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ABSTRACT Quasi-cyclic LDPC (QC-LDPC) codes have been accepted as the standard codes of
5G enhanced mobile broadband data channel. These standard codes are designed to support multiple lifting
sizes and possess rate-compatible property, which can help adapt various information lengths and code rates
well. In this paper, we propose an algebra-assisted method for constructing QC-LDPC codes with such
properties. We will first review the encoding mechanism and requirements of 5G LDPC codes, and present
cycle analysis for such emerging codes. We then propose a metric, referred to as weighted average number
of cycles (WANC), from the perspective of cycle structure for constructing the QC-LDPC codes that can
support multiple lifting sizes. Based on the WANC metric and algebraic methods, we develop a simple and
practical algorithm to construct this kind of QC-LDPC codes. We finally apply the proposed algorithm to
construct the exponent matrices for cases of 5G LDPC codes and the standard LDPC codes of consultative
committee for space data systems, respectively. Simulation results show that the proposed WANC metric
and designed algorithm are feasible and effective, and thus can be utilized to design other similar QC-LDPC
codes.

INDEX TERMS Quasi-cyclic LDPC code, 5G channel codes, algebra-assisted construction, multiple lifting

size, cycle analysis.

I. INTRODUCTION

Low-density parity-check (LDPC) codes, proposed by
Robert G. Gallager in the early 1960s [1] and rediscovered
in the late 1990s, are shown to form a class of capacity-
approaching channel codes [2] and perform amazingly well
with iterative decoding based on sum-product algorithm
(SPA) or minimum-sum algorithm (MSA) [3]. Since their
rediscovery, research effort at such codes mainly focuses
on construction, encoding/decoding algorithms with low
complexity, performance analysis, and applications. Espe-
cially, many of these codes have been successively used
in various communication systems, including digital video
broadcast [4], 10G BASE-T Ethernet [3] (Chapter 11), and
NASA near-earth and deep-space missions [5].

As a class of linear block codes, LDPC codes are com-
pletely specified by their sparse parity-check matrices, and
the construction and structural properties of the parity-check
matrices play an important role in the error performance,
as well as the structure and cost of encoder/decoder in terms
of computation and hardware.

Based on the construction methods, LDPC codes can
be roughly classified into two categories: random-like and
structured codes. The best known method to construct
random-like LDPC codes is the progressive edge growth
(PEG) algorithm [6]. Structured LDPC codes are gen-
erally constructed based on the protograph or algebraic
methods [7]-[10]. The protograph construction is to copy the
base graph (i.e., protograph) G Z times, and then connect
these copies by permuting the edges of the individual copies.
Here the parameter Z is called the expansion factor or lift-
ing size. Algebraic methods include the superposition (SP)
construction as a representative based on finite fields, finite
geometries, and combinational designs. The SP construction
of LDPC codes is to disperse every element of the base matrix
into a sparse matrix Q or zero matrix of the same size. It has
been shown in [11] that the protograph construction of LDPC
codes is a special case of the SP construction when Q’s are
Z x Z matrices. As a special kind of structured codes, quasi-
cyclic LDPC (QC-LDPC) codes [12] are generally speci-
fied by an array of circulants. Commonly used circulant for
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QC-LDPC codes is the circulant permutation matrix (CPM).
Due to the fact that they possess various advantages
such as easy hardware implementation of encoder and
decoder, fast decoding convergence, and lower error-floor,
QC-LDPC codes have been extensively investigated and
found wide applications in different digital communication
and storage systems [3], [7]-[20].

Most recently, QC-LDPC codes have been recommended
by 3GPP as the channel coding scheme for the enhanced
mobile broadband (eMBB) data channel of 5G commu-
nication [21]. Besides QC structure, these standard codes
simultaneously possess rate-compatible property [22], and
can support multiple lifting sizes. These properties make
such codes easily adapt various information lengths and rate
matching. In this paper, we will discuss the construction of
QC-LDPC codes with such properties, with emphasis on the
study of 5G LDPC codes and their properties. Certainly,
the authors of this paper have being participated in the design
of 5G LDPC codes, and one co-designed exponent matrix has
been accepted by 3GPP for the standard 5G LDPC codes.

In this paper, we first systematically summarize the stan-
dard 5G LDPC codes and introduce their encoding/decoding
process, which involves puncturing and shortening tech-
niques [23]. These will be useful for the applications
of such codes in the future. Motivated by the fantastic
property of 5G LDPC codes, we propose a new metric,
referred to as weighted average number of cycles (WANC),
from the perspective of cycle structure for constructing the
QC-LDPC codes whose exponent matrices can support mul-
tiple lifting sizes. Based on the WANC metric and algebraic
methods, we develop a simple and practical algorithm for
constructing this kind of QC-LDPC codes, and summarize
our method as algebra-assisted construction method. Ingre-
dients of our proposed method contain a circulant coeffi-
cient table, which can be easily determined by the algebraic
methods. This indicates that our method is different from
greedy search, and hence has lower complexity. By using
this method, our designed exponent matrices for the smaller
base matrix have been accepted by 3GPP for 5G LDPC
codes, while most other candidate exponent matrices are
based on the combination of greedy search and large-scale
simulation. As examples in this paper, we apply the proposed
WANC metric and relevant algorithm to design the exponent
matrices for cases of 5G LDPC codes (same lifting size
set but another base matrix) and the standard LDPC codes
of consultative committee for space data systems (CCSDS).
Numerical results determine the feasibility and effectiveness
of our method. In addition, we provide cycle analysis for
5G LDPC codes to simplify the construction of their exponent
matrices. This will help understand these emerging codes
from the perspective of cycle structure, and guide the design
of other QC-LDPC codes, base/exponent matrices of which
have similar structure.

The rest of this paper is organized as follows. Section II
presents the definitions, basic concepts and some ear-
lier results on QC-LDPC codes which will be used in
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later sections. Section III reviews the defined standard
LDPC codes of 5G eMBB data channel. Section IV presents
our proposed metric, relevant algorithms, and their extension
for constructing the exponent matrices of 5G LDPC codes,
as well as cycle analysis for such codes to simplify their
design. Section V gives numerical results. Finally, Section VI
concludes this paper.

Il. PRELIMINARY

In this section, we first review a general matrix-theoretic
method (which has been adopted for 5G LDPC codes) for
constructing QC-LDPC codes based on arbitrary integer sets.
We also present some structural properties of LDPC codes for
analysis later.

A. MATRIX DISPERSION

Let Z be a positive integer. Consider the set of integers Zz =
{0,1,2,...,Z — 1}. For each element p € Zz, we repre-
sent it by a binary circulant permutation matrix (CPM) of
size Z x Z (with both rows and columns labeled from O to
Z — 1) whose top row has a single nonzero component at
position p. We denote this binary CPM by Q(p), and all the
nonzero entries in Q(p) are “1”. It is not hard to see that
the representation of p € Zz by Q(p) is unique. That is to
say, the mapping between p € Zz and Q(p) is one-to-one.
And Q(p) becomes more sparse with the increase of Z.
For convenience, we introduce Q(—1) and define it as the
zero matrix (ZM) of the same size. We refer to such matrix
representation for each element over Zz as matrix disper-
sion or Z-fold CPM-dispersion [11], and parameter Z as
lifting size [24]. Take Z3 as an example,

1 0 0 0 1 0

Q=0 1 of, Qn=|0o o 1],
0 0 1] 1 0 0
0 0 1] 0 0 0

Q=1 0 of, Q-n=|0 0o of.
0 1 0] 0 0 0

In the following discussion, by CPM-dispersion of an ele-
ment in Zz, we mean dispersing it into a CPM of size Z x Z.
And such one-to-one CPM-dispersion of an integer will be
utilized to construct all QC-LDPC codes presented in this

paper.

B. QC-LDPC CODES AND SUPERPOSITION
CONSTRUCTION

A binary (n,k) QC-LDPC code is defined by the null
space of an m x n sparse parity-check matrix H over the
finite field GF(2), which consists of an array of circu-
lants and has a rank of n — k(< m). If H has a con-
stant column weight d, and a constant row weight d,
the resultant LDPC code is called (d,, d.)-regular QC-LDPC
code. If the rows and/or columns of H have various
weights, then the null space of H defines an irregular
QC-LDPC code. Taking into account the implementation,
the parity-check matrix H of a QC-LDPC code is commonly
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composed of an array of CPMs and/or ZMs of the same
size, e.g.,

Q(po,0) Qpo,1) Q®o,n,—1)
B Q(p1,0) Qp1,1) Q@1,n,-1)
Q(pm;,—l,O) Q(Pm;—1,1) Q(pmb—'l,nh—l)
(D

where p;; € {{-1} UZz} for 0 < i < myp, 0 < j < ny,
n =np xZ,and m = my, x Z. H shares a one-to-one mapping
with the following matrix

Po,0 Po,1 Po,np—1
P1,0 P1,1 Pl,n,—1
Pmp—1,0  Pmp—1,1 Pmp—1,n,—1

Here we call P the exponent matrix of H, and each entry
in P is referred to as shift value, in particular. We denote the
base matrix of Pby B = [b,‘,j] where b;j =0

if p;j = —1 and b; j = 1 otherwise. Note that the method of
constructing H from B or P in (1) is known as superposition
construction or protograph construction [11].

0<i<myp,0<j<np’

C. QC-LDPC CODES WITH DIAGONAL STRUCTURE
Parity-check matrices with diagonal structures can be used
to perform LDPC encoding directly [25]. Such structures
include diagonal and bidiagonal structures, as well as their
combinations. Assume that the exponent matrix for a bidi-
agonal parity-check matrix is P of size m; x np and can be
divided into two parts, i.e., P = [P’ P”], in which P’ is an
mp X (np — mp + 1) matrix as follows

[ Po.o po.1 PO.np—my |
P1,0 P11 P1,np—my
P/ _ P2.,() P2',1 p2,nlj—mb (2)
Pmp—2,0 Pmp—2,1 Pmp—2,np—my,
LPmp—1,0 Pmp—1,1 Pmp—1,np—my_|
and P” is an mp, x (mp — 1) matrix given by
C0 1 - —1 1]
0 0 - -1 -1
1 0 - -1 -1
P’ = 3)
1 1 - 0 0
-1 -1 o -1 0|

where po n,—m, and pp,_1,n,—m, are nonnegative, and for
0 < i < mp — 1, one and only one p; »,—m, 1S nonnegative
and others are set to “—1"".

What the base/exponent matrices of 5G LDPC codes adopt
is a hybrid structure that combines the characteristics of
both diagonal and bidiagonal structures. More details are
presented in the next section.
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D. CYCLE AND GIRTH
An LDPC code can also be described by a bipartite graph,
termed Tanner graph [26], which has a one-to-one corre-
spondence with the parity-check matrix H. Two classes of
nodes in a Tanner graph are usually referred to as variable
nodes (VNs) and check nodes (CNs), corresponding to the
columns and rows of H, respectively. Suppose the parity-
check matrix H = [h; jlogi<m,0<j<n, in Which h; ; is equal
to 0 or 1. Then in its Tanner graph, the i-th CN is connected
to the j-th VN by an edge if and only if h;; = 1. It is
worth noting that a pair of VN and CN in a Tanner graph is
either not connected or connected by one and only one edge
in this work, i.e., the Tanner graph does not permit multiple
edges or self loops.

A cycle in a Tanner graph refers to a closed path that begins
and ends at the same node, and its length is defined as the
number of edges on this path. The girth of a Tanner graph,
denoted by g, is the length of the shortest cycle, which is even
and no less than 4.

The impact of Tanner graph on code performance is com-
plex. There are some conclusions that a Tanner graph with
girth 6 or 8 is sufficient for good performance. Many exam-
ples of such codes can be found in [11], [13]-[17], and [23].
The error floor performance of an LDPC code is related to
the short cycles in its Tanner graph and the sizes of relevant
trapping sets. In general, cycles of length 4 will degrade the
error performance of an LDPC code decoded with iterative
decoding algorithms. Hence, if possible, all constructions of
LDPC codes require that their parity-check matrices should
satisfy the following row&column constraint [14]: no two
rows (or columns) have more than one nonzero element in
the same position. This constraint can ensure that the Tanner
graph of designed code has no cycles of length 4 and achieves
girth at least 6 [3], [14], [23].

Fig. 1 shows the Tanner graph for a (6,3) LDPC code
specified by the following 4 x 6 parity-check matrix
(with rank 3)

1 1 0
0 0 1
1 0 1

H, =

0

0
Ll 4)
1

OO = =
—_ o - O

0 1 O

H; has constant column weight 2 and constant row weight 3,
and satisfies row &column constraint. Hence, its Tanner graph
in Fig. 1 has no cycles of length 4 and girth at least 6. Actually
its girth is exactly 6. A cycle of length 6 has been depicted by
the bold line in the figure.

Ill. STRUCTURE AND PROPERTIES OF 5G LDPC CODES

A. CODING FOR 5G EMBB DATA CHANNEL

The ITU-R has outlined the performance requirements for
5G communication (IMT-2020) in [27] and defined three
typical usage scenarios for 5G: eMBB, ultra reliable low
latency communications (URLLC), and massive machine
type communications (mMTC). According to their appli-
cations, URLLC and mMTC are sensitive to the latency
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FIGURE 1. Tanner graph of a (6, 3) LDPC code specified by H; in (4).

TABLE 1. Coding parameters for performance evaluation in
eMBB scenario [28].

Index Assumption(s)

Channel AWGN

Modulation QPSK, 16QAM, 64QAM

Code Rate 1/5, 1/3, 2/5, 1/2, 2/3, 3/4, 5/6, 8/9

Information Length 100, 400, 1000, 2000, 4000, 6000, 8000

! Fading channels will be considered in the next stage.

% These code rates and information lengths should be evaluated
at least, and only for initial performance evaluations. Other
code rates and information lengths are not precluded. The
evaluation is limited to similar code rate and information
length.

and hence use short data package with more reliable com-
munication, e.g., requiring no visible error-floor down to
BLER of 1073, eMBB is the most obvious extension of 4G
Long Term Evolution (LTE) and remains the most criti-
cal scenario with the continued increase of user demands
(e.g., larger user density and better user experience). Chan-
nel coding is one of key technologies expected to satisfy
the demands of eMBB scenario and needs to support a
much wider range of code rates, code lengths, and modula-
tion formats than 4G LTE. In particular, it is suggested by
3GPP [30] that eMBB code lengths range from about 100 to
8000 bits and code rates range from 1/5 to 8/9 (as shown
in Table 1), and the target codes can support the informa-
tion throughput up to 20 Gbps. Furthermore, regarding the
error-correcting performance, good performance at the BLER
of 1072 and invisible error-floor down to BLER of 10~% are
required.

There are many channel coding schemes with capacity-
approaching performance at the large code lengths, such
as LDPC, spatially coupled LDPC [31], Turbo [32], and
Polar [33] codes. After the comprehensive assessment of
error-correcting performance, achievable throughput, imple-
mentation complexity, and processing energy consumption,
QC-LDPC codes are accepted by 3GPP as the channel coding
scheme for 5G eMBB data channel [21].

B. BASE MATRICES OF STANDARD 5G LDPC CODES

As mentioned above, 5G LDPC codes belong to QC-LDPC
codes and hence can be constructed based on the superposi-
tion method. Fig. 2 shows the structure of the base matrix of
these standard codes. As shown in the figure, the base matrix
consists of five submatrices A, D, O, E, and I:
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Example
A D (0]
I 11
1 1|1
] I 1 1|1
E .
5 1|1
1
’7] 1 1
1

FIGURE 2. Structure diagram of base matrix for standard 5G LDPC codes.
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FIGURE 3. Scatter diagram of B¢ ; for standard 5G LDPC codes.

« A corresponds to systematic bits;
« D corresponds to parity bits and is a square matrix with
bidiagonal structure:

— First column is of weight 3;
— Submatrix composed of other columns after the first
column has an upper bidiagonal structure;

o O is a zero matrix;
o Iis an identity matrix.

The combination of A and D is defined as the kernel, and the
other parts (O, L, and E) are called extensions. Clearly, such
code structure is similar to Raptor-like codes [34].

Two base matrices, denoted by Bsg1 and Bsg o,
respectively, are adopted for 5G LDPC codes [35]. These
two matrices have similar structure, but Bsg ; is designed
for information lengths up to 8448 and code rates from
1/3 to 8/9, while Bsg 2 for smaller information lengths no
more than 3840 and code rates from 1/5 to 2/3 [36]. Fig. 3
shows the scatter diagram of Bsg 1. We can see from the
figure that Bsg 1 has 46 rows and 68 columns. VN blocks
labeled from O to 21 correspond to the information bits and
other VN blocks correspond to the parity bits.

C. EXPONENT MATRICES OF STANDARD 5G LDPC CODES
According to the 3GPP requirements [37], the exponent
matrices of 5G LDPC codes should support all lifting sizes
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TABLE 2. Lifting sizes Z (= a - 2/) supported by standard 5G LDPC codes.

z 0 1 2 3 4 5 6 7
2 2 4 8 16 32 64 | 128 | 256
3 3 6 12 24 | 48 96 | 192 | 384
5 5 10 | 20 | 40 80 | 160 | 320

a 7 7 14 | 28 56 | 112 | 224
9 9 18 36 72 | 144 | 288
11| 11 22 44 88 | 176 | 352
13| 13 26 52 | 104 | 208
15| 15 30 60 | 120 | 240

TABLE 3. Mapping between exponent matrices and lifting size sets of
standard 5G LDPC codes.

Exponent Matrix Lifting Size Set

P, (a=2) {ax21j=0,1,2,3,4,5,6,7}
P (a=23) {ax27j=0,1,2,3,4,5,6,7}
P3 (a=5) {ax27j=0,1,2,3,4,5,6}
Pi(a="7) {a x27]7=0,1,2,3,4,5}
P;(a=9) {a x 275 =0,1,2,3,4,5}

Ps (a = 11) {ax2j=0,1,2,3,4,5}

P7 (a=13) {ax2]5=0,1,2,3,4}

Ps (a = 15) {ax27j=0,1,2,3,4}

in Table 2, where Z = ax 2 fora € {2,3,5,7,9, 11, 13, 15}
and0 <j<7.

Since 3GPP RAN AH NR2 meeting [38], 16 exponent
matrices are accepted for 5G LDPC codes and each base
matrix possesses 8 exponent matrices. We list various
exponent matrices versus their supported lifting size sets
in Table 3. As shown in the table, each set is specified by
the parameter a.

In order to implement various information lengths and rate
adaptation, shortening and puncturing methods are used for
5G LDPC codes. Puncturing is applied to both the infor-
mation and parity bits in the codeword, while shortening
is just designed by zero padding for the information bits.
For both Bsg,; and Bsg 2, and for all code rates, code bits
corresponding to first two circulant columns are punctured
before the transmission. These two punctured blocks have
relatively high column weight among all columns and hence
are usually called high-weight columns. For rate-compatible
usage, the parity bits are punctured from right to left, e.g., for
R = 1/2, the 24 x 46 submatrix on the upper left corner of
the base/exponent matrix is used, and for R = 1/3, the full
base/exponent matrix of 46 x 68 is used.

Assume that Py = [v; jlogi<mz,0€j<nz (1 < t < 8) have
been constructed (we will discuss their construction later),
(mz,nz) = (46, 68) for Bsg, 1, and (mz,nz) = (42,52)
otherwise. Next we will describe how to achieve the exponent
matrix P = [pi,,/]0<i<m;,,0<j<n;, (mp < mz and np < nz) for
an (N, K) LDPC code with information length K and code
rate R = K/N. Let k, denote the number of information
circulant columns in Bsg | or Bsg 2. And for Bsg, 1, kp = 22;
for Bsg,2, kp, depending on K, is set to one the following
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values {10, 9, 8, 6} [39]. The determination of P includes the
following steps:

1) Based on Algorithm 1, determine the base matrix and
kp, for the given K and R;

2) Select Z as the minimum value in Table 2, such that
kp-Z) =2 K;

3) np = [kp/R] + 2 and my, = np, — kp, where [x] denotes
the nearest integers greater than or equal to x;

4) Based on Z, determine P* = [v; jlo<i<my,0<j<n, from
8 matrices P; (1 < ¢ < 8) in Table 3;

5) Calculate P = [pi,j]0<i<mb,0<j<nb’ where pij = —1if
vij = —land p;; = v;j (mod Z) otherwise, in which
“mod” denotes the modulo arithmetic;

6) Disperse each element of P into binary CPM of size
Z x Z or ZM of the same size, and obtain a parity-check
matrix H of size mpZ x npZ, which will be used for the
encoding and decoding of the (N, K) LDPC code.

Algorithm 1 Base Matrix and kj, Determination for 5G LDPC
Codes

Input: Information length K, code rate R, base matrices
Bsg,1 and Bsg 2

Qutput: Base matrix B and k&,

1: if K > 3840 then
2 B = ng,ll
3. else if K < 308 then
4: B = B5Q2
5: else
6
7
8
9

if R > (2/3) then

B =Bsg,
else
: B = Bsg2
10:  endif
11: end if
12: if B = Bsg,1 then
13: kp =22
14: else
15 if K > 640 then
16: kp = 10
17:  elseif 560 < K < 640 then
18: kpy =9
19: elseif 192 < K < 560 then
20: kp =8
21:  else
22: kp =06
23:  end if
24: end if

25: return B and k;,

Based on the above-mentioned steps, we can find that the
design and structure of exponent matrices make 5G LDPC
codes own better rate-compatible property. Fig. 4 provides an
illustration for the encoding process of these codes. Because

1 Assume two matrices B and B, of the same size, “B; = B,” denotes
the element-wise assignment of B, to By.
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FIGURE 4. Shortening by zero padding and puncturing of standard
5G LDPC codes.

punctured bits involve two parts, first two circulant columns
and block(s) consisting of partial parity bits from right to
left, respectively. Then we can easily calculate the number
of punctured and shortened bits as follows:
1) Number of punctured bits composed of first two circu-
lant columns Npype1 = 2Z;
2) Number of shortened information bits by zero padding
Npadd =ky xZ—K;
3) Number of punctured parity bits from right to left
Npunc2 =np X Z —2Z — N — Npagqd.
Thus, as shown in Fig. 4, the number of coded bits that really
enter the Modulator is not n,Z but N.

IV. ALGEBRA-ASSISTED CONSTRUCTION OF QC-LDPC
CODES WITH MULTIPLE LIFTING SIZES

From the discussion above, we can see that the construction
of the exponent matrix is a key point for the QC-LDPC
codes. For an LDPC code decoded with iterative algorithms,
the performance is closely related to the structure of its Tanner
graph and relevant cycles. Hence, cycle structure has been
utilized by many publications as a crucial measure of the error
performance of an LDPC code, and with some consensus that
short cycles should be avoided in the Tanner graph of a code
for better performance.

Inspired by standard 5G LDPC codes, we propose a fea-
sible metric from the perspective of cycle structure for the
shift value selection of one class of QC-LDPC codes, whose
exponent matrices can support multiple lifting sizes. Based on
this metric, we develop a practical algorithm for constructing
the QC-LDPC codes with multiple lifting sizes. By taking
5G LDPC codes as an example, we extend the proposed
metric and algorithm to design the exponent matrices for
Bsg,1 and Bsg 2. Note that, standard 5G LDPC codes have
not yet been discussed in-depth in theoretical analysis. It is
the important role that cycles play in the error performance
of LDPC codes and the deficiency of theoretical research
on such codes motivate the cycle analysis in this section.
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In particular, the analysis can simplify our design of these
codes.

A. CYCLE METRIC FOR QC-LDPC CODES WITH

MULTIPLE LIFTING SIZES

From [17], for QC-LDPC codes with exponent matrix P =
[pi,j]0<i<mb,0§j<n1,a cycles of length 2d (g < 2d < 2g — 2,
where g denotes the girth) exist if and only if there are 2d
nonnegative shift values p; ; satisfying

d—1

> Pij. = Pier) =0 (mod Z) (5)

z=0

where 0 < i; < myp, 0 < j; < np, Iz # gty jz # Jotls
io = ig, and jo = jg.

Proposition 1: The group of shift values involved in (5)
will result in M cycles of length 2d, where M is a factor of Z.
The analysis on M can be found in [41].

Proposition 2: For integers Z; and Zp, where Z, >
Z1 > 0, consider 2d nonegative integers that are less
than Z, and can consist of an ordered sequence pjg j,» Pi; jo»

Pirjis -+« Pig—1,ja-1> Piosja1> Pio.jo» then

d—1
Pr {Z(piz’jz _piyr],jz) =0 (mod Zl)}
z=0

d—1
>Pr {Z(piz,jz —Pinj) =0 (mod Zz)}- 6)
z=0

For QC-LDPC codes, in order to adapt various information
lengths, multiple lifting sizes are generally recommended for
a single exponent matrix, e.g., standard 5G LDPC codes.
Assume that the base matrix B and lifting size set Sz =
(21,2, ...,2Zy,} are given, we propose a metric, referred
to as weighted average number of cycles (WANC), to select
shift values for relevant exponent matrix P that can support
all lifting sizes in §z. The proposed WANC metric is defined
by

Nz Nz N
WEP) =Y Wz =Y wz() Y _w(ING)  (7)
i=1 i=1 j=1

where AV; = (Lax — 2)/2 with Liax equal to the maximum
length of tested cycles, wz(1) = wz(2) > -+ > wz(Nz),
and w.(1) > @.(2) > -+ > w(N.). For 1 < i < Nz and
1 <j < N, wz(i) is the weight for Z; € Sz, w.(j) is the
weight for those cycles of length (2j+2), and N (i, j)2denotes
the group number of shift values that satisfy (5) while Z; and
cycles of length (2j + 2) are considered. For a given index i
and lifting size Z; € Sz, Wz(i) is the weighted sum of all
N(i,j) for 1 <j < N, and can be equivalent to the weighted
sum of the number of various-length cycles for a single lifting
size. We can see that YWW(P) actually indicates the weighted
average of the number of various-length cycles normalized by
the corresponding lifting size. Following proposition shows
that WANC metric is finite for a given base matrix and thus
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can provide a good measure in designing the QC-LDPC codes
with multiple lifting sizes.
Proposition 3: VW(P) is lower- and upper-bounded by

0<WEP) < WB - 1. ®)

where 1 is the all-one matrix of the same size as B.

Proof: The upper bound of W(P) originates from
Proposition 1, and can be determined based on such an
exponent matrix, which has the same size as P and all the
same nonnegative shift values. The simplest case is (B — 1),
i.e., all nonnegative shift values are fixed to zero. ]

The WANC metric W(P) seems reasonable from the per-
spective of cycle structure. According to (7), the contribution
of each lifting size to YW(P) depends on not the number of
cycles of various lengths but N(i, j), and hence weakens the
impact of the value of each lifting size as far as possible.
And for a given lifting size, shorter cycles will more degrade
the performance, thus larger w.(j) is assigned for the shorter
cycles. In addition, for a given group of shift values, cycles
easily occur in the case of smaller lifting size (Proposition 2),
thus we introduce the weight wz (i) for each lifting size in S 7.
And the smaller the lifting size is, the larger the relevant
weight is. Note that, for 1 < i,j < Nz, the ratio wz(i)/wz(j)
is not necessarily equal to Z;/Z;.

For a single lifting size, the WANC metric reduces to

Ne
WP) =Wz(1) =Y wc()N(L. ), C))

j=1

which still meets the general metric defined as the weighted
sum of the number of various-length cycles.

B. CONSTRUCTION OF QC-LDPC CODES WITH

MULTIPLE LIFTING SIZES

Based on the WANC metric proposed in last subsection,
we now discuss how to construct QC-LDPC codes whose
exponent matrix can support multiple lifting sizes. We sum-
marize our construction as the following steps:

1) Based on the actual requirements (e.g., rate-compatible),
determine the structure of parity-check matrix;

2) According to the given design targets (e.g., degree dis-
tributions and threshold), construct the base matrix B for
the desired exponent matrix P;

3) Simplify the design with some alternative analysis meth-
ods (e.g., cycle analysis): Determine the m; x ng subma-
trix Py, with shift values to be specified in P and relevant
base matrix Bgy, of the same size (The subscript “sm”
stands for ‘“‘submatrix’’);

4) Based on algebraic methods, construct a circulant coef-
ficient table T of size N; x ng (N; > my), which must
satisfy at least: all the entries in a row (a column) are
distinct,

2Consider lifting size Z = Z; and cycles of length 4, if we find # group of
shift values satisfying (5), then N(1, 1) = ¢ and there are 7Z] resulting cycles
of length 4.
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5) Select mg rows from T¢. to form P}, and construct
Pin = Bym ® Pi, + By — 1 subject to minimiz-
ing W(Psn), where the operation ® is defined as the
element-wise product, i.e.,

Bsm QF = [bi,jﬁ,j]0<i<ms,0§j<m (10)

in which matrices F and By, have the same size m; x ng;
6) Combine Py, with other specific parts and obtain P.

We formulate the steps 5 and 6 of above processes
as Algorithm 2.3

Algorithm 2 Construction of Exponent Matrix With Multiple
Lifting Sizes
Input: Circulant coefficient table T, base matrix B of
size my, x np, lifting size setSz = {Z1, Z», . . ., Zn,}, number
of searches Ngearch
Output: Exponent

matrix P of size mp X
np
Initialization: Determine relevant By, of Py, from B, set
Psy = B — 1 and count =0
1: Calculate W* = W(Pgyy,) based on (7)
2: repeat
3:  Assign rg, rq, ..., 'm—1 to distinct nonnegative inte-
gers less than V;
fori=0:m; —1do
M, :] = Bsmli, :] ® Teelri, :] + Bsml[i, ] — 1
end for
Calculate YW(M) based on (7)
if W(M) < W* then
Py = M, W* = W(M)
10:  end if
11:  count = count + 1
12: until count > Ngearch
13: Obtain P by combining Py, with other specific parts
14: return P

R A A

In Algorithm 2, the base matrix B is required beforehand.
B is generally designed with good decoding threshold by
using computer-aided EXIT chart-based search methods, e.g.,
protograph EXIT (P-EXIT) in [42] and [43], or algebraic
method [24], [44]. In general, good threshold of decoding
convergence can provide good waterfall performance, but not
necessarily low error-floor [11]. The PEG algorithm [6] can
also be used to help design the base matrix. The circulant
coefficient table T, can be designed to be a Latin square.
In addition, the algebraic methods generalized in [16] and
cyclic difference family can also be used to construct Tec.

Here we provide several methods to construct T, by
following [16]. Let IF, be a finite field with g elements,
where ¢ is a prime or a power of a prime (g is fixed
to prime in the rest of this paper). Let ¢ be a primi-
tive element of I,. Then, the powers of «, o >® =0,

= 1, a..., a2 give all g elements of IF,.

3 Assume matrix B, B[i, :] and B[:, j] denote the i-th row and j-th column
of B, respectively.
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For 0 < ng, Ny < q, let Sow = {0, a'l, ..., aiN-1}
and S¢o) = {0, o/, ..., /~1} be two arbitrary subsets
of elements in F, with iy € {-00,0,1,...,q — 2} for

0<t <Ny, jj € {—00,0,1,...,g—2}for0 <[ < ng,
i <i] < <iy—1,andjo < ji < -+ < ju,—1.Letn be
a nonzero element in IF,;. T can be obtained by one of the
following methods:

Tee = [air + W/C]ogrdv,,og«ns (i
Tee = [air B ch]ogrdv,,ogxns (12)
Tee = [nair + Cvir]ogr<N,,o<c<ns (13)
and
Tee = [log, (@ + )| e O
Tee = [logy(a — na) | rnoce 09
Tec = [logy (" + “j")]ogmN,‘ogms (16)

where log, (x) computes the base y logarithm of x. With this
method, any two elements in the same row/column of T are
different, which can be verified by following [16].

As an example, Algorithm 2 will be extended to design
the exponent matrix for Bsg;; and Bsg. of standard
5G LDPC codes in the next subsection.

C. EXPONENT MATRIX CONSTRUCTION FOR
5G LDPC CODES
By corresponding to Fig. 2, the exponent matrix of standard
5G LDPC codes can be divided into five submatrices Ay, Dp,
0y, Ep, and I,. Based on (5), possible cycles can be classified
into the following seven categories:
1) Cycles generated only from Ap;
2) Cycles generated only from Dy;
3) Cycles generated only from Ep;
4) Cycles generated between A, and Dp;
5) Cycles generated between A, and the first k;, columns
of Eb;
6) Cycles generated between Dj, and the last 4 columns
of Ep;
7) Cycles generated between Ay, Ep, and Dy,

In order to further reduce the complexity of encoder imple-
mentation, for a given base matrix (Bsg,; or Bsg 2), same
bidiagonal submatrix Dy, is used for most matrices in Table 3.
For example, for Bsg. 1, Dy, is fixed as

1 0 -1 -1
0o 0 0 -1
Do=1_1 1 o o a7

1 -1 -1 0
for 7 exponent matrices except P7. Actually, it only requires
that top and last elements in the first column of D;, are same.

For convenience, we limit the cycle analysis to the
case of Bsg . Similar analysis can be made for Bsg .
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FIGURE 5. (a) Cycles generated between A and Dy, for Bsg 1, where
0 < j < kp; (b) Cycles generated between Dy, and last 4 columns
of Ep, for Bsg ¢, where j; = kp + 1 with 0 </ < 3.

Now consider the fourth kind of cycles and assume that such
cycles exist. As shown in Fig. 5 (a), we summarize such
cycles as follows:

1) Cycles of length 4 exist if and only if

pij—Pi+1,=0 (modZ), i=0,1,2

Pij —P1j— 1=0 (modZ), i=0,3 (18)
poj—p3,j=0 (mod Z)

2) Cycles of length 6 exist if and only if

Pij— Pi+2; =10 (mod Z), i=0,1

(19)
Poj — P2j — 1=0 (mod2Z)
3) Cycles of length 8 result in
poj—p3j=0 (mod Z) 20)

Poj —P3,j— 1=0 (mod Z)

where 0 < j < kp. Therefore, to avoid such cycles, the fol-
lowing column constraints should be imposed on Ap:

(1) Any two nonnegative elements in the same column are
different;

(2) For 0 <j < kp, po,j # pu,j + 1 if both pg j and p, ; are
nonnegative, where 1 < u < 3,and p3; # p1; + 1if
both p; j and p3 ; are nonnegative.

Next, consider the sixth kind of cycles generated
between D}, and the last 4 columns of E;, and assume that
these cycles exist. Then according to (5) and Fig. 5 (b), such
cycles of various lengths can be enumerated as follows:

1) Cycles of length 4 exist if and only if

Piji — Piji =0 (mod Z), [ =0,1,2
Dijo—Pij;—1=0 (modZ2), [=1,3 1)
Pijo — Pijy =0 (mod Z)
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2) Cycles of length 6 exist if and only if

Dij — Pij; =0 (mod Z), I =0,1 22)
Dijo — Pij, —1 =0 (mod Z)

3) Cycles of length 8 exist result in
Dijo — Pij; — 1 =0 (modZ) (23)

where 4 < i < 46. Thus, to make desirable exponent matrix
free of such cycles, we have following row constraints for the
last 4 columns of Ej:

1) Any two nonnegative elements in the same row are
different;

2) For4 <i < 46,p,j, # pij + 1ifboth p; ;, and p; j, are
nonnegative, where 1 </ < 3.

There are many nonnegative elements in both A, and the
first k, columns of E;,, which mean that it will be very difficult
to analyze and especially remove the fifth kind of cycles
generated between them. But the above analysis on the fourth
and sixth kinds of cycles, as well as the equation (5) are
enough to guide us to design better exponent matrices with
the structure as shown in Fig. 2.

It is important to point out that the cycle analysis for
5G LDPC codes in this subsection can apply only to design
the exponent matrix for a single lifting size. But we know
from Section III that each exponent matrix of 5G LDPC codes
is required to support multiple lifting sizes. Thus, the cycle
analysis mentioned above cannot be directly used for design-
ing the exponent matrices of 5G LDPC codes, but shows us
that the code design can be simplified as constructing the first
(kp + 4) columns of the exponent matrices independently,
especially submatrices A, and E;. And, as mentioned in
the last subsection, T¢. with the forms given by (11)-(16)
can fulfill the first one of row/column constraints for larger
lifting sizes. Furthermore, minimizing the proposed WANC
is actually equivalent to asymptotically meeting these con-
straints of our analysis.

By generalizing Algorithm 2 and applying aforemen-
tioned cycle analysis, we present an algorithm to design the
exponent matrix for the base matrices of 5G LDPC codes.
The design is divided into following three steps:

1) Construct Aj: Globally design all rows of A, with the
constraint of Dy;

2) Construct E,: With the constraint of [A; D], design E;,
in the row-by-row way from top to bottom;

3) Combine A, and E;, with other specific parts (i.e., D,
Oy, and 1), and obtain P.

We formulate the above processes as Algorithm 3.4

Design of 5G LDPC codes also needs to follow that of
general QC-LDPC codes. However, we mainly focus on the
design of exponent matrix, since design of a single exponent
matrix for multiple lifting sizes is one major challenge of 5G

4 Assume matrix B: Blend, :] and BJ[:, end] denote the last row and last
column of B, respectively; B[i] : i, j : j2] denotes the submatrix of B with
elements from rows iy, ..., ip and columns jy, ..., J2-
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Algorithm 3 Exponent Matrix Construction for 5G LDPC
Codes

Input: Circulant coefficient table T, base matrix B, Dy,
lifting size set Sz = {Z1, Z, ..., Zy,}, number of searches
Nsearch

Output: Exponent matrix P

Initialization: Bierg = B[:, 0 : kp + 3], Plest = Biest — 1,

P[0 : 3, kp : kp + 3] = Dp, M = Plegr, count =0

1 [FEEREEE Shift Value Selection for Ay **¥*F%s%%[

2: Calculate W* = W(Per[O : 3, :]) based on (7)

3: repeat

4:  Assign rg, ry, 12, 3 to distinct nonnegative integers
less than N;

5 fori=0:3do

6: J =Bieali, 0: kp — 11 Q Teclri, 0: kp — 1]

7: M[i,0:kp — 11 =J + Biege[i,0: kp — 1] — 1

8:  end for

9:  Calculate W(MJO : 3, :]) based on (7)

10 if WO : 3,:]) < W* then

11: Piepc[0:3,0:kp — 11 =M[0:3,0: kp — 1]

12: W* =WMI[O0 : 3,:])

13:  endif

14:  count = count + 1

15: until count > Ngearch

16: M[0:3,0:kp, — 1] =Prepe[0: 3,0 : kp — 1]

17: [FFFEEEE Shift Value Selection for Ky **%*F#k%%]

18: forr =4 :my — 1 do

19:  Calculate W* = W(Piex[O : 7, :]) based on (7)

20 forrow=0:N;,—1do

21: M[r, :] = Biee[7, :] @ Teclrow, :] + Biege[r, :] — 1
22: Calculate W(M]JO : r, :]) based on (7)

23: if WO : r,:]) < W* then

24: Piesi[r, :1 = M[r, ], W =WM[O : r, :])
25: end if

26:  end for

27: end for

28: Bright =B[, kp +4: end]
29: Pright = Bright -1

30: P = [Pleft Pright]

31: return P

LDPC code design. For simplicity, B in Algorithm 3 is
selected as either Bsg 1 or Bsg 2. The design philosophy of
Bsg,1 and Bsg 2 can be found in [45]. Based on previous
cycle analysis, the construction is simplified as designing the
submatrix composed of the first (k, 4+ 4) columns. Then, T
of size N; x (kp + 4) is required, where N; needs to be large
relative to mz. The submatrix D depends on B, i.e., D is
chosen as in (17) for Bsg, 1, while for Bsg 2

w 0 —1 -1
—1 0 0 -1
ui -1 0 0
u -1 =1 0

D, =

where (ug, u) is set to (0, 1)/(1, 0) for simplicity.
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FIGURE 6. Information length K is set to 8192 and relevant lifting size is 384. (a) BLER performance of standard 5G LDPC codes and designed
codes. (b) BLER performance of designed codes and other codes from simplistic constructions.

By using the proposed algebra-assisted method and follow-
ing Algorithm 3, our designed exponent matrix for Bsg 2
and lifting size set Sz = {3,6,12,24,48, 96, 192, 384}
in Table 3 has been accepted by 3GPP for 5G LDPC
codes [38], [40]. In the next section, we will present an
example for utilizing our method to design an exponent
matrix for Bsg > and same lifting size set, and compare the
performance with the standard codes corresponding to same
base matrix and lifting size set.

V. DESIGN EXAMPLES AND NUMERICAL RESULTS

In this section, in order to verify the effectiveness of the
proposed WANC metric and algorithms in the last section,
we give two numerical examples of code design, and provide
simulation results for the resultant codes. In all simulations,
the additive white Gaussian noise (AWGN) channel with
quadrature phase shift keying (QPSK) modulation and the
SPA with 50 iterations are assumed.

A. EXAMPLE 1: 5G LDPC CODES

By following Algorithm 3, we take Bsg of standard
5G LDPC codes as an example and try to design an
exponent matrix, denoted by P; 4es, for the second lift-
ing size set. Based on Table 3, Nz = 8 and S; =
{3,6, 12,24, 48,96, 192, 384}. Assume the prime field F769
and take the primitive element « = 11. Then we construct
the circulant coefficient table T.. of size 741 x 26 in the
form of (15) with n = 1, Seo1 = {a!', &2, ..., &80} and
Siow = {a, a?, .. .,oc767}\Sco1. Cycle detection for Bsg j
shows that, for a given exponent matrix, there exist cycles of
length 6 for all lifting sizes and cycles of length 4 for smaller
lifting sizes. Thus, we set V. = 3. For1 <i < 8and 1 <
Jj < 3, weights wz (i) and w.(j) are assigned from experience
as follows: wz(1) = wz2) = 4, wz3) = wz(4) =
wz(5) = 2, wz(6) = wz(7) = wz(8) = 1; w(1) = 10000,
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w:(2) = 100, o.(3) = 1. By applying Algorithm 3,
we obtain P, ges as shown in the Appendix. The subscript
“des” stands for “designed”.

Fig. 6 shows the BER and BLER performance of standard
5G LDPC codes and our designed codes for K = 8192, and
code rates R = 2/3 and 8/9. Because information length X is
fixed to 8192, lifting size is calculated as 384 by following the
encoding method presented in Section III-C. We can see from
the figure that performance curves of 5G standard codes and
our designed codes almost overlap each other for various code
rates down to BLER of 10™*. To further show the feasibility
and effectiveness of our method, we simulate another case of
K = 4096, relevant lifting size Z = 192, and add another
two scenarios of R = 1/2 and R = 1/3. As shown in Fig. 7,
for the same code rates, the performance curves of the
5G standard codes and designed codes still almost over-
lap each other down to BLER of 10™*. In Figs. 6 and 7,
we also include two cases of simplistic constructions:
1) “Semi-random T..”" means that T is constructed semi-
randomly (i.e., the performance of largest lifting size is not
too bad), which can be equivalent to generating the exponent
matrix directly; 2) “Random Select” denotes that 46 rows
are selected at random from T to construct the exponent
matrix. As shown in the figures, our designed codes have
better performance than that of two simplistic constructions
for various information lengths and code rates. These numer-
ical results demonstrate that our proposed WANC metric
and relevant algorithms are feasible. Moreover, performance
comparison of two simplistic constructions shows that the
utilized construction method for T, is effective.

To further verify the above observation, we follow the
performance evaluation method of 3GPP and provide more
simulations to compare the required signal-to-noise ratio
(SNR) E /Ny at BLER = 1072 and BLER = 1074,
respectively, for various information lengths and code rates.
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FIGURE 7. Information length K is set to 4096 and relevant lifting size is 192. (a) BLER performance of standard 5G LDPC codes and designed
codes. (b) BLER performance of designed codes and other codes from simplistic constructions.
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FIGURE 8. Required SNR at BLER = 10-2/10~* for various information lengths at code rates R = 1/2, 2/3, and 8/9. Lifting size for
K e {3904, 3968, 4032, 4096, 4160, 4224} is 192 while that for K < {7808, 7936, 8064) is 384.

The results are depicted in Fig. 8. As shown in the figure,
our designed codes have similar performance to standard 5G
LDPC codes for different information lengths and code rates.
This further confirms the feasibility and effectiveness of our
proposed WANC metric and relevant algorithm.

It is worth mentioning that the search process does not
need to run through all rows of the circulant coefficient table.
For example, the time complexity of Algorithm 3 mainly
lies in the design of first 4 rows, i.e., the kernel. For 0 <
i < 4, r; may not range from O to N; — 1, which proves
viable. Actually, we have dramatically narrowed the search
ranges for the kernel while designing P ges (ie., 0 < 1o,
ri < 100, 100 < r» < 200, and r3 < Ny, thus Ngearch in
Algorithm 3 is at most 1003 x Ny), but we still can obtain a

VOLUME 6, 2018

considerable exponent matrix. If designed codes are required
to support rate-compatible property, e.g., 5G LDPC codes,
design complexity will be reduced significantly by utilizing
row-by-row search as in Algorithm 3.

B. EXAMPLE 2: CCSDS LDPC CODES

Algorithm 3 just takes the base matrix of standard 5G LDPC
codes as an example to show the feasibility and effectiveness
of the proposed algebra-assisted method. In fact, our method
is not limited to specific base matrix and can be used inge-
niously for constructing other QC-LDPC codes to achieve
improvement in some aspects, e.g., storage complexity. In this
subsection, we take standard CCSDS LDPC codes as an
example.
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FIGURE 9. Exponent matrix of standard CCSDS LDPC codes for code rate
R = 1/2. Non-specified shift values marked with “?” depend on the
information lengths and are given in Table 4 for K = 1024 and K = 4096,
respectively, more details can be found in [5]. The parity bits
corresponding to last 4 circulant columns are punctured.

TABLE 4. Shift values in the cells marked with “?” from left to right in
each row of exponent matrix in Fig. 9 for K = 1024 and K = 4096.

K =1024 K = 4096
0-th row 16 108
4-th row 103, 105, 0 126, 238, 481
5-th row 53,74, 45 375, 436, 350
6-th row 89, 8,119 263,219, 16
7-th row 97,112, 35 503, 388, 312
8-th row 50,29, 115,30 96, 28, 59, 225
9-th row 0, 47, 59, 102 84,260, 318, 382
10-throw 31,122, 1,69 415, 403, 184, 279
11-throw 64, 93, 94, 99 48,7, 328, 185

QC-LDPC codes with code rates {1/2, 2/3, 4/5} and infor-
mation lengths {1024, 4096, 16384} are recommended by
CCSDS for the deep space communication [5]. For these
standard codes, each pair of parameters (K, R) is assigned
with an exponent matrix, i.e., in total 9 exponent matrices
are required. But such codes possess an amazing property:
The codes with different information lengths but same code
rate share a single base matrix. For example, Fig. 9 shows
the exponent matrix of size 12 x 20 for R = 1/2, where
the parity bits corresponding to last 4 circulant columns are
punctured. Non-specified shift values marked with *“?”* in the
figure depend on K and are given in Table 4 for two cases,
i.e., K = 1024 and K = 4096. As shown in Fig. 9, we divide
this matrix into 15 4 x 4 subblocks by bold line and find:
shift values that vary with K are mainly distributed in three
submatrices, denoted by Py, 1, Psm 2, and Py 3, respectively.

In the following, we will take the case of R = 1/2 as
the example and desire fo design an exponent matrix that
can simultaneously fulfill (K = 1024,Z = 128) and
(K = 4096,Z = 512). Before that, we first re-recognize
the exponent matrix in Fig. 9 from the perspective of cycle
structure:

1) No cycles of length 4 that are generated between Py, 1,
P2, and other two diagonal submatrices since Py 1 and
Py, 2 are disjoint;
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FIGURE 10. Designed exponent matrix Pg 5 4o for the base matrix of
standard CCSDS LDPC codes with R = 1/2 and S; = {128, 512).

BER/BLER

—«—BER, CCSDS K=1024 ?
107 —wv— BLER, CCSDS K=1024 4
—e— BER, Designed K=1024
107L| —— BLER, Designed K=1024
—&— BER, CCSDS K=4096
5[ | —#— BLER, CCSDS K=4096
—=A— BER, Designed K=4096
—A— BLER, Designed K=4096
T T T

9 L L L L
0.6 0.8 1 1.2 14 16 1.8 2 22
EN, (dB)

FIGURE 11. BER and BLER performance of standard CCSDS LDPC
codes [5] and designed codes with R = 1/2 in case of K = 1024 and
K = 4096. Lifting size for K = 1024 is 128 while that for K = 4096 is 512.

2) No cycles of length 4 that are generated between Py, , =
[uijlogij<a ¢ = 1,2), Psm3 = [pijlogij<4, and other two
diagonal submatrices if and only if u; ; # p;; when both u;
and p; j are nonnegative;

3) No cycles of various lengths that are generated between
the zero shift values of submatrix in the top right corner and
P¢m 3 if and only if all the nonnegative entries in the same row
of Py, 3 are distinct;

4) Constraint C(Sz, Psy 3): for lifting size set Sz and
0 < g < max(Sz), we say that g satisfies the constraint
C(Sz, Pgy 3) if from top to bottom

Psm,3[u» 3]_PSm,3[M7 O]v u= 27 3
q# Psm,S[u’ 3]_Psm,3[uv 1, u=1,3 (modZ e Syz).
Psm,3[u» 3]_Psm,3[uv 2], u=1,2

We define P(Sz, Psm, 3) as the set consisting of all values that
satisfy C(Sz, Psm 3). Denote the non-specified shift value in
the top right corner by po.ena- If po.end € P(Sz, Pym3), then
the cycles of various length generated between pg g and
P.m 3 can be avoided. We divide our design into three steps:
1) Jointly design Pgm 1 and Pgp 2;
2) Design Pgpy, 3 with the constraint of Py, 1 and Py, 2;
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FIGURE 12.

j-th column in P, 4¢¢ has single “0” at position (j — 22).

3) Assign po .ng With any one of elements in P(Sz, Psn 3),
where 7 = {128, 512}.
We formulate these steps as Algorithm 4.

Two circulant coefficient tables, T 1 of size N; 1 x 8 and
Tec 2 of size Ny p x 4, are required. Tec 1 is used to jointly
design Py 1 and Py, 2 while T 2 is only used for designing
Pon 3. Beesds,05 and Bgn ; (1 < ¢ < 3) represent the base
matrices of the exponent matrix in Fig. 9 and submatrix Py, ;
(1 <t < 3), respectively. Let By 120 = [Bst Bsm,z]
and Mover,r3 = Bsm,r ® Bsm 3, where 1 and 2. For
convenience, let P, £ {all primes in F,}. Suppose the finite
field F509 with primitive element &« = 2 is used. We construct
Tec,1 and Tec 2 as follows:

1) Tee.1 of size 88 x 8 in the form of (14) with n; = «'1°,
Scol1 = (0?4, @280 o355 o357 (394 (400 o405 (438

and Srow,l = P509\Scol,l§

>

SIn the algorithm, the subscripts “sms’’ and “over” stand for ““submatri-
ces” and “overlap”, respectively.
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Designed exponent matrix P, 4es in case of Bsg 1. Same as P, of Bsg ; of standard 5G LDPC codes in [38], for 25 <j < 68, the

2) Tec2 of size 92 x 4 in the form of (14) with np =
@0, Scorz = {a%0,0236, 0358 a*5) and Sypn. =
P509\Scol,2-

We just test cycles of lengths 4, 6, and 8. Relevant weights
are assigned as follows: wz(1) = 2, wz(2) = 1; w(1) =
10000, w.(2) = 100, w.(3) = 1. By applying Algorithm 4,
we obtain Py 5 ges as shown in Fig. 10. Parity-check matrix
for K 4096 can be obtained directly by dispersing
Posdes = [pi’j]0<i<12,0<j<20 with lifting size 512 while
that for K = 1024 is given by 128-fold CPM-dispersion of

v ’ / .
=|p;; ,where p; . = —11if p;; = —1,
05.des = |Pij ]y 120220 Pi;j Pij

and pg’ ; = pi;j (mod 128) otherwise.

Fig. 11 compares the BER and BLER performance of
standard CCSDS LDPC codes [5] and our designed codes
for K 1024 and K 4096 with R 1/2. Both
two codes adapt the encoding/decoding methods of CCSDS
LDPC codes, and last 4 circulant columns are punctured for
all information lengths. Lifting size is 128 for K 1024
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Algorithm 4 Exponent Matrix Construction for CCSDS
LDPC Codes

Input: Circulant coefficient tables Tcc,; and Tec 2, base
matrix Becsds,0.5, Bsm,3, Bsms, 12, Mover,13, Mover,23, lifting
size set Sz = {128, 512}, number of searches Ngearch,1 and

N, search,?2
Output:

12 x 20

Initialization: POAS,des = BO.S,ccsds -1, Psms,12 =
Bsms,l2 - 1’ MlZ = Psms,l2s Psm,3 = Bsm,3 - ls M3 =
Psm,3

Exponent matrix Pgsges of  size

1. [F%%%% Shift Value Selection for Pgy, 1 and Pgy o **#%%/

2: Calculate W* = W(Pgps.12) based on (7)

3: count =0

4: repeat

5:  Assign rg, r1, 2, r3 to distinct nonnegative integers

less than N; |

6: fori=0:3do

7: Mis[i, :] = Bgsms, 1207, 11 ® Tec 1174, 1 + Bsms, 1207, :
1—-1

8:  end for
9:  Calculate W(M1,) based on (7)
10 if W(Mj2) < W* then
11 Pgns, 12 = My, W* = W(M2)
12 end if
13:  count = count + 1
14: until count > Ngearch, 1
15: Py 1 = Pyms,12[:, 0 : 3] and Py 2 = Py 12[:, 4 : 7]
16: [FEFFFEEE Shift Value Selection for Pgy 3 ¥H¥%%%%%%]
17: It = find(Moyer,13 == 1), Iy = find(Moyer,23 == 1)
18: Calculate W* = W(Pgp 3) based on (7)
19: count =0
20: repeat
21:  Assign rog, 11, 12, r3 to distinct nonnegative integers
less than N; »
22: fori=0:3do
23: Ms[i, :] = Bsm,3li, :] ® Tee,2lri, 1+ Bsmali, (1 — 1
24:  end for
25: if M3(I) # Py, 1(I1) and M3(12) # Pym 2(12) then

26: Calculate YW(M3) based on (7)
27: if W(M3) < W* then

28: Pim 3 = M3, W* = W(M3)
29: end if

30:  end if

31:  count = count + 1

32: until count > Ngearch 2

33: [FFFEE Shift Value Selection for Po 5 des[0, end] ***%/

34: Po.5.desl0, end] is randomly selected from P(Sz, Psm 3)

35: Pos.desl4 : 7,16 : end] = Pym 3, Pos5,des[8 : end, 4 :
7] = Psm,2, Po.5,des[8 - end, 9 : 15] = Py 1

36: return P 5 ges

and 512 for K = 4096, respectively. As shown in the
figure, our designed codes share similar performance to
CCSDS LDPC codes for different scenarios down to BLER of

50242

about 1070, Note that, for a given code rate of CCSDS LDPC
codes, each information length owns one exponent matrix.
But our design can simultaneously satisfy two information
lengths (1024 and 4096) with a single exponent matrix. That
is to say, our method is of significance at least in terms of
storage complexity.

VI. CONCLUSION

QC-LDPC codes have been selected as the standard codes for
5G eMBB data channel recently. These codes have a fantas-
tic property that each exponent matrix can support multiple
lifting sizes, with which 5G LDPC codes can adapt various
information lengths and code rates well while simultaneously
utilizing shortening and puncturing techniques.

In this paper we consider the design of LDPC codes with
these properties and have proposed construction methods.
With the cycle analysis of such codes from the perspective
of cycle structure, we proposed a metric and referred to it as
weighted average number of cycles (WANC). Based on the
proposed WANC metric, we developed a simple and practical
algorithm to help select shift values for the exponent matrix
of QC-LDPC codes that can support more than one lifting
size and especially rate-compatible requirement. We finally
provided several design examples and numerical results for
5G LDPC and CCSDS LDPC codes to demonstrate the
feasibility and validity of our proposed WANC metric and
designed algorithm.

By applying Algorithm 3, we design an exponent matrix,
denoted as P2 _ges, for the second lifting size set of Bsg,1 and
show the resultant matrix in Fig. 12.
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