Fig. 3(a),
node v11 has three neighbor communities c2, c3, c4, and the
modularity gains corresponding to three movements are cal-
culated separately, i.e. 1Q12,1Q13,1Q14. In this example,
we assume that 1Q13 > 1Q12 > 0,1Q14 ≤ 0, that is,
community c3 will be the candidate community for node v11,
as depicted in Fig. 3(b). Next considering the influence coef-
ficient to determine the final community of node v11. We set
the influence coefficient for each node and give it by format
{vij, λij} in the figure. For ease of description, we assume that
constraint factor η is large enough, namely, to ignore it here,
and we mainly consider β as well as community c3, c4. If
λ11 + λ31 + . . . + λ33 − (λ41 + λ42 + . . . + λ44) ≤ β,
v11 will be a member of community c3. Otherwise,
v11 remains in community c1. As a result there are two
situations, as shown in Fig. 3(c) and Fig. 3(d) respectively.
The complete pseudo code for obtaining balanced partitions
is given in Algorithm 1.

C. LOCATION SELECTION
After the above partitioning process, several communities
have been obtained. As a part of controller deployment,
the selection of location for controller will be described in
this subsection. We select the propagation latency between
controller and switch as our performance metric when deter-
mining the position of controller. Taking Fig. 4 as an example
to describe the process of location selection in detail. We con-
sider the selection in two scenarios, one for minimization of
the average latency, and the other for minimization of the
maximum latency.

FIGURE 4. Optimal position selection of controller in a sub-network.

As presented in Fig. 4, there is a community that consists
of seven nodes. To be intuitive, we identify nodes and lines
in this topology using three colors, respectively. The default
color of edge between nodes is black, the red line and the
green line represent the dijkstra shortest path from node 1
and node 3 to remaining nodes, respectively. lij denotes the
latency corresponding to the shortest path from node i to
node j. In order to give a general description of the node selec-
tion process, we only consider node 1 and node 3 as candidate

Algorithm 1 Improved LHA: Balanced Community Detec-
tion With Scale Constraint Factors
Input: G(V,E): the weighted network; β, η: the scale con-

straint factors; λ: the influence coefficient of each node
on community scale;

Output: Balanced partitions C with best modularity Qbest ;
1: while True do
2: C← {{u}}, u ∈ V;
3:

∑c
load ←

∑
u∈c λu,L← {

∑c
load },∀c ∈ C;

4: Calculate
∑c

in and
∑c

tot ;
5: while community changes do
6: for u ∈ V do
7: //search for the best community
8: ccan← arg max

∀cn∈
neighbor communities

1Qu→cn ;

9: Ltmp← L \ {
∑c

load ,
∑ccan

load };
10: if 1Qu→ccan > 0 then
11: //calculate the temp

∑
load

12:
∑ccan

load_tmp←
∑ccan

load +λu;
13:

∑c
load_tmp←

∑c
load −λu;

14: Ltmp← Ltmp ∪ {
∑ccan

load_tmp,
∑c

load_tmp};
15: indexblc← |x − y| ,∀x, y ∈ Ltmp;
16: if

∑ccan
load_tmp ≤ η && indexblc ≤ β then

17: //update
∑

in,
∑

tot ,
∑

load of ccan
18:

∑ccan
in ←

∑ccan
in +wu→ccan ;

19:
∑ccan

tot ←
∑ccan

tot +w(u);
20:

∑ccan
load ←

∑ccan
load_tmp;

21: //update
∑

in,
∑

tot ,
∑

load of c
22:

∑c
in←

∑c
in−wu→c;

23:
∑c

tot ←
∑c

tot −w(u);
24:

∑c
load ←

∑c
load_tmp;

25: //move u to candidate community
26: ccan← ccan ∪ {u}; c← c \ {u};
27: end if
28: end if
29: end for
30: end while
31: Q← 0; Qbest ← 0;
32: Update total modularity Q;
33: if Q− Qbest ≤ 0 then
34: break;
35: end if
36: Qbest ← Q;
37: print C and Qbest ;
38: //Rebuild network;
39: Vnew← C;
40: Enew← {e(c, c′)}, ∃e(u, v) ∈ E, u ∈ c, v ∈ c′;
41: w(c, c′)←

∑
e(u,v)∈E,u∈c,v∈c′ w(u, v); λc←

∑c
load ;

42: V← Vnew;E← Enew;
43: end while

positions of controller. For the case of minimum average
latency, the total propagation latency can be expressed as
l11 + l12 + . . . + l17 when controller is placed at candidate

VOLUME 6, 2018 49491

W. Chen et al.: Multi-Controller Placement Towards SDN Based on LHA

position 1. When at position 3, the latency is represented as
l31 + l32 + . . . + l37. Assuming that the former is less than
the later, position 1 will be the most appropriate deployment
location. For the case of minimum maximum latency, l14 is
the maximum latency when controller is deployed at position
1 and the maximum latency is l31 when deployed at position
3. Due to l14 > l13 = l31, the best deployment location
in this case is position 3. By traversing all nodes in each
community, the locations of controllers to be deployed in
the entire network will be found. And Algorithm 2 and
Algorithm 3 show pseudo code for location selection in two
deployment scenarios, respectively.

Algorithm 2Location Selection Based onMinimumAverage
Latency
Input: C: topology partitions;
Output: C: controller position set;
1: C← {};
2: for c ∈ C do
3: set ← {};
4: for u ∈ c do
5: distudijk ← 0;
6: for v ∈ c do
7: distudijk ← distudijk + dijk(u, v);
8: end for
9: set ← set ∪ {

distudijk
|c| };

10: end for
11: position← arg min

u,
t∈set

t;

12: C← C ∪ {position};
13: end for

Algorithm 3 Location Selection Based on Minimum
Maximum Latency
Input: C: topology partitions;
Output: C: controller position set;
1: C← {};
2: for c ∈ C do
3: set1← {};
4: for u ∈ c do
5: set2← {};
6: for v ∈ c do
7: set2← set2 ∪ {dijk(u, v)};
8: end for
9: set1← set1 ∪ {max

t∈set2
t};

10: end for
11: position← arg min

u,
t ′∈set1

t ′;

12: C← C ∪ {position};
13: end for

D. DEPLOYMENT COMPLEXITY
The controller deployment scheme based on community
detection described above, including community detection

in network topology and selection of controller location in
each community. Compared with the global deployment,
the proposed scheme divides the entire deployment into two
separate sub-processes, and it only needs to consider placing
the controller in a local scope. Here we briefly analyze the
deployment complexity. As far as community detection is
concerned, the number of communities is drastically reduced
in the first few iterations. For a network with k nodes,
the method appears to run in time O(k log k). Ideally we can
obtain m strictly balanced communities, that is, each com-
munity contains the same number of nodes, denoted as n, i.e.
n = k/m. At this point, the complexity of location selection
is O(m · n2). Therefore, we can obtain the total complexity
of our deployment scheme, i.e.O((mn) log(mn))+O(m ·n2).
Instead, that of global deployment can reachO((m·n)2).More
importantly, it can provide a stable and accurate partition.

V. PERFORMANCE EVALUATION AND ANALYSIS
In this section, to evaluate the performance of the proposed
method, the Internet2 OS3E topology [25] that is widely
adopted in other literatures, is still used in this paper. Besides,
we also select four topologies with different scales from
the SND-lib [26], so as to evaluate the performance of the
proposed algorithm on different network scales. The char-
acteristic of topologies is listed in Table 1, the length of
links is calculated by Haversine formula instead of Euclidean
distance. Let the propagation speed be two-thirds of light
speed. All simulations are implemented through Python pro-
gramming language.

TABLE 1. Characteristic of Experiment Topologies.

A. ANALYSIS ON NETWORK PARTITION
First, we take Internet2 OS3E as an example to illustrate
the process of network partition based on original algorithm
LHA. Fig. 5(a) shows its topology structure with 34 nodes
and 42 edges. Each node represents a switch and each
line between nodes represents the network link. According
to [14], the order of nodes will affect the output of the algo-
rithm to some extent, but its influence on modularity can be
ignored, while it will only affect the computation time. Thus,
in our work, we generate a random sequence for all nodes
every time when executing the algorithm.We let 500 times be
one round and then go for 20 rounds. The correspondingmod-
ularity distribution is shown in Fig. 6. It can be seen from this
figure that the modularity distribution of 20 rounds is similar
and the values are roughly distributed between 0.59 and 0.62.
Note that in each round, the number of possible values is
much less than 500 due to the fact that different orders may
result in the same partition. Moreover, the minimum value

49492 VOLUME 6, 2018

W. Chen et al.: Multi-Controller Placement Towards SDN Based on LHA

FIGURE 5. Demonstration of the network partition on OS3E. (a) Original topology. (b) Partition result with the maximum Q.

FIGURE 6. Distribution of modularity in 20 rounds.

of modularity is not exactly the same in these 20 rounds,
but the maximum value is exactly the same, which equals to
0.6182070368504007. The greater the modularity, the better
the effect of partitioning. We select the partition result with
the maximum modularity. The corresponding topology parti-
tion is shown in Fig. 5(b). There are six sub-networks in this
figure, nodes with the same color belong to the same sub-
network: {3, 4, 1, 2}, {11, 8, 10, 9, 5, 7, 6}, {13, 12, 18, 14},
{22, 15, 16, 17}, {19, 23, 24, 25, 20, 21}, {32, 26, 29, 28, 33,
30, 31, 34, 27}.

As previously mentioned, the modularity reflects the qual-
ity of the network partition results, we apply this partition-
ing algorithm to other four topologies with different scale
in Table 1. As shown in Table 2, the modularity generally
scales with the number of nodes in the network. That is to
say, to a certain extent, this algorithm can achieve stable and
better partition effect for large-scale network with plenty of
nodes.

B. ANALYSIS ON LOAD BALANCE
In this subsection, we evaluate the load balancing perfor-
mance achieved by the improved LHA (ILHA). For the sake

TABLE 2. Quality of Partition.

of simplicity, we assume that all controllers have the same
load capability and the control traffic required by each switch
are the same as well. Therefore, the scale constraint factors β,
η and the influence coefficient of each node on community
scale λ, can be transformed into the number of network
devices in each community. Then we let λ = 1, β and η
are the constants to be given. In the process of dividing
the network, the number of switches in each sub-network
should not exceed the number of switches that the associated
controller can hold. The load balancing index of the algorithm
is given through α as following formula

α =

√√√√ 1
K

K∑
i=1

(
Ni −

|V|
K

)2

, (13)

where K denotes the number of sub-networks, Ni denotes the
number of nodes in sub-network i and |V| denotes the total
number of nodes in the entire network. The smaller the α,
the better the load balancing effect.

We compare the situation with the topological equilibrium
partition against the situation that topological equilibrium
partition is not considered. For these five topologies we
selected, the number of sub-networks obtained by using LHA
is 3, 5, 6, 7, 7 respectively. Among of them, Ta2 has a sub-
network with 15 nodes and this is the largest sub-network in
our partitioning. Since the capacity of controller is known in
actual deployment, we consider two cases of capacity in our
experiments, one of which is large enough, and the other is
of general capacity. In view of this, we firstly let η = 15 (or
more) so as to ensure that controller has sufficient capacity
for the selected topologies. When β = 5, only the number
of sub-networks of Ta2 has changed compared with LHA,

VOLUME 6, 2018 49493

W. Chen et al.: Multi-Controller Placement Towards SDN Based on LHA

from 7 to 8. Besides, the number of nodes in the largest sub-
network reduces from 15 to 10. For Germany50, although
the total number of its sub-networks remains unchanged,
the number of nodes within each sub-network has changed.
Specifically, the number of nodes in all sub-network was
initially between 4 and 11, but in this case between 4 and 9.
When β = 3, Polska and Atlanta remain unchanged com-
pared with β = 5, but other three topologies have changed
over the number of nodes within each sub-network or the total
number of sub-networks.

Next we let η = 8. In this case, the number of nodes
in some sub-networks is greater than 8, while in some sub-
networks the number of nodes is less than 8. When β = 5,
OS3E, Germany50, and Ta2 have changed compared with
LHA. Although the number of sub-networks in OS3E has
not changed, the number of nodes in each sub-network has
changed. For example, the number of nodes in 6 sub-networks
changes from 4, 4, 4, 6, 7, 9 to 4, 5, 6, 6, 6, 7. As for
Germany50 and Ta2, the number of their sub-networks has
increased. When β = 3, only the number of sub-networks of
Ta2 has changed compared with β = 5, the remaining four
topologies remain unchanged.

The effect of topology partitioning on load balancing per-
formance is presented in Fig. 7 and Fig. 8. And it shows
that the improved algorithm ILHA can effectively balance
the load among all sub-networks. In Fig. 7, for Polska and
Atlanta, the balancing index remains the same over three
cases, and the same situation appears in Fig. 8. The main
reason is that the number of nodes in entire network is too few
that the result obtained without considering the topological
equilibrium partition is already relatively balanced. However,
in Fig. 7, when β changes from 5 to 3, the corresponding
balancing index of the last three topologies changes from
1.89 to 0.94, 1.96 to 0.83, 1.17 to 1.15, respectively. What we
can also observe is that when β = 5, ILHA achieves the same

FIGURE 7. Comparison of load balancing performance over five networks
(η = 15).

FIGURE 8. Comparison of load balancing performance over five networks
(η = 8).

balancing index as the original algorithm LHA on OS3E.
The reason is that the constraints are too loose and have no
impact on such topologies. In Fig. 8, because of the enhanced
constraints (η = 8), the ILHA gets a smaller balancing index
on OS3E when β = 5, which is different from Fig. 7. On the
contrary, the balancing index of β = 3 is the same as that
of β = 5. In addition, there is another difference between
Fig. 8 and Fig. 7. For Ta2 in Fig. 8, the balancing index
changes from 0.92 to 1.24 when β changes from 5 to 3.
The reason may be that the constraints are strong, which
results in too many sub-networks and leads to the decline
in the balancing performance of the entire network. It is
worth noting that the load balancing index is still smaller than
2.49 obtained by LHA.

In general, the improved algorithm can effectively adjust
the number of nodes in each sub-network when partitioning
the large-scale network topologies, so as to ensure the load
balancing performance for the whole network.

C. ANALYSIS ON LATENCY PERFORMANCE
We evaluate the latency performance on OS3E topology by
comparing our approach with K-means proposed in [11]
and K-median mentioned in [12] and [13], respectively.
We choose the partition result at β = 3 as our research objec-
tive, then we deploy the controller in each sub-network to
minimize the average latency and maximum latency between
controller and switch. Fig. 9 shows the corresponding place-
ment under two cases. Nodes with the same color belong to
the same sub-network and stars indicate the location where
the controllers are placed. We can get the minimum average
latency between switches and associated controllers when the
controllers are deployed at {2, 11, 12, 16, 21, 27}. Com-
pared with this deployment scheme, there are changes on
the placement whenminimumworst-case latency is obtained.
The corresponding deployment scenario becomes to {2, 8, 12,
16, 23, 31}.

49494 VOLUME 6, 2018

W. Chen et al.: Multi-Controller Placement Towards SDN Based on LHA

FIGURE 9. Controller placement on OS3E topology. (a) Placement with minimizing average-case latency. (b) Placement with minimizing worst-case
latency.

According to [11] and [13], K-median is suitable for min-
imizing average propagation latency, while K-means is for
minimizing the maximum latency between controllers and
switches. What these two approaches have in common is
that they both need to initialize the locations of controllers.
Fig. 10 shows the horizontal step diagram of average latency
and maximum latency obtained by performing K-median and
K-means 100 times on OS3E topology. It shows that when
k = 6, the latency achieved by K-median or K-means is less
than that of k = 5. That is, as more controllers are deployed
across the entire network, the latency between controller
and switch decreases accordingly. Specifically, the average
latency in Fig. 10(a) fluctuates from 3.107 ms to 4.897 ms
at k = 6. And when k = 5, the average latency is in the
range from 3.460 ms to 5.166 ms. When 6 controllers are
deployed, about 65% of deployment latency using K-median
is less than 3.7 ms. In Fig. 10(b), the maximum latency
using K-means at k = 5 and k = 6 ranges from 5.798 ms
to 9.836 ms and 5.770 ms to 10.019 ms, respectively. For
k = 6, the proportion of latency between 6.5 ms and 7.5 ms is
approximately 50%. The reason for this uneven distribution
is that the position of central node of the cluster needs to
be determined in each execution, which leads to an unstable
clustering.

Since the number of partitions obtained by using both
ILHA and LHA is 6, we compare the situation in which the
network is divided into 6 sub-networks. For a given topology,
our method is stable for the partition result and the latency
is a definite value. This is the reason why there are two
horizontal lines in Fig. 10. The red line represents the latency
performance after equalization, while the blue line represents
the latency performance without equalization. The latency for
red line in Fig. 10(a) is 3.068 ms, which is better than optimal
latency 3.107 ms (k = 6) and is higher than 2.993 ms that
corresponds to the blue line. Despite the slight increment in
average latency compared with LHA, ILHA ensures the load
balancing performance.

On the contrary, the latency performance shown
in Fig. 10(b) is not as good as that in Fig. 10(a). Because
the sub-network {11, 8, 10, 9, 5, 7, 6} has not been changed

FIGURE 10. Comparison of latency performance. (a) Average latency.
(b) Maximum latency.

before and after the use of topological equilibrium partition-
ing algorithm, the controller is still deployed at the location
of node 8 when minimum maximum latency is obtained in

VOLUME 6, 2018 49495

W. Chen et al.: Multi-Controller Placement Towards SDN Based on LHA

this sub-network. In addition, this maximum latency in {11,
8, 10, 9, 5, 7, 6} represents the maximum latency in the
entire network. And themaximum latency equals to 6.044ms,
which is higher than optimal latency 5.770 ms obtained by
K-means (k = 6). But it is better than about 85% of
deployment compared with K-means (k = 6). Overall, our
deployment approach is able to maintain latency by a lower
level while ensuring a relatively balanced load among all
sub-networks, which is feasible for the trade-off between
performance.

VI. CONCLUSION
As SDN network architecture is widely integrated with exist-
ing networks and future networks, network operators need
to consider the controller placement problem when build-
ing networks. In this paper, we try to tackle the problem
through mining the community structure in large-scale net-
work topology. Based on the theory of complex network
analysis, we propose a new placement strategy named com-
munity detection controller deployment (CDCD). Consider-
ing that the controller has limited control capabilities, it is
necessary to limit the number of forwarding devices in each
management domain. To this end, the scale constraint factor
is introduced into CDCD to limit the size of community and
minimize the differences between communities. The results
show that our deployment approach is suitable for large-
scale network and can achieve load balancing among differ-
ent management domains. Meanwhile, it is able to maintain
latency at a lower level in terms of the trade-off between
latency and controller’s load. Although it can provide a stable
and effective controller deployment, many factors still need
to be considered in actual deployment, such as minimizing
deployment costs within community and maximizing net-
work resilience among communities, which also contributes
to our future research goals.

REFERENCES
[1] N. McKeown et al., ‘‘OpenFlow: Enabling innovation in campus net-

works,’’ in Proc. ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[2] T. Koponen et al., ‘‘Onix: A distributed control platform for large-scale
production networks,’’ in Proc. Usenix Conf. Oper. Syst. Design Imple-
ment., 2010, pp. 1–6.

[3] S. H. Yeganeh and Y. Ganjali, ‘‘Kandoo: A framework for efficient and
scalable offloading of control applications,’’ in Proc. 1st Workshop Hot
Topics Softw. Defined Netw., 2012, pp. 19–24.

[4] A. Tootoonchian and Y. Ganjali, ‘‘HyperFlow: A distributed control plane
for OpenFlow,’’ in Proc. Internet Netw. Manage. Conf. Res. Enterprise
Netw., 2010, pp. 1–6.

[5] B. Heller, R. Sherwood, and N. McKeown, ‘‘The controller placement
problem,’’ in Proc. ACM SIGCOMM HoTSDN, 2012, pp. 7–12.

[6] G. Yao, J. Bi, Y. Li, and L. Guo, ‘‘On the capacitated controller placement
problem in software defined networks,’’ IEEE Commun. Lett., vol. 18,
no. 8, pp. 1339–1342, Aug. 2014.

[7] B. P. R. Killi and S. V. Rao, ‘‘Capacitated next controller placement in
software defined networks,’’ IEEE Trans. Netw. Service Manage., vol. 14,
no. 3, pp. 514–527, Sep. 2017.

[8] A. Sallahi and M. St-Hilaire, ‘‘Optimal model for the controller placement
problem in software defined networks,’’ IEEE Commun. Lett., vol. 19,
no. 1, pp. 30–33, Jan. 2015.

[9] A. Sallahi and M. St-Hilaire, ‘‘Expansion model for the controller place-
ment problem in software defined networks,’’ IEEECommun. Lett., vol. 21,
no. 2, pp. 274–277, Feb. 2017.

[10] Y. Hu, T. Luo, N. C. Beaulieu, and C. Deng, ‘‘The energy-aware controller
placement problem in software defined networks,’’ IEEE Commun. Lett.,
vol. 21, no. 4, pp. 741–744, Apr. 2017.

[11] G. Wang, Y. Zhao, J. Huang, Q. Duan, and J. Li, ‘‘A K-means-based
network partition algorithm for controller placement in software defined
network,’’ in Proc. IEEE Int. Conf. Commun., May 2016, pp. 1–6.

[12] J. Zhao, H. Qu, J. Zhao, Z. Luan, and Y. Guo, ‘‘Towards controller place-
ment problem for software-defined network using affinity propagation,’’
Electron. Lett., vol. 53, no. 14, pp. 928–929, Jun. 2017.

[13] K. S. Sahoo, B. Sahoo, R. Dash, and M. Tiwary, ‘‘Solving multi-controller
placement problem in software defined network,’’ in Proc. Int. Conf. Inf.
Technol., 2016, pp. 188–192.

[14] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, ‘‘Fast unfold-
ing of communities in large networks,’’ J. Stat. Mech., Theory Exp.,
vol. 2008, no. 10, p. P10008, 2008.

[15] Y. Jiménez, C. Cervelló-Pastor, and A. J. García, ‘‘Defining a network
management architecture,’’ in Proc. 21st IEEE Int. Conf. Netw. Proto-
cols (ICNP), Oct. 2013, pp. 1–3.

[16] Y. Jiménez, C. Cervelló-Pastor and A. J. García, ‘‘On the controller place-
ment for designing a distributed SDN control layer,’’ in Proc. IFIP Netw.
Conf., 2014, pp. 1–9.

[17] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu, ‘‘The SDN controller placement
problem forWAN,’’ inProc. IEEE/CIC Int. Conf. Commun. China (ICCC),
Oct. 2014, pp. 220–224.

[18] J. Liao, H. Sun, J. Wang, Q. Qi, K. Li, and T. Li, ‘‘Density cluster based
approach for controller placement problem in large-scale software defined
networkings,’’ Comput. Netw., vol. 112, pp. 24–35, Jan. 2017.

[19] A. Ksentini, M. Bagaa, and T. Taleb, ‘‘On using SDN in 5G: The controller
placement problem,’’ in Proc. IEEE Global Commun. Conf. (GLOBE-
COM), Dec. 2016, pp. 1–6.

[20] M. J. Abdel-Rahman, E. A.Mazied, A.MacKenzie, S.Midkiff,M. R. Rizk,
and M. El-Nainay, ‘‘On stochastic controller placement in software-
defined wireless networks,’’ in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Mar. 2017, pp. 1–6.

[21] J. Liu, Y. Shi, L. Zhao, Y. Cao, W. Sun, and N. Kato, ‘‘Joint placement of
controllers and gateways in SDN-enabled 5G-satellite integrated network,’’
IEEE J. Sel. Area Commun., vol. 36, no. 2, pp. 221–232, Feb. 2018.

[22] I. Vaishnavi andW. Y. Poe, ‘‘Virtualized control plane placement problem:
Provisioning the control paths and architectures,’’ in Proc. IEEE Conf.
Comput. Commun. Workshops, May 2017, pp. 695–700.

[23] G. Wang, Y. Zhao, J. Huang, and Y. Wu, ‘‘An effective approach to
controller placement in software definedwide area networks,’’ IEEE Trans.
Netw. Service Manage., vol. 15, no. 1, pp. 344–355, Mar. 2018.

[24] A. Clauset, M. E. J. Newman, and C. Moore, ‘‘Finding community struc-
ture in very large networks,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 70, no. 6, p. 066111, 2004.

[25] Internet2 Open Science, Scholarship and Services Exchange. Accessed:
Dec. 17, 2017. [Online]. Available: http://www.internet2.edu/network/ose/

[26] SNDlib: Library of Test Instance for Survivable Fixed Telecommuni-
cation Network Design. Accessed: Dec. 17, 2017. [Online]. Available:
http://sndlib.zib.de/home.action

WEN CHEN received the Ph.D. degree from the
Computer Science and Engineering Department,
Shanghai Jiao Tong University, in 2006. She is
currently an Associate Professor with the College
of Information Science and Technology, Donghua
University, where she is also a member with the
Engineering Research Center of Digitized Textile
and Fashion Technology, Ministry of Education.
She has authored or co-authored over 50 technical
papers. Her research interests are resource man-

agement, optimization techniques, and feedback control techniques and their
applications in wireless communications.

49496 VOLUME 6, 2018

W. Chen et al.: Multi-Controller Placement Towards SDN Based on LHA

CONG CHEN received the B.S. degree in com-
munication engineering from the Wuhan Insti-
tute of Technology. He is currently pursuing the
M.S. degree in information and communication
engineering with Donghua University, Shanghai,
China. His research interests include software-
defined networking and its applications in wireless
networks.

XUEQIN JIANG received the M.S. and Ph.D.
degrees in electronics engineering from
Chonbuk National University, Jeonju, South
Korea. He is currently an Associate Professor with
the School of Information Science and Technol-
ogy, Donghua University, Shanghai, China. He has
authored or co-authored over 70 technical papers
and several book chapters. His main research inter-
ests include LDPC codes, physical-layer security,
and wireless communications.

LEIJIE LIU received the B.S. degree in electronic
information science and technology from Zhejiang
Sci-Tech University. He is currently pursuing the
M.S. degree in control science and engineering
with Donghua University, Shanghai, China. His
research interests include software-defined net-
working and Internet of Things.

VOLUME 6, 2018 49497

	INTRODUCTION
	RELATED WORK
	CONTROLLER DEPLOYMENT MODEL AND FORMULATION
	NETWORK PARTITION AND LOCATION SELECTION
	LOUVAIN HEURISTIC ALGORITHM
	NETWORK PARTITION BASED ON IMPROVED LOUVAIN HEURISTIC ALGORITHM
	LOCATION SELECTION
	DEPLOYMENT COMPLEXITY

	PERFORMANCE EVALUATION AND ANALYSIS
	ANALYSIS ON NETWORK PARTITION
	ANALYSIS ON LOAD BALANCE
	ANALYSIS ON LATENCY PERFORMANCE

	CONCLUSION
	REFERENCES
	Biographies
	WEN CHEN
	CONG CHEN
	XUEQIN JIANG
	LEIJIE LIU

