
Received July 1, 2018, accepted August 24, 2018, date of publication September 6, 2018, date of current version September 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2868990

Recommending Refactoring Solutions Based
on Traceability and Code Metrics
ALLY S. NYAMAWE 1, HUI LIU 1, ZHENDONG NIU1,
WENTAO WANG2, (Student Member, IEEE),
AND NAN NIU 2, (Senior Member, IEEE)
1School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
2Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA

Corresponding authors: Hui Liu (liuhui08@bit.edu.cn) and Zhendong Niu (zniu@bit.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61472034, Grant 61772071,
and Grant 61690205, in part by the National Key Research and Development Program of China under Grant 2016YFB1000801,
and in part by the U.S. National Science Foundation under Grant 1350487.

ABSTRACT Software refactoring has been extensively used to rectify the design flaws and improve software
quality without affecting its observable behaviors. For a given code smell, it is common that there exist
multiple refactoring solutions. However, it is challenging for developers to select the best one from such
potential solutions. Consequently, a number of approaches have been proposed to facilitate the selection.
Such approaches compare and select among alternative refactoring solutions based on their impact on
metrics of source code. However, their impact on the traceability between source code and requirements
is ignored although the importance of such traceability has been well recognized. To this end, we select
among alternative refactoring solutions according to how they improve the traceability as well as source
code design. To quantify the quality of traceability and source code design we leverage the use of entropy-
based and traditional coupling and cohesion metrics respectively. We virtually apply alternative refactoring
solutions and measure their effect on the traceability and source code design. The one leading to greatest
improvement is recommended. The proposed approach has been evaluated on a well-known data set. The
evaluation results suggest that on up to 71% of the cases, developers prefer our recommendation to the
traditional recommendation based on code metrics.

INDEX TERMS Entropy, refactoring, requirements traceability, solution recommendation.

I. INTRODUCTION
Software systems often evolve to cope with changing require-
ments. Throughout software lifetime, new requirements are
added while existing ones are modified or dropped. This
process continuously complicates the internal structure of
the software, which consequently reduces software quality
[1], [2]. As a result, software systems consistently need to
be maintained to reduce complexity and to improve their
internal structure through refactoring. Software refactoring
focuses on improving software quality by applying changes
on internal structure that do not alter the external behaviors
of involved systems [3].

Software refactoring has been extensively used to remedy
software design flaws and to improve software quality, espe-
cially maintainability, reusability and extensibility [4]. The
underlying principle of refactoring is reorganizing software
elements such as classes, methods and variables to facilitate

future extensions [1], [5]. A typical process of software refac-
toring is as follows: First, the pieces of code needing for
improvement (commonly known as ‘‘bad smell’’ or ‘‘code
smell’’) are identified [3]; Second, according to the types of
identified code smells, specific solutions (refactorings) are
applied to remedy the smells [3].

Currently, several powerful refactoring tools have been
developed to automate software refactoring process, e.g.,
JDeodorant [6], [7], iPlasma [8], Stench Blossom [9] and
DECOR [10]. Moreover, most of the mainstream software
development environments (SDEs) are equipped with refac-
toring capabilities, e.g., Eclipse and Microsoft Visual Studio.
Such great tools make software refactoring simpler and less
error-prone [11]. For a given code smell identified automati-
cally, refactoring tools may suggest several refactoring solu-
tions. However, the decision on which solution to be executed
is left to developers. The decision to choose the best solution
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is often challenging [12]. To facilitate developers in making
selection decision, existing tools use various techniques. The
most common way is to compare and select alternative solu-
tions based on their impact on defined codemetrics [12]–[14].
Along with code metrics, other factors have been consid-
ered as well [15]. This approach takes the assumption that
solutions leading to the best source code metrics are the best
ones. Among the pertinent code metrics used for quantifying
and ranking refactoring solutions are coupling and cohesion
[7], [12]. Basically, coupling refers to how parts of a design
inter-depend each other, whereas cohesion refers to internal
dependencies within parts of a design [16]. Usually coupling
and cohesion are measured based on the fields or instance
variables used by the methods within or between classes [12].

Such approaches ignore the fact that different refactoring
solutionsmay have significantly different impact on the trace-
ability between requirements and implementation (source
code) [17]. Usually, a software system is composed of sev-
eral artifacts at different levels of abstraction. Such artifacts
can be related through traceability. In general, traceability
is ‘‘the ability to describe and follow the life of a require-
ment, in both a forwards and backwards direction’’ [18].
Commonly, traceability information is maintained in the
traceability matrix (TM) that is intended to show the correct
links between high-level entities and low-level entities. The
traceability is critical for software evolution andmaintenance.
To ensure correctness and completeness of the traceability
information, researchers have proposed varied techniques
from retrieval, assessment and maintenance of traceability
links [19]–[22]. One of the most common traceability is
the one between requirements and source code. It plays a
critical role in assisting program comprehension, software
maintenance, requirements tracing, impact analysis and soft-
ware reuse [23]. First, traceability helps to determine if the
software fulfills its intended objectives. Second, it facili-
tates the generation of comprehensive test cases covering
all requirements. Third, while software requirements change,
the traceability helps to identify parts of code that are affected
by the change. Finally, it also facilitates code inspection [23].
It is therefore of vital importance to ensure that traceability
information is well maintained to achieve the aforementioned
benefits. Moreover, Poshyvanyk and Marcus [24] contend
that, quality traceability information should accurately reflect
the structure of the traced source code. For example, entities
of the requirements e.g., use cases, which trace to strongly
related entities of the source code e.g., methods, should also
be strongly related. Such associations between the entities of
the two types of artifacts, source code and requirements, are
expressed by traceability links. However, existing approaches
to recommending refactoring solutions consider refactorings’
impact on source code metrics only and ignore their impact
on traceability.

To this end, in this paper we make full use of the trace-
ability combining with the traditional source code design
metrics in recommending refactoring solutions. A refactor-
ing recommendation should take into account the issue of

traceability to ensure that traceability links are well main-
tained throughout the course of software maintenance.
To quantify the quality of traceability, we leverage the use
of entropy of software systems [25], [26]. Entropy is exten-
sively used in software engineering for several purposes
such as measuring complexity [27], disorganization [25]
of classes and software testing [28]. We therefore com-
pute traceability entropy as the degree of disorganization
of software components based on traceability informa-
tion. Furthermore, to quantify the quality of source code
design we use EP (Entity Placement) metric proposed by
Tsantalis and Chatzigeorgiou [14]. EP is the ratio of the over-
all system cohesion over its coupling. The traceability entropy
distinguishes itself from coupling and cohesion based on how
the relationship between methods and classes is determined.
To determine interdependencies of the design parts, coupling
and cohesion consider fields usage and methods invocation,
whereas traceability entropy leverages the traces between
methods or classes and use cases.

The major contributions of this paper include:
(1) A new approach to compare and select alternative refac-

toring solutions. To the best of our knowledge, the proposed
approach is the first one that compares refactoring solu-
tions by leveraging their impact on the traceability between
requirements and source code.

(2) Evaluation of the proposed approach whose results sug-
gest that the proposed approach outperforms the traditional
code metrics based approaches. In 71% cases, developers
prefer the solutions recommended by our approach against
those recommended by traditional approaches.

The rest of the paper is organized as follows. In Section II
we review related work with our research. We describe the
problem statement and provide a motivating example in
Section III and IV respectively. Section V presents our rec-
ommendation approach. We validate the results and discuss
threats to validity of our results in Section VI. We finally
conclude our paper and state the future work in Section VII.

II. RELATED WORK
A. CODE SMELL DETECTION
Refactoring as the process of improving the internal structure
of a software system without altering its observable behav-
ior [3], has long been practiced by developers. Currently,
refactoring is supported by most of the contemporary main-
stream software development environments (SDEs) [29] and
their several existing plugins, thereby providing the capability
of (semi-) automatic application of refactoring. Refactoring is
essential for removing design flaws in source code commonly
known as code smells. Code smells are the potential indicator
that the source code is claiming for improvement. A cat-
alogue of code smells and their corresponding remedying
solutions are well described in [3]. Software refactoring is
part of software maintenance and evolution processes where
software needs to be maintained to cope with users’ changing
requirements.
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To improve the quality of the source code it is important
to detect code smells and consequently refactor with the
appropriate solution [30]. To detect code smells, refactor-
ing tools or smell detectors are often used. So far, several
powerful smell detectors (such as JDeodorant, iPlasma and
inFusion) have been proposed and validated [30]–[32]. Smell
detectors use various detecting techniques to uncover code
smells. Mostly, code design metrics are used to identify
design flaws in source code. Smell detectors are anticipated
to allow users to understand the cause of the smell and to
display smell information in a way that will not overload
developers [33]. Once the source code has been found to
contain code smells, then applying proper refactoring oper-
ation is not always trivial. To address that, several refactoring
recommendation techniques have been proposed. In software
engineering, recommendation systems facilitate the provi-
sioning of valuable information items for a particular task
in certain context [34]. Particularly, refactoring recommen-
dation targets at reducing developers’ information overload
by providing them with the most relevant solutions only.

B. REQUIREMENTS TRACEABILITY
Traceability, specifically requirements traceability has
received a lot of attention in the literature [35]–[38].
Traceability has proven to be useful in various areas of
software engineering, e.g. software refactoring [39] and soft-
ware maintenance [36]. Traceability ensures that the devel-
oped product fulfills and covers the targeted requirements
in both design and source code [40]. To fully utilize the
promising benefits of traceability, generating [38], [41] and
maintaining [42] traceability information is inevitable. For
example, Eyl et al. [43] proposed the establishment of the so
called fine granular traceability links. Their proposal targeted
at establishing the traceability links between requirements
and texts in the source code, which goes beyond classes
and methods granularities. Moreover, they developed a tool
which supports refactoring and ensures traceability links are
not broken despite of the changes committed in the source
code [43]. Traceability has been proven to be useful in
software engineering by numerous researchers. For example,
Mäder and Egyed [36], empirically investigated the useful-
ness of traceability in software maintenance task of which it
was found to improve maintenance quality significantly.

C. TRACEABILITY-BASED REFACTORING
Traceability for refactoring and vice versa has recently
received attention in the literature to some extent. Individ-
ually traceability and refactoring have been witnessed in the
literature for years now. Mahmoud and Niu [35] presented a
refactoring based approach for maintaining traceability infor-
mation. In their work, they argued that as the software system
evolves its lexical structure corrupts which then distorts
the traceability tracks of which they can be systematically
reestablished through refactoring. Faiz et al. [44] also advo-
cate the work done in [35] by assessing more other types of
refactoring in improving traceability. Mahmoud and Niu [35]

and Faiz et al. [44] proposed the use of refactoring tomaintain
textual information in source code which plays a vital role in
traceability links retrieval. Their work is different from ours
in the sense that, they employ refactoring to support require-
ments traceability information retrieval, whereas our work
leverages traceability information to support refactoring.

Niu et al. [39] proposed a requirements driven approach
to accurately locate where software should be refactored and
what sort of refactorings should be applied. The traceability
links between the requirements under development and the
implementing source code were used to retrieve the to be
refactored source code. Authors relied on the semantics of
the requirements under implementation to recommend type
of refactorings that can remedy the identified smells. The
major difference of the approach in [39] with ours is on how to
recommend refactoring solutions.We recommend refactoring
solutions based on the requirements to source code traceabil-
ity information, whereas Niu et al. [39] employ requirements
semantics to determine the threat that could hinder the imple-
mentation of the requirement and recommend refactorings to
remove the threat. Moreover, the two approaches are running
in different scenarios: the approach in [39] receives new
requirements to be implemented as input and our approach
only works on already implemented requirements. In addition
to that, in [39] requirements traceability is only used for
locating source code to be refactored and no assessment is
done to determine how traceability is impacted by the applied
refactoring.

D. REFACTORING RECOMMMENDATION
In assisting developers executing optimal solution promptly,
researchers have proposed numerous ways. For example,
Liu et al. [4] developed a monitor-based tool to assist
instant refactoring. The tool constantly runs at background
to instantly analyze changes in source code committed by
a software engineer. When changes with potential signs
of introducing code smells are detected, the tool promptly
invokes smell detection tools and alerts developers to take
action accordingly. In line with that, Mkaouer et al. [45]
proposed a recommendation tool which dynamically adapts
and interactively suggests suitable refactorings to developers.
The tool’s recommendations were based on developers’ feed-
back and introduced changes in source code. Furthermore,
Ouni et al. [46] proposed a tool to recommend refactor-
ing solutions to developers based on multi-objective search
algorithm. The tool recommends the sequence of refactor-
ings that ensures the balance between improving quality,
removing code smells and introducing design patterns objec-
tives. Lin et al. [15] proposed an interactive search-based
recommendation tool to facilitate architectural refactoring.
The tool calculates the discrepancies between the current
implementation and the targeted design. Then iteratively
the tool recommends refactoring steps towards realizing the
desired design. Users’ feedbacks on already recommended
refactorings are used to improve subsequent refactoring
recommendations.
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To facilitate developers in making solutions selection deci-
sion, existing tools use ranking technique. Solutions are
ranked based on particular criteria and are suggested to devel-
opers for selection. Chaparro et al. [12] proposed the tool
which based on several code metrics to predict the impact of
different refactorings. By using impact prediction functions,
the tool allows developers to visualize the variation of code
metrics and therefore assisting them in making design deci-
sions before applying a particular refactoring.

Moreover, solutions are also ranked in the order of their
effectiveness in improving code design such as coupling
and cohesion [13]. For example, in JDeodorant (a widely
used smell detector which is capable of providing refactoring
choices) the suggested solutions are ranked based on ‘‘entity
placement’’ value, i.e., a ratio of the overall system cohesion
over its coupling [6], [7]. Another approach to select solu-
tion is based on the optimization of predefined objectives.
Chisǎliţǎ-Creţu [17] proposed multi-objective scenario-based
approach to select a solution based on the cost and impact
of the selected solution. Designers can decide whether to
select the suggested solutions or not based on some other
conceptual or design quality criteria [14]. According to [17],
refactoring solutions can easily be organized and prioritized
based on predefined goals. Recently, Kessentini et al. [47]
proposed an approach to recommending refactorings based
on the analysis of bug reports and history of change. Authors
based on the premise that, a class which is frequently modi-
fied and appears in bug reports ismore likely to demand refac-
toring. In addition to that, the previous applied refactorings
were also used to deduce possible required refactorings for
present release. Besides that, execution efforts [17], [48] and
developers’ feedback [15], [45] are taken into account as well.

E. ENTROPY METRICS
To ensure software quality, software development processes
need to conform with predefined standards. Usually, to quan-
tify the quality of development processes and the end prod-
ucts, metrics are commonly used. So far several metrics suits
for object-orientation systems have been proposed and vali-
dated [16], [49]. One of the pertinent metrics currently in use
in software engineering is entropy metrics. Etzkorn et al. [27]
proposed a semantic class definition entropy which they
used to measure the complexity of a class. Entropy
was used to measure the amount of domain knowledge
required to understand a class which consequently determines
complexity.

Canfora et al. [25] proposed the use of change entropy of
source code to investigate the relationship between the com-
plexity of source code and disorganization. Authors investi-
gated several factors that can be related to source code change
entropy, particularly refactoring of which was found to affect
entropy. In addition to that, Bianchi et al. [50] proposed the
use of entropy in evaluating software quality degradation by
assessing the number of links within and between abstraction
models. Related work to [50] was also done by [51] and [52].
Maisikeli [51] proposed an approach to assess object oriented

software maintainability and degradation by using the com-
bination of entropy and other metrics.

III. PROBLEM STATEMENT
Most of the existing approaches recommend refactorings
based on the improvement of code quality which is often
quantified by code metrics [53]. Moreover, Ouni et al. [53]
suggest that relying on design metrics only may be insuf-
ficient as there is a need to preserve the basis on why and
how source code elements are grouped when applying refac-
torings. In addition to that, the existing approaches do not
take into consideration the impact of such refactorings on
the traceability between source code and requirements (use
cases), although the importance of such traceability has been
well recognized. In object-oriented systems, the source code
elements (e.g. Methods and Classes) are created to handle
specific functionalities and they can be linked to use cases
they implement through traceability. During the initial imple-
mentation of the system when objected-oriented principles
are adhered to, the source code elements are well grouped
based on the functionalities to realize the implementation of
the use cases. However, in the course of system evolution and
maintenance, the programs undergo several modifications
(refactorings) which could consequently affect their traces to
use cases as a result of improper code elements grouping. As a
result, during refactorings recommendation, there is need to
consider traceability aspects as well which can also infer how
code elements relate and how well they can be grouped rather
than relying on code metrics only.

Therefore, given the suggested refactoring solutions Rs
for each code smell Cs, the refactoring recommendation
problem can be formally defined as quantifying the impact
of each solution from Rs on traceability and source code
design. Consequently, the solutions are ranked based on how
they improve the traceability and code design and recom-
mend to developers the solution that will lead to greatest
improvement.

IV. MOTIVATING EXAMPLE
Fig. 1 depicts a typical example drawn from iTrust, an open-
source application for maintaining patients electronic health
records [54]. This example illustrates the design frag-
ment consisting of three classes; GetVisitRemindersAction,
TransactionDAO and VisitRemindersDAO. According to the
code smell detection techniques proposed in [9] and [7],
the classGetVisitRemindersAction is detected as aGod Class.
A God Class is a large and complex class which tends
to perform too much work [55]. Usually, this type of a
smell is alleviated by extracting the data and functionali-
ties of the God Class to other collaborating classes or new
classes through a Move Method or Extract Class refactoring
respectively [7].

Here we consider a suggested Move Method refac-
toring solution which is as well proposed in [56]. The
solution moves the method getVisitReminders() from
the class GetVisitRemindersAction to TransactionDAO.
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FIGURE 1. iTrust classes design snippet.

This refactoring is able to remove the detected code
smell and reduce the number of the functionalities of
the GetVisitRemindersAction class. However, from the
perspective of the proposed approach, there exist other
target classes including VisitRemindersDAO which can
receive what is extracted from GetVisitRemindersAction
class as well. According to the traceability information,
the functionalities (use cases) which are performed by the
method getVisitReminders() are more similar to that of
the methods in VisitRemindersDAO than TransactionDAO
classes. Consequently, the proposed approach recommends
a solution that moves getVisitReminders() method to the
VisitRemindersDAO class as it improves traceability. To asses
the impact of these two refactorings on the source code
design quality, an entity placement (EP) metric is com-
puted as proposed by Tsantalis and Chatzigeorgiou [14].
The suggested solution by the proposed approach achieves
better EP than the other refactoring solution. Moreover,
we noted that, in the other case when the same class
GetVisitRemindersActionwas refactored to remove a Feature
Envy code smell the same techniques suggested to move
the method getImmunizationNeeders() to the envied class
VisitRemindersDAO. Furthermore, based on the textual sim-
ilarity between these two classes it is evident that they are
closely related. Consequently, VisitRemindersDAO is more
likely to be an optimal target class than TransactionDAO.
This example is inspired by Ouni et al. [53] suggested that,
to ensure quality improvement it is also important to consider
additional objectives rather than solely relying on structural
metrics.

V. RECOMMENDATION APPROACH
In this section, we first give an overview of the approach,
followed by details of each step of the approach.

FIGURE 2. Traceability-enabled refactoring solutions recommendation
framework.

A. OVERVIEW
An overview of the proposed approach is statically analyzed
by Fig. 2. The approach works as follows. First, the source
code under refactoring is scanned by a refactoring tool to
uncover code smells (refactoring opportunities). The refac-
toring tool also suggests a number of potential refactoring
solutions for each code smell. Second, the traceability infor-
mation associating with the scanned source code is accessed
to determine how the source code entities are linked to use
cases. Third, suggested solutions are virtually applied to mea-
sure their impact on the traceability and source code design
by using entropy and code metrics respectively.

Finally, appropriate recommendations are made based on
the improvement of entropy and code metrics. The key steps
of the approach are explained in detail in the following
subsections. Since the traceability information that we have
used in our experiment is expressed at the method granularity
(use case to method), we considered code smells whose
refactoring solutions directly affect methods entirely. This is
because we can easily assess the effect of each refactoring
on the traceability. The code smells which are therefore
considered and can be supported by the used refactoring tools
areGod Class and Feature Envy. The considered correspond-
ing remedying solutions to such smells which support the
movement of methods and can be automatically applied by
the employed refactoring tools are Extract Class and Move
Method respectively.

B. TRACEABILITY
Requirements traceability as its name suggests, is an abil-
ity to trace requirements to other artifacts such as source
code. Requirements are implemented by source code entities.
Information showing the mapping between requirements and
source code entities is often put in a matrix called traceability
matrix (called TM for short). In TM, use cases are mapped to
classes or methods that they are related to. Table 1 depicts a
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TABLE 1. Method to use case traceability matrix.

sample of TM. Traceability at the method granularity can be
defined as:
• Let M be a set composed of methods m1, m2,. . .,mk .
• Let C be a set composed of classes c1, c2,. . .,ch. Each
class from C is uniquely composed of one or more
methods from M .

• Let U be a set composed of use cases, u1, u2,. . .,un.
Each use case fromU is mapped to one or more methods
which belong to one or more classes in C . This implies
that, a use case in U can be mapped to one or more
classes in C .

• Let L(U ,M ) be a matrix mapping U to M . Li,j = 1 if
method mj implements use case ui. Otherwise Li,j = 0,
where, ui∈ U and mj ∈ M .

Table 1 depicts a typical traceability matrix drawn from
iTrust [54]. Thematrix shows themappings betweenmethods
from two classes (EditPersonnelAction and PersonnelDAO)
to five use cases (U4, U6, U10, U29 and U33). The
values 1 and 0 indicate whether a method traces to a given
use case or not, respectively. A method can trace to the same
use case only once but it can trace to more than one use case
at a time.

C. ENTROPY
Entropy was first proposed by Shannon [57] to measure the
amount of information produced by the source. Shannon’s
definition of entropy determines number of bits required in
identifying information distribution [25], [57]. Shannon [57]
computed entropy as follows:

Hn(P) = −
n∑

k=1

pk log2 pk (1)

where pk ≥ 0(k = 1, 2...., n) denotes the probability of
occurrence for the k th element and

∑n
k=1 pk = 1 and P is

the distribution of information.
For a distribution P, its entropy is maximized when

all elements have the same probability of occurrence,
i.e., pk = 1

n , for k = 1, 2...., n. But when one element e.g.,
j has a maximal probability of occurrence (i.e., pj = 1),
Hn(P) is minimized. The lower the entropy is, the smaller
uncertainty to identify the distribution of information from
the source. Consequently, lower entropy is often preferred.

Entropy is extensively used in software engineering as
a metric to assess the degree of disorder in software sys-
tem structure [50]. Entropy covers all the components of a

software system and their traceability relationship [50]. In the
following subsections, we slightly adapt the definition to
measure the quality of traceability by assessing the degree
of randomness of mapping between source code entities and
use cases.

1) CLASS TRACEABILITY ENTROPY
• Let c be a class composed of methods m1, m2,. . ., mk .
• Let U be a set of use cases, u1, u2,...., un that are
connected to one or more methods in c.

• Let L(U , c) be all the traceability links which connect
each use case in U to one or more methods in c.

• Let P(ui, c) be the ratio of traceability links connecting
use case ui and class c contributed to L(U , c), with
i = 1, 2, ....n.

So, each use case from U is directly connected to
one or more methods in c via some traceability links from
L(U , c). Thus, P(ui, c) is given as:

P(ui, c) =
L(ui, c)∑
L(U , c)

(2)

where L(ui, c) is the number of traceability links starting from
use case ui to class c. P(ui, c) determines at what extent a use
case is traced by a class. If use cases in U share equal ratio,
i.e., P(u1, c) = P(u2, c), . . . = P(un, c), the class entropy is
maximal. For every class, the sum of the ratios is always equal
to 1, i.e.,

n∑
i=1

P(ui, c) = 1

We finally define entropy of class c, E(c), as:

E(c) = −
n∑
i=1

P(ui, c) log2 P(ui, c) (3)

Entropy of a class is minimal, i.e., E(c) = 0, when a
class traces to one use case only. The smaller the entropy
is, the better a class is organized. Methods which are highly
related are likely to trace to the same use case(s). When these
methods are grouped in the same class will result to a well-
organized class which is composed of strongly related meth-
ods. Therefore, a class implements less number of distinct use
cases which consequently reduces entropy. In other words,
cohesive methods are grouped in the same class. However,
some methods trace to more than one use case and therefore
this yields to some reasonable amount of coupling between
classes. The entropy of the class becomes high when its
methods trace to different use cases. This in turn increases
cross mappings of the traceability links between classes and
use cases.

2) USE CASE TRACEABILITY ENTROPY
We further quantify the effect of the solution by assessing the
entropy of use cases traced by classes. The definition is also
straightforward as that of a class:
• Let S be a system composed of classes c1, c2,. . ., cn.
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• Let u be a use case connected to one or more classes in
S.

• Let T (u, S) be all the traceability links that connect use
case u to classes in S.

• Let R(u, ci) be the ratio of traceability links connecting
use case u and class ci contributed to T (u, S), with
i = 1, 2, ....n.

So, a use case u is directly connected to a class from S with
some links from T (u, S). Thus R(u, ci) is given as:

R(u, ci) =
T (u, ci)∑
T (u, S)

(4)

where T (u, ci) is the number of traceability links starting from
use case u to class ci. R(u, ci) determines at what extent a use
case is traced by a class. If the classes in S share equal ratio,
i.e.; R(u, c1)= R(u, c2),. . .= R(u, cn), the use case entropy is
maximal. For every use case, the sum of the ratios is always
equal to 1, i.e.;

n∑
i=1

R(u, ci) = 1

We finally define entropy of use case u, E(u), as:

E(u) = −
n∑
i=1

R(u, ci) log2 R(u, ci) (5)

Entropy of a use case is minimal, i.e., E(u) = 0, when
a use case is traced by one class only. The smaller entropy
implies a use case is implemented by methods which are
well grouped into classes. Thus, a use case will tend to trace
to fewer number of different classes. Consequently use case
entropy is reduced. The entropy becomes higher when a use
case is implemented by different methods in different classes,
which implies the greater difficulty to follow the traceability
links from use case to source code.

3) SYSTEM TRACEABILITY ENTROPY
To compute traceability entropy of the whole system,
we summarize the traceability entropy of classes and use
cases.
• Let S be a system composed of classes c1, c2,. . ., cn.
• Let U be a set of use cases, u1, u2,...., uj traced by
one or more classes in S.

Then entropy of the whole system given as E(S,U ) is defined
as:

E(S,U ) =

∑n
i=1 E(ci)+

∑k
j=1 E(uj)

n+ k
(6)

where:
•

∑n
i=1 E(ci) is the sum of class traceability entropy of all

classes in the system.
•

∑k
j=1 E(uj) is the sum of use case traceability entropy of

all use cases traced by the system.
• n and k are the total number of classes and use cases in
the system respectively.

FIGURE 3. Traceability links before refactoring.

In Equation (6), the sum of the classes and use cases
entropy is divided by the total number of classes and use
cases, n and k respectively. That is because some refactor-
ings like Extract Class may increase the number of classes.
Consequently, the sum of the classes entropy or use cases
entropy might increase as well. We therefore take the average
(dividing by n and k) to consider possible changes in n.

Less entropy of the system implies better organization of
methods into classes and less cross mapping between use
cases and classes. This leads to a well-structured and easy-
to-follow traceability between source code and use cases.

4) COMPUTATIONAL EXAMPLE
Consider the traceability matrix depicted in Table 1, which
is the typical example drawn from iTrust. The matrix is
composed of two classes of which altogether implement five
use cases. The traceability links between methods and use
cases before refactoring are as depicted in Fig. 3. Based
on the matrix, to compute traceability entropy of class
EditPersonnelAction and PersonnelDAO before refactoring,
say E(EditPersonnelAction) and E(PersonnelDAO) respec-
tively, we consider the links contributed by each use case
traced by the classes:

E(EditPersonnelAction) =
2
2
× log2

2
2
= 0

E(PersonnelDAO) =
1
7
× log2

1
7
+

1
7
× log2

1
7
+

1
7

× log2
1
7
+

2
7
× log2

2
7
+

2
7

× log2
2
7
= 2.236

Suppose a refactoring that moves a method editPersonnel
from class PersonnelDAO to EditPersonnelAction class needs
to be executed. Since the use cases will also be affected by the
refactoring operation then their entropy should be computed
as well. Thus we can determine change in traceability entropy
before and after refactoring. But the use casesU6,U10,U29
and U33 trace to one class only, see Fig. 2, therefore their
entropy is zero. So we only need to compute entropy of use
case U4:

E(U4) =
1
3
× log2

1
3
+

2
3
× log2

2
3
= 0.918
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FIGURE 4. Traceability links after refactoring.

Therefore, traceability entropy before refactoring,E(S,U ),
is computed by summarizing the traceability entropy of
classes and use cases as shown in Equation (6). Thus,
E(S,U ) = 0.451.

To analyze the effect of the applied refactoring on trace-
ability entropy, we compute entropy after refactoring as well.
As depicted in Fig. 4, after refactoring, all use cases are traced
by only one class, therefore their entropy is zero. Moreover,
class EditPersonnelAction is still tracing to one use case only,
consequently, its traceability entropy is still equal to zero.
We thus compute traceability entropy of PersonnelDAO class
after refactoring, E ′(PersonnelDAO):

E ′(PersonnelDAO) =
1
6
× log2

1
6
+

1
6
× log2

1
6
+

2
6

× log2
2
6
+

2
6
× log2

2
2
= 1.918

Finally, traceability entropy of the system after refactor-
ing, E ′(S,U ), is computed by summarizing the traceability
entropy of classes and use cases after refactoring, as indicated
in (6). Thus, E ′(S,U ) = 0.274.

This example has shown how traceability entropy of the
classes and use cases are affected by the refactoring. In the
example, when methods which implement similar use case
are grouped together, entropy of a class is reduced. Similarly,
entropy of the use case is reduced when a use case is traced
by fewer classes.

D. COUPLING AND COHESION METRICS
Considering that methods are one of the entities of the class
in an object-oriented system, thus moving methods between
classes of the system has direct impact to the design. Since
coupling and cohesion of the class mainly depend on how
relevant methods are placed in classes [14], they are there-
fore useful in determining how well the system is designed.
Coupling and cohesion are among the most commonly used
design quality metrics for object oriented systems [58]. Cohe-
sion is generally defined as the degree of similarity between
entities within a class. Themore the entities of a class are sim-
ilar to each other the more a class is considered to be cohesive
[59]. Often the cohesion of a class is measured based on how
its methods relate to each other. The similarity of methods

is determined by the degree of sharing of instance variables
within a class. Moreover, coupling has been defined as the
degree of interrelatedness between classes [2]. Coupling gen-
erally indicates how the entities of one class are closely
related to the entities of another class. A well designed class
shall therefore exhibit the widely accepted rule of high cohe-
sion and low coupling. To find the trade-off between cohesion
and coupling, Tsantalis and Chatzigeorgiou [14] proposed
Entity Placement (EP) metric which is the ratio of the dis-
tances of the entities of a class (cohesion) to the distances
of the entities of another class from that class (coupling).
EP has been proved to be effective in measuring how well
components are distributed [14]. Consequently, the proposed
approach employs EP as well. EP is automatically computed
by the refactoring tool (see Section V-E.1) and it is one of the
parameters in our refactoring recommendation. The EP of a
class C is therefore defined as:

EPC =

∑
ei∈C

distance(ei,C)
|entities∈C|∑

ej /∈C
distance(ej,C)

|entities/∈C|

(7)

where e denotes an entity of the system and distance(ei,C)
indicates the distance from entity i to class C . The compu-
tation of a distance from an entity to a class is explained in
detail in [14].

The EP of a system S which is the weighted metric for all
classes in a system is further defined as:

EPS =
∑
Ci

|entities ∈ Ci|
|allentities|

EPCi (8)

The value of EP closes to zero implies proper allocation of
entities into classes.

E. REFACTORING RECOMMENDATION
Our recommendation approach first detects the two classical
smells: Feature Envy and God Class. For the Feature Envy
smell, a methodm located in incorrect classCs is detected and
then the approach suggests moving such method to the class
it mostly deserves. A refactoring to move a method m to each
of the suggested target classes Ct is virtually applied and then
we compute two metrics: (a) the resultant traceability entropy
after moving m to Ct ; and (b) the entity placement metric
after moving m to Ct . Based on these two metrics the effect
of refactoring is then computed as shown in Equation (9).
Therefore, Ct will be recommended as the most suitable class
to receive a method m if its refactoring will lower the value
of the two metrics.

For the God Class smell, an optimal extract class refac-
toring is evaluated by analyzing the sets of methods ms to
be moved to form a new class Cn. An extract class refactor-
ing that moves the methods of each set is virtually applied.
Then the two metrics described in the previous section are
computed. Therefore, methods ms will be recommended for
extraction to class Cn if it will reduce the value of the metrics.
Generally, the key steps before recommending solution

are smell detection, analyzing traceability information and
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traceability entropy computation and recommendation. Next
we elaborate these key steps.

1) CODE SMELL DETECTION
The first step in recommending refactoring is to detect code
smells. As an initial attempt, the proposed approach focuses
on two common smells: God Class and Feature Envy. Trifu
and Marinescu [55] define God Class as ‘‘large, complex
and non-cohesive class which accesses many foreign data
and tends to perform too much work while delegating very
little’’. Often, God Class is the result of the violation of the
principle that a class should implement one concept only [13].
Furthermore, Feature Envy is ‘‘a design flaw that applies to a
method that seems more interested in the data of other classes
than that of the class it is currently located’’ [55]. This method
is often tightly coupled to the other class than its own [33].
Our approach employs the state-of-the-art refactoring tools
(JDeodorant, JMove and ARIES) which have the capabilities
of detecting code smells and suggesting solutions. Source
code unit under analysis is scanned by the refactoring tools
to uncover code smells. For each identified smell, the tools
suggest refactoring solutions and rank them based on how
they improve code design quality. We collect such potential
solutions as our candidate solutions. Notable, such refactor-
ing solutions, if applied, can preserve the external behaviors
of the subject software applications [7], [56]. The employed
refactoring tools, e.g., JDeodorant, have employed rigorous
prediction checking algorithms to guarantee that the pro-
posed potential solutions can preserve the behavior of the
system [37]. The number of possible refactoring solutions
depends on the nature of the code smell and the possible
ways of transforming the code to remove the identified smell.
Refactoring solutions are therefore presented as the transfor-
mation of source code and their relevant code metrics values.

2) ANALYZING TRACEABILITY INFORMATION
The second step is to access the traceability information of the
source code detected with code smells in the first step. Trace-
ability information which is often presented in traceability
matrix (TM) shows the traceability links connecting source
code unit and use cases. At this stage we aim at establishing
the number of traceability links connecting each method of
the class under refactoring to use cases. This information is
used in computing class traceability entropy. In addition to
that, the number of traceability links connecting each use case
(that will be affected by the suggested solutions in step one) to
methods are counted as well. This information is used in com-
puting use case traceability entropy. Moreover, the applied
refactoring solutions such asMoveMethod and Extract Class
lead to movement of methods between classes and addition of
new classes respectively. These changes affect the number of
traceability links between classes and use cases. Therefore,
after each refactoring the traceability information is updated
to accommodate the changes and ensure accurate traceability
entropy computation in the subsequent refactorings.

3) ENTROPY COMPUTATION AND RECOMMENDATION
The solutions suggested for each identified code smell are
then virtually applied to determine their effects on traceabil-
ity based on traceability entropy. Since the applied refac-
torings involve movement of methods between classes, this
affects the number of traceability links between classes and
use cases. Consequently traceability entropy is also affected.
Traceability entropy for each solution is then computed as
shown in the example in Section V-C.4. To recommend solu-
tion, traditional object-oriented design metrics are also taken
into consideration. We specifically considered coupling and
cohesion metrics which are computed by the employed refac-
toring tool (JDeodorant) as EP (Entity Placement) values.
EP is a ratio of the overall system cohesion over its coupling,
see Section V-D. The value of EP is used to determine the
effect of each refactoring to the code design without actually
applying it. So prior to execution of a particular refactoring
the initial values for traceability entropy as shown in Equa-
tion (6), here denoted as EN , and EP of the system are com-
puted. These values are noted as preRefactoring. Then virtual
application of each of the suggested refactoring is applied to
deduce the values of EN and EP after refactoring noted as
postRefactoring. To compute the sum of the percentage of
change between preRefactoring and postRefactoring for both
EN and EP of the system after applying refactoring solution s
we devise a metric, Effect of Refactoring, notated as ER(s)
which is defined as:

ER(s) =
EPi − EPs

EPi
+
ENi − ENs

ENi
(9)

where EPi and ENi are the initial (preRefactoring) values of
EP and entropy of the system respectively. EPs and ENs are
the resultant EP and entropy (postRefactoring) values of a
system if the refactoring solution s will be applied.

The value of ER(s) which is finally used to rank the refac-
toring solutions can either be positive or negative. Positive
values indicate decrease in the resultant values of EP and
entropy. Negative values indicate an increase in the resultant
values of EP and entropy. The solution that will lead to the
higher value of ER(s) is recommended to the developer.

4) RECOMMENDATION ALGORITHM
Algorithm 1 depicts the proposed Move Method recommen-
dation algorithm. An envy methodm of the system S which is
implemented in the class Cs is first verified if it appears in the
traceability matrix TM . This is because the number of trace-
ability links between methodm and the use cases will be used
later to compute the traceability entropy which consequently
used in ranking the candidate refactorings. The list of classes
CT which are envied by a method m are then detected using
a smell detection technique presented in Section V-E.1. Then
for each class Ci from the list of candidate target classes CT ,
the effect of refactoring metric (ER) is computed (line 9) if a
methodmwill be moved to Ci. A function computeER(m,Ci)
computes the effect of refactoring based on traceability and
code metrics as shown in Equation (9). The ERList holds
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Algorithm 1 Move Method Recommendation
Input: Target system S, Traceability matrix TM
Output: Recommended refactorings
1: Recommendations← ∅
2: for all method m ∈ S do
3: if m appearsIn TM then
4: Cs = getSourceClass(m)
5: CT = getEnviedClasses(m)
6: ERList ← ∅
7: for all Ci ∈ CT do
8: ERi← 0
9: ERi = computeER(m,Ci)
10: ERList = ERList + ERi
11: end for
12: Ct = recommendClass(m,ERList)
13: end if
14: Recommendations = Recommendations +

moveMethod(m,Ct )
15: end for

the computed values of ER for each candidate move method
refactoring solution. In line 12, a class with the greatest ER
value in ERList is recommended as an optimal target class Ct
to receive a method m. Finally, the recommendation to move
a method m to a class Ct is given to the developer.
To recommend an Extract Class refactoring solution,

a slightly different algorithm is proposed as presented in
Algorithm 2. A class c which has been identified as the God
Class is first verified to check if its methods m appear in
the traceability matrix TM . The set ME of possible methods
that can be extracted from class c is suggested by the smell
detection technique presented in Section V-E.1. Then, for
each set of candidatemethodsmi to be extracted to a new class
Cn, the effect of refactoring ER is computed by the function
computeER(mi,Cn). In line 11, a set of methods ms which
attains the greatest value of ER in ERList is recommended to
be extracted to a new class Cn.
Consequently, the recommendation to extract ms from

class c to class Cn is suggested to the developer. To reduce
the time complexity and the manual overhead of the proposed
approach, we stored the traceability information in a database
to facilitate easy querying and manipulation of the informa-
tion. Moreover, we devised a tool to efficiently compute the
traceability entropy.

VI. EVALUATION
A. RESEARCH QUESTIONS
In this section we present the evaluation of the proposed
approach. The evaluation investigates the following research
questions.
• RQ1: Does the proposed approach outperform tradi-
tional code metrics-based approaches concerning the
traceability between requirements and source code? If
so, to what extent?

Algorithm 2 Extract Class Recommendation
Input: Target system S, Traceability matrix TM
Output: Recommended refactorings
1: Recommendations← ∅
2: for all class c ∈ S do
3: if methods m ∈ c and m appearsIn TM then
4: ME = getExtractableMethods(c)
5: ERList ← ∅
6: for all mi ∈ ME do
7: ERi← 0
8: ERi = computeER(mi,Cn)
9: ERList = ERList + ERi
10: end for
11: ms = recommendMethods(m,ERList)
12: end if
13: Recommendations = Recommendations +

extractClass(ms,Cn)
14: end for

• RQ2: How often do developers prefer solutions recom-
mended by our approach against those recommended by
the traditional code metrics-based approaches?

Investigation of RQ1 should reveal to what extent the solu-
tions recommended by the proposed approach can improve
traceability compared against the solutions recommended by
the traditional metrics-based approaches. RQ2 validates the
proposed approach to assess its feasibility from the develop-
ers’ point of view.

B. DATASET AND TOOL SUPPORT
We evaluated our approach on a well-known iTrust
dataset [54]. iTrust is an open-source application for main-
taining patients electronic health records created and used
as students’ educational project at North Carolina State Uni-
versity. The application comes with packaged source code
and traceability matrix which shows the traceability links
between use cases and source code at the method granularity.
iTrust is specifically chosen because it maintains traceability
links which trace down to Java methods. The used version
of iTrust contains 365 classes, and the traceability matrix
contains 50 use cases and the total of 444 use case to methods
traceability links. The total of 103 code smells were identified
for refactoring. Out of which, 18 code smells (17.5% =

18/103) were not considered for evaluation since their solu-
tions recommended by both approaches (JDeodorant, JMove,
ARIES and our approach) were the same. We therefore
evaluated the proposed approach on 85 code smells (82.5% =
85/103) whose solutions recommended by the approaches
were different.

To automatically detect code smells and apply refactor-
ings we use three Eclipse plugins, JDeodorant [6], [7],
JMove [37], [56] and ARIES [60] as the refactoring tools
of our choice. We note that, JDodorant can detect and rec-
ommend refactorings for both Feature Envy and God Class
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code smells, whereas JMove and ARIES can detect and rec-
ommend refactorings only for Feature Envy and God Class
respectively. Also the evaluation compares our approach
against these techniques in recommending solutions because
they are the state-of-the-art refactoring tools that use struc-
tural metrics for refactoring recommendation. Particularly,
JDeodorant is among the powerful and pertinent refactoring
tools currently in use and has been empirically validated in
several studies [30]–[32]. JDeodorant is actively developed,
well maintained and available. Furthermore, we specifically
choose these tools because they are capable of detecting
smells, suggesting refactoring solutions and apply selected
solutions automatically. Unlike some other refactoring tools
which are just smell detectors and are not capable of suggest-
ing solutions or apply them automatically. We note that, these
tools do not use traceability information in their recommen-
dation, howeverwe employ them as baselines as they use code
metrics for recommendation like our approach. To the best
our knowledge the proposed approach is the first attempt to
combine traceability and code metrics to recommend refac-
torings. In addition, traceability information was stored in the
database with tuples for all use cases and the methods they
trace. Moreover, we developed a tool to facilitate efficient
computation of traceability entropy.

C. RESULTS AND ANALYSIS
We conducted our evaluation on 85 (49 for Feature Envy
and 36 for God Class) identified code smells in iTrust. Each
smell was refactored by both solutions recommended by our
approach and the baseline approaches. After refactoring each
smell, the system traceability entropy was computed.

To answer research question RQ1, we investigated the
change in traceability entropy of the system after resolv-
ing each code smell. Each individual solution was applied
and assessed how it affected entropy. The result shows that
solutions recommended by our approach outperform those
suggested by the baseline approaches. On 69 out of 85 code
smells (81% = 69/85), the solutions recommended by our
approach lead to reduced system entropy.We also note that on
22 out of 85 code smells (25% = 22/85), the solutions sug-
gested by JDeodorant lead to reduced system entropy.We fur-
ther note that, 31% and 29%of the solutions recommended by
JMove and ARIES respectively reduced system entropy. As a
result, on average the solutions by JDeodorant, ARIES and
JMove resulted to an output system with entropy increased
by 3.6%, 3.1% and 2.7% respectively, whereas solutions
recommended by our approach outputted the system with
entropy reduced by 6%. The results generally show that our
approach significantly reduced system entropy compared to
the baseline approaches.

We further investigated the change in ER(s) as shown in
Equation (9) which computes the percentage of change in
both EP and entropy. The higher the value of ER(s) indi-
cates reduced in entropy and better design of a system in
terms of coupling and cohesion which is summarized by EP.
The results of ER(s) of the system after applying Move

FIGURE 5. Comparison on effect of move method refactoring.

FIGURE 6. Comparison on effect of Extract Class refactoring.

Method and Extract Class refactorings on code smells are as
depicted in Fig. 5 and Fig. 6 respectively. The results gener-
ally show that to a large extent the solutions recommended
by our approach outperform those suggested by the baseline
approaches in resulting to higher values of ER(s). For the
Move Method refactorings as shown in Fig. 5, the results
indicate that, on 29 out of 49 code smells (59.3% = 29/49),
the solutions recommended by our approach lead to increase
in ER(s). We also note that on 12 out of 49 code smells
(24.5% = 12/49), the solutions suggested by JDeodor-
ant lead to increase in ER(s). On the other hand, 35% of
the solutions recommended by JMove resulted to increase
in ER(s). Furthermore, as depicted in Fig. 6, we compared
our approach against JDeodorant andARIES on Extract Class
refactoring. The results indicate that, on 23 out of 36 code
smells (64% = 23/36), the solutions recommended by our
approach lead to increase in ER(s), whereas the total number
of 8 and 13 solutions, equivalent to 22% and 36% of the solu-
tions recommended by JDeodorant and ARIES respectively
resulted to increase in ER(s).

D. DEVELOPERS’ SELECTION
Generally, two different ways are often used to eval-
uate refactoring recommendations. The first way is to
employ human evaluators for example application develop-
ers or domain experts. The second involves implementing
recommendations as a prototype or a tool and get
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tested or compared with other tools [39]. For example
in [39] and [45], with other techniques authors also adopted
the qualitative evaluation approach to collect opinions from
human subjects who are familiar with application devel-
opment and refactorings to evaluate the refactorings rec-
ommended by their proposed approaches. To this end,
we also validate the solutions recommended by the proposed
approach from the developers’ perspective to assess at what
extent such solutions are preferred. This subsection aims to
answer research question RQ2.
Ten developers were requested to manually evaluate the

recommended solutions and select those which they would
prefer. The recruited developers included 7 graduate and
3 undergraduate university students. Their working experi-
ence on Java development ranges from 1 to 5 years. In par-
ticular, we provided the developers with necessary details
required for refactoring, including source code with specific
sources of code smells uniquely marked, type of the code
smells and the available alternative solutions. The provided
list of alternative solutions was supplemented with details
including source code design considerations. The alternative
refactoring solutions for each code smell were presented to
developers for selection. Those solutions were the top rec-
ommendations from the baseline approaches and the other
from our approach. However, this was not explicitly known
to developers. It is worth noting that, the cases that were
considered for evaluationwere thosewhose top recommenda-
tions were different. We performed two experiments, the first
one involved the recommendedMoveMethod refactorings by
our approach, JDeodorant and JMove, whereas the second
involved the Extract Class refactorings recommended by our
approach, JDeodorant and ARIES. For each of the proposed
solution the developers had to analytically assess the code
smells and consequently suggest the selection. Our goal here
is to validate whether the recommended refactoring solutions
that have shown to improve traceability entropy are also
preferred by the developers.

To analyze how often the particular solutions are preferred
by the majority of the developers, i.e., in how many code
smells the approach is preferred by the majority of the devel-
opers, we defined a measure:
• A Preferred Solution is a solution that is selected by
the majority of developers. Since we had 10 developers,
a solution is considered to be selected by the majority
if its votes ≥ 6. That means a solution is selected by at
least six developers.

• Let P(ap) be a measure of how often the recommended
solutions by approach ap are preferred solutions:

P(ap) =
Total number of preferred ap solutions

Total number of code smells
(10)

To compute how often individual developers prefer the par-
ticular solutions:
• Let S(ap) be a measure of how often individual
developer preferred the solution recommended by
approach ap:

FIGURE 7. Preferred Move Method refactoring solutions.

FIGURE 8. Preferred Extract Class refactoring solutions.

S(ap) =
Total votes ap received

Total votes issued by developers
(11)

Fig. 7 and Fig. 8 respectively depict the percentage of the
recommended Move Method and Extract Class refactoring
solutions that were preferred by the developers. As depicted
in Fig. 7 and Fig. 8, generally the results indicate that, in both
experiments the developers mostly preferred the solutions
recommended by our approach than that of the baseline
approaches. Next we present the results analysis of each
experiment in detail.

As shown in Fig. 7 (p(ap)), around 72% of the Move
Method refactoring solutions recommended by our approach
were preferred by the developers. In other words, on 35 out
of the 49 (72% = 35/49) code smells, solutions recom-
mended by the proposed approach were preferred, whereas
12% and 16% of the solutions recommended by JDeodorant
and JMove were preferred, respectively. From Fig. 7 (S(ap)),
we also observe that in total the proposed approach has
received most (59%) of the votes whereas JDeodorant and
JMove received 17% and 24%, respectively. From the pre-
ceding analysis, we conclude that developers frequently pre-
ferred the solutions recommended by our approach.

Evaluation results on Extract Class refactorings are pre-
sented in Fig. 8. From this figure, we also observe that
most (69%) of the refactoring solutions recommended by
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FIGURE 9. Move Method refactoring.

our approach were preferred, and it received most (60%)
of the votes from developers. Notably, for all code smells
whose solutions were analyzed by the developers in the two
experiments, there was not any case where all developers
preferred the same solution for the same code smell. This
implies that the selection of solutions is highly subjective.

Although most of the refactoring solutions recommended
by the proposed approach were preferred by the developers,
we also note that, on 25 out of the 85 (29% = 25/85)
code smells, the solutions recommended by our approach
were not preferred. This implies that, in those cases devel-
opers preferred the solutions recommended by the baseline
approaches instead of our approach. The cases where some
of the solutions recommended by our approach were not
preferred by the developers can be explained based on the
following two major reasons.

First, the developers may make selection decision based
on some other information than traceability and code
metrics. For example as depicted in Fig. 9, the method
formToBean uses a number of functions from other two
classes, EditPrescriptionsForm and PrescriptionBean, which
causes a code smell called Feature Envy. The highlighted
parts of the envy method are the source of the smell. This
smell can be resolved by moving the envy method to one of
the classes where it wants to be. In this case, our approach
recommends moving the envy method formToBean to class
PrescriptionBean, which would lead to reduced entropy.
However, developers preferred to move the envy method
to another class EditPrescriptionsForm that is semantically
related to the envy method. To improve our recommendation,
in future we will consider other factors, e.g., conceptual

FIGURE 10. Extract Method refactoring.

relationship, to supplement our traceability-based solutions
recommendation.

Second, our approach recommends refactoring based on
assessing the effects of the solution on traceability. Trace-
ability information of iTrust provides the links to method
level. Thus only refactoring that affects a whole method was
possible to be analyzed to assess their effects on traceability
and consequently compute the entropy. We were not able
to recommend other types of refactorings because in this
initial attempt we do not re-compute traceability information.
Particularly, refactorings which involve splitting of methods.
For example, the case depicted in Fig. 10, the highlighted
parts of the method (add) are methods called from another
class, personnelDAO, which cause Feature Envy code smell.
In this case we recommended the solution which entirely
moves the envy method to the envied class personnelDAO.
However, developers selected extract method refactoring
solution which usually extracts parts of the method causing
feature envy smell and move them as the new method to the
envied class. But in future we will consider such refactorings
which involve extracting methods, renaming identifiers and
addition of new components by allowing re-computation of
traceabilitymatrix. In summary, in some few cases developers
made decision based on other information or refactoring
possibilities which are not incorporated in our refactoring
recommendation. Furthermore, recommending refactoring
solutions by only considering some few refactorings due
to limitation of traceability granularity may leave out other
potential alternative refactoring solutions.

Finally, we further assessed the votes of the individual
developers for the Move Method and Extract Class refac-
torings, the results are summarized in Fig. 11 and Fig. 12
respectively. The votes indicate the number of refactoring
solutions recommended by a particular approach that were
preferred by a given developer. As depicted in Fig. 11 and
Fig. 12 it is evident that all developers have almost the same
preference to the proposed approach.

E. LIMITATION AND THREATS TO VALIDITY
One of the major limitations of the study is that refactorings
which affect source code units below method level were not
considered. For example, refactorings which involve split-
ting of methods and renaming identifiers. That is because
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FIGURE 11. Developers’ votes for the Move Method refactorings.

FIGURE 12. Developers’ votes for the Extract Class refactorings.

iTrust maintains the traceability information which goes up
to method granularity. In industry, traceability information
can be automatically generated by tools. However, such tool
generated traceability information still requires developers
to manually validate or slightly modify them. But with the
advancement in efficient and accurate generation of traceabil-
ity links, in future we will try to validate our approach on
such applications with automatically generated traceability
information.

The first threat to external validity is only one subject
system is used for evaluation. To the best of our knowledge,
among the open-source datasets publicly available only iTrust
maintains traceability information at method level. Evaluat-
ing with only one subject system limits the generalizability
of our findings. To reduce the threat, we selected the mod-
ules that their refactorings had several suggestions so as to
challenge the recommendation. The second threat is that we
validated our approach on two types of smells only. This
is because other types of smells would require traceability
information that goes beyond method granularity. The threat
can be addressed by incorporating the traceability informa-
tion that goes below method granularity so as to include
code smells and refactorings that affect only some parts of
the method. The third threat could stem from the fact that,
we qualitatively evaluated our findings by asking for devel-
opers’ opinions. Though that way is scientifically acceptable
due to our aim here focusing on developers’ selections, still
our results could be threatened due to the fact that we only

evaluated with developers who are not original developers of
iTrust. To slightly mitigate this threat, developers were not
informed the purpose of the evaluation. Moreover, the solu-
tions were presented to them without explicitly indicating
which approach suggested which particular solution.

VII. CONCLUSION AND FUTURE WORK
In this paper, we propose an approach to recommend refac-
toring solutions based on requirements traceability. Our
approach aims at facilitating developers in refactoring solu-
tions selection from the multiple refactorings which are sug-
gested by refactoring tools. We leverage the use of entropy
metric to assess the degree of randomness of classes and
methods in traceability matrix. Consequently, our approach
recommends solutions that improve traceability entropy and
code design. In this study, we make use of traceability to
assess how best refactoring can be done and still maintains the
well-structured traceability links. We validate our approach
on a well-known dataset. The results obtained from the two
conducted experiments which involved Move Method and
Extract Class refactorings suggest that the solutions recom-
mended by the proposed approach were mostly preferred
by the developers than those of the baseline approaches.The
results show that on average 71% of all solutions recom-
mended by our approach to resolve the identified code
smells were preferred by the developers. The results further
show that, the refactoring solutions recommended by our
approach were able to reduce traceability entropy by 6%,
whereas the solutions suggested by JDeodorant, ARIES and
JMove led to traceability entropy increase by 3.6%, 3.1% and
2.7% respectively. Our research contributes to the traceabil-
ity utilization endeavor particularly in facilitating software
refactoring.

Future work in this direction is, first to validate our
approach on other refactorings which are not included in this
study, particularly those which involve splitting of methods.
Second, we would like to further assess the effect of preserv-
ing and improving traceability on source code design metrics.
This was not considered in this initial attempt because we do
not re-compute traceability information. As a result we were
not able to assess how traceability-based refactorings impact
the code design metrics. Finally, we want to devise a tool that
will automatically and efficiently perform recommendation
task.
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[17] C. Chisǎliţǎ-Creţu, ‘‘Themulti-objective refactoring set selection problem-
a solution representation analysis,’’ in Advances in Computer Science and
Engineering. Rijeka, Croatia: InTech, 2011.

[18] O. C. Z. Gotel and C. W. Finkelstein, ‘‘An analysis of the require-
ments traceability problem,’’ in Proc. 1st IEEE Int. Conf. Requirements
Eng. (ICRE), Colorado Springs, CO, USA, Apr. 1994, pp. 94–101.

[19] P. Rempel and P.Mäder, ‘‘Continuous assessment of software traceability,’’
in Proc. 38th Int. Conf. Softw. Eng. Companion (ICSE), Austin, TX, USA,
May 2016, pp. 747–748.

[20] P. Rempel and P. Mäder, ‘‘A quality model for the systematic assessment
of requirements traceability,’’ in Proc. 23rd IEEE Int. Requirements Eng.
Conf. (RE), Ottawa, ON, Canada, Aug. 2015, pp. 176–185.

[21] R. Tsuchiya, T. Kato, H. Washizaki, M. Kawakami, Y. Fukazawa, and
K. Yoshimura, ‘‘Recovering traceability links between requirements and
source code in the same series of software products,’’ in Proc. 17th Int.
Softw. Product Line Conf. (SPLC), Tokyo, Japan, Aug. 2013, pp. 121–130.

[22] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, ‘‘Requirements traceability for
object oriented systems by partitioning source code,’’ in Proc. 18th Work.
Conf. Reverse Eng. (WCRE), Limerick, Ireland, Oct. 2011, pp. 45–54.

[23] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo, ‘‘Recov-
ering traceability links between code and documentation,’’ IEEE Trans.
Softw. Eng., vol. 28, no. 10, pp. 970–983, Oct. 2002.

[24] D. Poshyvanyk and A. Marcus, ‘‘Using traceability links to assess and
maintain the quality of software documentation,’’ in Proc. Traceability
Emerg. Forms Softw. Eng., vol. 7, 2007, pp. 27–30.

[25] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, ‘‘How changes affect
software entropy: An empirical study,’’ Empirical Softw. Eng., vol. 19,
no. 1, pp. 1–38, 2014.

[26] A. E. Hassan, ‘‘Predicting faults using the complexity of code changes,’’
in Proc. 31st Int. Conf. Softw. Eng. (ICSE), Vancouver, BC, Canada,
May 2009, pp. 78–88.

[27] L. H. Etzkorn, S. Gholston, and W. E. Hughes, Jr., ‘‘A semantic
entropy metric,’’ J. Softw. Maintenance Evol., Res. Pract., vol. 14, no. 4,
pp. 293–310, 2002.

[28] L. Yang, Z. Dang, T. R. Fischer, M. S. Kim, and L. Tan, ‘‘Entropy and
software systems: Towards an information-theoretic foundation of soft-
ware testing,’’ in Proc. 18th ACM SIGSOFT Workshop Future Softw. Eng.
Res. (FoSER) and Int. Symp. Found. Softw. Eng., Santa Fe, NM, USA,
Nov. 2010, pp. 427–432.

[29] N. Niu, W. Wang, and A. Gupta, ‘‘Gray links in the use of requirements
traceability,’’ in Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng.
(FSE), Seattle, WA, USA, Nov. 2016, pp. 384–395.

[30] F. A. Fontana, E. Mariani, A. Mornioli, R. Sormani, and A. Tonello,
‘‘An experience report on using code smells detection tools,’’ in Proc. 4th
IEEE Int. Conf. Softw. Test., Verification Validation Workshops (ICST),
Berlin, Germany, Mar. 2011, pp. 450–457.

[31] T. Paiva, A. Damasceno, J. Padilha, E. Figueiredo, and C. Sant’Anna,
‘‘Experimental evaluation of code smell detection tools,’’ in Proc. 3rd
Workshop Softw. Vis., Evol., Maintenance (VEM), 2015, pp. 17–24.

[32] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, ‘‘A review-
based comparative study of bad smell detection tools,’’ in Proc. 20th Int.
Conf. Eval. Assessment Softw. Eng. (EASE), Limerick, Ireland, Jun. 2016,
Art. no. 18.

[33] F. A. Fontana, P. Braione, and M. Zanoni, ‘‘Automatic detection of bad
smells in code: An experimental assessment,’’ J. Object Technol., vol. 11,
no. 2, pp. 1–5, 2012.

[34] M. P. Robillard,W.Maalej, R. J.Walker, and T. Zimmermann, Eds.Recom-
mendation Systems in Software Engineering. Berlin, Germany: Springer-
Verlag, 2014.

[35] A. Mahmoud and N. Niu, ‘‘Supporting requirements traceability through
refactoring,’’ in Proc. 21st IEEE Int. Requirements Eng. Conf. (RE),
Rio de Janeiro, Brazil, Jul. 2013, pp. 32–41.

[36] P. Mäder and A. Egyed, ‘‘Assessing the effect of requirements traceability
for software maintenance,’’ in Proc. 28th IEEE Int. Conf. Softw. Mainte-
nance (ICSM), Trento, Italy, Sep. 2012, pp. 171–180.

[37] V. Sales, R. Terra, L. F.Miranda, andM. T. Valente, ‘‘Recommendingmove
method refactorings using dependency sets,’’ in Proc. 20th Work. Conf.
Reverse Eng. (WCRE), Koblenz, Germany, Oct. 2013, pp. 232–241.

[38] A. Delater and B. Paech, ‘‘Tracing requirements and source code during
software development: An empirical study,’’ inProc. ACM/IEEE Int. Symp.
Empirical Softw. Eng. Meas., Baltimore, MD, USA, Oct. 2013, pp. 25–34.

[39] N. Niu, T. Bhowmik, H. Liu, and Z. Niu, ‘‘Traceability-enabled refactoring
for managing just-in-time requirements,’’ in Proc. IEEE 22nd Int. Require-
ments Eng. Conf. (RE), Karlskrona, Sweden, Aug. 2014, pp. 133–142.

[40] Y. Shin, J. H. Hayes, and J. Cleland-Huang, ‘‘A framework for evaluat-
ing traceability benchmark metrics,’’ DePaul Univ., Chicago, IL, USA,
Tech. Rep. 21, 2012.

[41] N. Ali, Z. Sharafi, Y.-G. Guéhéneuc, and G. Antoniol, ‘‘An empirical study
on the importance of source code entities for requirements traceability,’’
Empirical Softw. Eng., vol. 20, no. 2, pp. 442–478, 2015.

[42] J. Cleland-Huang, O. C. Z. Gotel, J. H. Hayes, P. Mäder, and A. Zisman,
‘‘Software traceability: Trends and future directions,’’ in Proc. Future
Softw. Eng. (FOSE), Hyderabad, India, May 2014, pp. 55–69.

[43] M. Eyl, C. Reichmann, and K. Müller-Glaser, ‘‘Traceability in a fine
grained software configuration management system,’’ in Proc. Int. Conf.
Softw. Qual. Cham, Switzeland: Springer, 2017, pp. 15–29.

[44] F. Faiz, R. Easmin, and A. Ul Gias, ‘‘Achieving better requirements to code
traceability: Which refactoring should be done first?’’ in Proc. 10th Int.
Conf. Qual. Inf. Commun. Technol. (QUATIC), Sep. 2016, pp. 9–14.

[45] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó. Cinnéide,
‘‘Recommendation system for software refactoring using innovization and
interactive dynamic optimization,’’ in Proc. 29th ACM/IEEE Int. Conf.
Automated Softw. Eng. (ASE), Vasteras, Sweden, Sep. 2014, pp. 331–336.

[46] A. Ouni, M. Kessentini, M. O. Cinnéide, H. Sahraoui, K. Deb,
and K. Inoue, ‘‘MORE: A multi-objective refactoring recommendation
approach to introducing design patterns and fixing code smells,’’ J. Softw.,
Evol. Process, vol. 29, no. 5, p. e1843, 2017.

[47] M. Kessentini, T. J. Dea, and A. Ouni, ‘‘A context-based refactoring
recommendation approach using simulated annealing: Two industrial
case studies,’’ in Proc. Genetic Evol. Comput. Conf. (GECCO), Berlin,
Germany, Jul. 2017, pp. 1303–1310.

[48] A. Ouni, M. Kessentini, and H. Sahraoui, ‘‘Search-based refactoring using
recorded code changes,’’ in Proc. 17th Eur. Conf. Softw. Maintenance
Reengineering (CSMR), Genova, Italy, Mar. 2013, pp. 221–230.

49474 VOLUME 6, 2018



A. S. Nyamawe et al.: Recommending Refactoring Solutions Based on Traceability and Code Metrics

[49] L. Cheikhi, R. E. Al-Qutaish, A. Idri, and A. Sellami, ‘‘Chidamber
and kemerer object-oriented measures: Analysis of their design from
the metrology perspective,’’ Int. J. Softw. Eng. Appl., vol. 8, no. 2,
pp. 359–374, 2014.

[50] A. Bianchi, D. Caivano, F. Lanubile, and G. Visaggio, ‘‘Evaluating soft-
ware degradation through entropy,’’ in Proc. 7th IEEE Int. Softw. Metrics
Symp., London, U.K., Apr. 2001, pp. 210–219.

[51] H. M. Olague, L. H. Etzkorn, and G. Cox, ‘‘An entropy-based approach
to assessing object-oriented software maintainability and degradation—
A method and case study,’’ in Proc. Int. Conf. Softw. Eng. Res. Pract.
and Conf. Program. Lang. Compil. (SERP), Las Vegas, NV, USA, vol. 1,
Jun. 2006, pp. 442–452.

[52] S. G. Maisikeli, ‘‘Evaluation and study of software degradation in the
evolution of six versions of stable and matured open source software
framework,’’ in Proc. 6th Int. Conf. Comput. Sci., Eng. Appl. (ICCSEA),
Dubai, UAE, Sep. 2016, pp. 24–25.

[53] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, ‘‘Multi-criteria
code refactoring using search-based software engineering: An industrial
case study,’’ ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, 2016,
Art. no. 23.

[54] A. Meneely, B. Smith, and L. Williams, ‘‘iTrust electronic health care sys-
tem:A case study,’’ in Software and Systems Traceability, J. ClelandHuang,
O. Gotel, and A. Zisman, Eds. London, U.K.: Springer-Verlag, 2012.

[55] A. Trifu and R. Marinescu, ‘‘Diagnosing design problems in object
oriented systems,’’ in Proc. 12th Work. Conf. Reverse Eng. (WCRE),
Pittsburgh, PA, USA, Nov. 2005, pp. 155–164.

[56] R. Terra, M. T. Valente, S. Miranda, and V. Sales, ‘‘JMove: A novel
heuristic and tool to detect movemethod refactoring opportunities,’’ J. Syst.
Softw., vol. 138, pp. 19–36, Apr. 2018.

[57] C. E. Shannon, ‘‘A mathematical theory of communication,’’ ACM SIG-
MOBILE Mobile Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55, 2001.

[58] O. Seng, J. Stammel, and D. Burkhart, ‘‘Search-based determination of
refactorings for improving the class structure of object-oriented systems,’’
in Proc. 8th Annu. Genetic Evol. Comput. Conf. (GECCO), Seattle, WA,
USA, Jul. 2006, pp. 1909–1916.

[59] C. Bonja and E. Kidanmariam, ‘‘Metrics for class cohesion and simi-
larity between methods,’’ in Proc. 44th Annu. Southeast Regional Conf.,
Melbourne, FL, USA, Mar. 2006, pp. 91–95.

[60] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, and F. Palomba, ‘‘Sup-
porting extract class refactoring in eclipse: The ARIES project,’’ in
Proc. 34th Int. Conf. Softw. Eng. (ICSE), Zürich, Switzerland, Jun. 2012,
pp. 1419–1422.

ALLY S. NYAMAWE received the B.Sc. degree in
computer science from the University of Dar es
Salaam, Tanzania, in 2008, and theM.Sc. degree in
computer science from the University of Dodoma,
Tanzania, in 2011. He is currently pursuing the
Ph.D. degree with the School of Computer Science
and Technology, Beijing Institute of Technology,
China. He is currently a Lecturer with the Depart-
ment of Computer Science, University of Dodoma.
His research interests include software refactor-

ing, requirements engineering, requirements traceability, and computer
programming.

HUI LIU received the B.S. degree in control sci-
ence from Shandong University in 2001, the M.S.
degree in computer science from Shanghai Uni-
versity in 2004, and the Ph.D. degree in com-
puter science from Peking University in 2008.
He was a Visiting Research Fellow with the Centre
for Research on Evolution, Search and Testing,
University College London, U.K. He is currently
a Professor with the School of Computer Science
and Technology, Beijing Institute of Technology,

China. He is particularly interested in software refactoring, software evo-
lution, and software quality. He is also interested in developing practical
tools to assist software engineers. He has served on the program commit-
tees and organizing committees of many prestigious conferences, such as
ICSME and RE.

ZHENDONG NIU received the Ph.D. degree
in computer science from the Beijing Institute
of Technology, China, in 1995. He was a Post-
Doctoral Researcher with the University of
Pittsburgh from 1996 to 1998 and a Researcher/
Adjunct Faculty Member with Carnegie Mellon
University from 1999 to 2004. He has been
an Adjunct Professor with the Computing and
Information School, University of Pittsburgh,
since2006. He is currently a Professor and the

Deputy Dean of the School of Computer Science and Technology, Beijing
Institute of Technology. He has published over 150 papers in journals and
international conferences in his field. His research areas include digital
libraries, e-learning techniques, neuroinformatics, information retrieval, and
recommender systems. He serves as an Editorial Board Member for the
International Journal of Learning Technology.

WENTAO WANG (S’15) received the B.Sc.
degree in computer science from Shanghai
Maritime University, Shanghai, China, in 2007,
and the M.Eng. degree in software engineering
from the Beijing Institute of Technology, Beijing,
China, in 2010. He is currently pursuing the Ph.D.
degreewith theDepartment of Electrical Engineer-
ing and Computer Science, University of Cincin-
nati, Cincinnati, OH, USA. His research interests
include software engineering, requirements engi-

neering, and cyber security.

NAN NIU (M’08–SM’13) received the B.Eng.
degree from the Beijing Institute of Technology
in 1999, the M.Sc. degree from the University of
Alberta in 2004, and the Ph.D. degree from the
University of Toronto in 2009, all in computer
science. He is currently an Associate Professor
with the Department of Electrical Engineering and
Computer Science, University of Cincinnati, USA.
His research interests include software require-
ments engineering, information seeking in soft-

ware engineering, and human-centered computing. He received the U.S.
National Science Foundation Faculty Early Career Development Award,
the IEEE International Requirements Engineering Conference Best Research
Paper Award in 2016, and the Most Influential Paper Award in 2018.

VOLUME 6, 2018 49475


	INTRODUCTION
	RELATED WORK
	CODE SMELL DETECTION
	REQUIREMENTS TRACEABILITY
	TRACEABILITY-BASED REFACTORING
	REFACTORING RECOMMMENDATION
	ENTROPY METRICS

	PROBLEM STATEMENT
	MOTIVATING EXAMPLE
	RECOMMENDATION APPROACH
	OVERVIEW
	TRACEABILITY
	ENTROPY
	CLASS TRACEABILITY ENTROPY
	USE CASE TRACEABILITY ENTROPY
	SYSTEM TRACEABILITY ENTROPY
	COMPUTATIONAL EXAMPLE

	COUPLING AND COHESION METRICS
	REFACTORING RECOMMENDATION
	CODE SMELL DETECTION
	ANALYZING TRACEABILITY INFORMATION
	ENTROPY COMPUTATION AND RECOMMENDATION
	RECOMMENDATION ALGORITHM


	EVALUATION
	RESEARCH QUESTIONS
	DATASET AND TOOL SUPPORT
	RESULTS AND ANALYSIS
	DEVELOPERS' SELECTION
	LIMITATION AND THREATS TO VALIDITY

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ALLY S. NYAMAWE
	HUI LIU
	ZHENDONG NIU
	WENTAO WANG
	NAN NIU


