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ABSTRACT In view of the degradation of predictive control performance caused by model mismatch,
a multi-variable adaptive predictive control system framework which is composed of zone model predictive
control (MPC), identification module and performance monitoring module, is presented. The proposed
framework synthesizes the traditional control mode and the test mode to construct a unified form, which
is convenient to implement with the MPC software packages. Traditional setpoint control is switched to
zone control to ensure that the process constraints remain satisfied in testing, while multi-variable test
signals are introduced to guarantee the sufficient excitation of the plant. In addition, in order to maximize
the signal-to-noise ratio, an adaptive method of determining the amplitude of test signals is proposed.
All the online open-loop identification methods are suitable for this framework, as the testing is treated as
‘‘open-loop,’’ which solves the problem of the correlation between input signals and noises in the closed-loop
identification. These characteristics of the proposed framework are illustrated via a simulation.

INDEX TERMS Adaptive control, predictive control, system identification, parameter estimation.

I. INTRODUCTION
Model predictive control (MPC) is a class of computer control
algorithms which can deal with multivariable systems with
interactions and constraints, and has been widely used in
various fields of industry arears including chemicals, pow-
ers, automotive, and aerospace applications. The predictive
control algorithm predicts the future responses by a process
model and obtains a sequence of future manipulated variable
adjustments through a performance index at each control
interval. An accurate process model is one of the key factors
for the successful implementation of MPC [1].

The implementation of MPC project mainly has the fol-
lowing steps [2], [3]:

1) Preliminary design and benefit analysis.
2) Pre-test.
3) Dynamic response test and model identification.
4) Off-line simulation and parameter tuning.
5) Controller commissioning online.
6) Training and controller maintenance
Usually, the process model is identified by open-loop

step tests which takes up more than 50% of the time of
a whole project implementation [4]. After the commission-
ing of a MPC controller, the variations of plant dynamic

characteristics caused by the factors, such as time vari-
able characteristics of equipment life cycle (wear, tear, ero-
sion, congestion, etc.) and operating conditions change, will
degrade the MPC controller performance over time. In order
to obtain a satisfactory control performance, it is essential to
update the model by re-identification when the plant/model
error is large. However, disconnecting the MPC controller
in the process of re-identification, the products quality will
not be guaranteed well, neither production safety, so the
idea of off-line re-identification cannot meet the enterprise
requirement. An adaptivemechanismwith online closed-loop
re-identification is an effective method to solve the above
problems [5], [6]. Closed-loop identification method is clas-
sified into direct identification and indirect identification. For
indirect identification method, a prior knowledge of the con-
troller is required. MPC does not have a certain expression,
so the indirect identification method is not suitable for MPC
applications.

Online identification based on MPC has received exten-
sive attention in the last decade. In the closed-loop re-
identification ofMPC, a persistent excitation is needed, while
MPC is used to control the plant at a steady-state target.
MPC and Identification (MPCI) [7] solves an optimization
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problem on-line with all conventional MPC constraints and
additional input constraints which assure persistent excitation
of the process. The resulting problem is that the convex
optimization problem of the original MPC is converted to
a non-convex optimization problem. A two stages approach
is presented in [8], in the first stage, a typical optimiza-
tion task of MPC is solved, and the cost function value is
utilized as a threshold for the second stage. In the second
stage, the persistent excitation condition is included, and the
optimal inputs are obtained by solving a maximization of
the minimal eigenvalue of the information matrix increase
problem. Similarly to the methods in [7] and [8], another
simple modification of MPC formulation called persistently
exciting MPC (PE-MPC) [9] is given, with the difference
that the persistent excitation constraints are imposed only on
the first adjustments of MPC manipulated variables. A MPC
relevant identification (MRI) method [10] minimizing a mul-
tistep ahead prediction error cost function is proposed based
on a high order finite impulse response (FIR) model of
the plant, and the cost function is highly nonlinear in the
model parameters. Considering the main advantage of MRI
method, a more robust MRI method named enhanced multi-
step prediction error method (EMPEM) [11] is presented by
replacing the high order FIR model by an ARX structure and
introducing the multistep prediction error method (MPEM)
proposed by Huang and Wang [12]. Considering the main
problem that the dynamic control and identification objec-
tives are conflicting in closed-loop identification, an invari-
ant target set is included extending the equilibrium-point-
stability to the invariant-set-stability in [13], which ensures
the system’s closed-loop stability, and at the same time a
persistent excitation is generated. This method is explored
later in [14], the concept of probabilistic invariant sets is
introduced, instead of invariant target sets, which stretches
the methodology’s range. Almost all the MPC products adopt
two-layer structure consisting of steady-state target calcula-
tion (SSTC) in upper layer and dynamic optimization (DO)
in lower layer, where SSTC computes steady-state input,
state and output targets, and DO drives the process to the
desired steady-state operating points form SSTCwithout vio-
lating constraints. Considering the two-layer structure MPC,
Sotomayor et al. [15] propose a methodology where gener-
alized binary noise (GBN) test signals are adopted. A diag-
onal matrix consisting of binary values (1 or −1) as tuning
parameter is introduced in the target calculation problem of
SSTC, and the tuning parameters of weighting matrix of
input deviations in DO are set large enough to accomplish
fast input targets tracking. Zhu et al. [16] develop a semi-
automatic MPC system which consists of three modules: an
MPC module, an online identification module and a control
monitor module, for the sake of reducing the cost of MPC
commissioning and maintenance. In the online identifica-
tion module, the so-called asymptotic (ASYM) identification
method is used to improve control performance.

In real industrial application, especially for thin processes
with more outputs than inputs, zone control whose objective

is to control some outputs within a specified range, rather than
at fixed set-points, is often required. Based on the charac-
teristic increasing the degree of freedom of the process for
zone control, a framework for adaptive MPC is proposed to
solve the problem of MPC performance degradation caused
by plant/model mismatch, under the premise of maintain-
ing production safety. The scope of the paper is limited to
linear time-invariant (LTI) model-based considerations with
quadratic cost and penalty terms, and this general framework
allows a kind of simplicity in the applicable excitations to
be used for system identification. These approximations and
limitations are quite reasonable and justified in a wide set of
chemical reactor models that are frequently applied in the
practice. When the MPC performance cannot be accepted,
it transforms the traditional control mode to comprehensive
test mode, where orthogonal test signals with maximal ampli-
tudes are introduced to excite all inputs of the process simulta-
neously, and zone control is used to satisfy the constraints on
process inputs and/or outputs. Compared with [15] and [16],
on the account that test signals effect on the plant directly,
the proposed method in this paper is identical to an online
open-loop identification which avoids the fundamental prob-
lem of closed-loop identification: (1) conflicting between the
dynamic control and identification objectives. (2) correlation
between the input and the unmeasured noise [17]. In addition,
not only the method does not need additional computation,
but also it can be implemented with commercial MPC soft-
ware packages conveniently, without modifying the original
form of optimization problem.

The rest of this paper is structured as follows: the zone
MPC and the framework of adaptive MPC system are illus-
trated in Section 2 and 3, respectively; In Section 4, a formula-
tion of comprehensive test mode based on zoneMPC is given;
In Section 5, an example of the Shell heavy oil fractionators
benchmark problem is presented. Finally, in Section 6, some
conclusions are discussed.

II. ZONE MPC
A. THE PLANT MODEL
For a linear, time-invariant system with m inputs, n out-
puts and q measured disturbances, the step responses of
output variable yi for input variable uj and measurable dis-
turbances vl are gij =

[
gij (1) , · · · , gij (N )

]T and hil =
[hil (1) , · · · , hil (N )]T respectively, where i = 1, · · · , n,
j = 1, · · · ,m, l = 1, · · · , q and N is the model
length. For a stable plant the sequences will asymptoti-
cally reach constant values, i.e. gij (N ) ≈ gij (N + 1),
hij (N ) ≈ hij (N + 1). Then after adding M control
movements 1uj (k) , · · · ,1uj (k +M − 1) for each input
uj, the output prediction value with a finite horizon [2]
can be as

ỹPM (k) = ỹP0 (k)+ G1uM (k)+H1v (k) (1)

where P and M denote prediction horizon and control hori-
zon, respectively. ỹPM (k) =

[
ỹ1,PM (k) · · · ỹn,PM (k)

]T
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and ỹP0 (k) =
[
ỹ1,P0 (k) · · · ỹn,P0 (k)

]T are the future
and initial output prediction values at time k , respec-
tively; and 1uM (k) =

[
1u1,M (k) · · ·1um,M (k)

]T ,
1ui,M (k) =

[
1ui (k) · · ·1ui (k) · · ·

]T (i = 1, · · · ,m);

1v (k) =
[
1v1 (k) · · ·1vq (k) · · ·

]T
; as disturbances are

unpredictable, it is usually assumed 1vi (k) = vi (k) −
vi (k − 1) (i = 1, · · · , q);

G =


G11 G12 · · · G1m
G21 G22 · · · G2m
...

...
...

Gn1 Gn2 · · · Gnm

,

Gij =



gij (1) · · · 0
...

. . .
...

gij (M) · · · gij (1)
...

...
...

gij (P) · · · gij (P−M + 1)

,

H =


H11 H12 · · · H1q
H21 H22 · · · H2q
...

...
...

Hn1 Hn2 · · · Hnq

, and H il =



hil (1)
...

hil (M)
...

hil (P)

.

B. RECEDING OPTIMIZATION
MPC employs the receding horizon strategy. At each time
step, a sequence of future manipulated variable adjustments
is calculated by solving an open-loop optimization problem
with constraints, and the first one is injected to the plant.
At the next time, a new open-loop optimization is performed,
while the initial states are updated by means of an output
feedback. Based on the operational requirements, the aim of
outputs for industrial MPC controller is divided into setpoints
and zones [18], as shown in Figure 1.

FIGURE 1. Industrial MPC. (a) setpoint control. (b) zone control.

The shaded areas present the deviations between the objec-
tive values of controlled variables and their prediction values.
ForMPCwith a fixed setpoint objective, the deviations penal-
ized in the objective function are on both sides of ‘‘the line’’.
For MPC with a zone objective, the deviations are outside of
‘‘the zone’’.

A fixed setpoint MPC typically solves the following opti-
mization problem:

min
1uM

∥∥ysp(k)− ỹPM (k)
∥∥2
Q +
‖1uM (k)‖2R

s.t. ỹPM (k) = ỹP0 (k)+ G1uM (k)+H1v (k)

yLL ≤ ỹPM (k) ≤ yHL
uLL ≤ uM (k)+1uM (k) ≤ uHL
1uLL ≤ 1uM (k) ≤ 1uHL (2)

where ysp(k) denotes the setpoints of controlled variables
with appropriate dimension; LL and HL respectively repre-
sent the upper and lower limits, and yLL represents the lower
limit of outputs, and so on; Q is positive semidefinite matrix
and R is positive definite.

However, instead of a fixed setpoint, the optimization of
zone MPC aims to keep or move outputs into a zone defined
by upper and lower boundaries. The cost function of a zone
MPC application used in [19] belongs to mixed integer pro-
gramming, which increases the computational complexity.
Here, based on (2), another way to implement zone con-
trol is introduced, which maintains the original optimization
problem as a QP (quadratic programming) problem. The
optimization problem is defined as follows:

min
1uM

‖1uM (k)‖2R

s.t. ỹPM (k) = ỹP0 (k)+ G1uM (k)+H1v (k)

yLb ≤ ỹPM (k) ≤ yHb
uLL ≤ uM (k)+1uM (k) ≤ uHL
1uLL ≤ 1uM (k) ≤ 1uHL (3)

where the penalty term on the deviations between the set-
points and outputs predicted values in the cost function of (2)
is ignored. The control objective of zone is only considered
in the constraint conditions. yLb and yHb represent the lower
and upper boundaries for the zone respectively.

III. THE FRAMEWORK FOR AN ADAPTIVE
PREDICTIVE CONTROL SYSTEM
Figure 2 shows the framework for an adaptive predictive con-
trol system based on zone control, composed of several mod-
ules: zone MPC, identification and performance monitoring.
The performancemonitoringmodule detects the performance
ofMPC controller through a performance evaluation criterion
periodically. Traditional control mode is transformed to com-
prehensive test mode, when theMPC performance is detected
below the desired value. In the comprehensive test mode,
multivariable test signals are introduced to guarantee the suf-
ficient excitation of the plant. The zone MPCmodule ensures
that the process constraints are satisfied to realize production
safety and persistence of process. The identification module
is used to identify the plant model online with the test data.
Then the model of MPC is re-identified and updated. At this
moment, if the MPC performance meets the requirements,
turn comprehensive test mode to traditional control mode.
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Otherwise, continue the comprehensive test mode until the
MPC performance meets the requirements after updating the
model.

A. PERFORMANCE MONITORING MODULE
The performance of a controller refers to its ability to adjust
the deviation between the controlled variables and the control
targets. The MPC performance is related to tuning param-
eters, the degree of model mismatch, and so on. In this
paper, a method based on non-disturbing small sinusoidal test
signals [3] is introduced to judge whether the controller’s per-
formance is deteriorated by model mismatch. The procedure
of model error detection is illustrated as follow:

1) Choose three different frequency points, construct
small sinusoidal test signals.

2) Perform tests and estimate frequency responses at the
three frequencies.

3) Calculate the 85.7% upper error bounds, If the error
bounds are less than the setting bound value, go to (4);
Otherwise, go to (2).

4) Calculate the model error index matrix ERR.
5) The quality of the model is not qualified, if the element

in ERR is greater than the desired value.

B. IDENTIFICATION MODULE
The goal of this paper is an online correction of model
parameters when the original MPC model is not accurate
enough, at the same time keeping the continuity and stability
of production. Therefore, an initial model (also known as
a ‘‘seed model’’) is required. In later stage of controller
maintenance, the initial model can be continuously improved
through online identification. Equation (1) is an expression
of parameter model, and identification methods of a param-
eter model include: parameter estimation method, iterative
optimization, subspace, neural network, etc. A recursive
least squares identification method with forgetting factor is
adopted in this paper, but the framework mentioned in this
paper is not limited to this identification method.

IV. COMPREHENSIVE TEST MODE BASED ON ZONE MPC
A. TEST SIGNALS
For the case in which the model structure is correct, the accu-
racy of unknown parameters will depend directly on the test
signals [20]. It is very important to persistently excite the
process while constraints are satisfied. The condition for
persistent excitation is introduced as following definition:
Definition 1: The input signal u (k) is termed persistently

exciting of order r , if the matrix Rr is positive definite [21].

Rr =


Ru (0) Ru (1) · · · Ru (r − 1)
Ru (1) Ru (0) · · · Ru (r − 2)
...

...
...

Ru (r − 1) Ru (r − 2) · · · Ru (0)

 (4)

where Ru (τ ) = lim
N→∞

1
N

∑N
k=1 u(k + τ )u

T (k).

For a MIMO system, it will save a lot of time to excite all
inputs simultaneously, if the input signals are uncorrelated.
Since Pseudo Random Binary Sequence (PRBS) signals used
in SISO systems case do not meet this requirement, an ampli-
tude modulated PRBS (APRBS) signal comprised of two
binary periodic signals [22] is introduced as

ui (k) = hi (k) p (k) (5)

where p(k) is a PRBS signal with period length Np and

amplitudes [a,−a× P], P =
√
Np+1−2
√
Np+1

. The signal hi (k)

with the period length Nh is chosen from the i-th line of a
Hadamard matrix of the order Nh = 2m−1.

FIGURE 2. The framework for the adaptive predictive control system.

B. THE PROPOSED FRAMEWORK OF
COMPREHENSIVE TEST MODE
As described in Figure 2, comprehensive test mode is
launched, while the performance monitoring module detects
that the MPC performance cannot be accepted for large
plant/model error. To complete the automatic test, and to
ensure the economic benefit and production safety simulta-
neously, the zone MPC described in (3) is adopted in com-
prehensive test mode. According to (3), it can be seen that
input movement 1uj (k) is equal to zero (j = 1, · · · ,m),
when output predictive values are all in the zone. This means
that there is no relation between the MPC controller and
the plant unless some of the output prediction values get
outside of the zone. Therefore, the comprehensive test mode
in which test signals with appropriate amplitudes are used to
excite all the outputs simultaneously under the premise of
satisfaction of zone constraints, can be regarded as ‘‘open-
loop test’’. The structure of the comprehensive test mode is
shown in Figure 3.

FIGURE 3. The structure of the comprehensive test mode.

Where the manipulated variable adjustments u (k) =
ucon (k) + uident (k). uident (k) denotes the test signals which
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could be look upon as measured disturbances. ucon(k) is
used to adjust the output prediction values within the zone.
Equation (1) can be expressed as

ỹPM (k) = ỹP0 (k)+ G1uM (k)+H1v (k)

= ỹP0 (k)+ G(1ucon,M (k)+1uident,M (k)) (6)

Where 1ucon,M (k) and 1uident,M (k) present the incre-
ment of future behavior of MPC adjustments and test signals
over the prediction horizon of lengthM . In order to construct
a unified form of comprehensive test mode and traditional
control mode, a parameter λ called amplitude intensity is
introduced in this paper. Therefore, the output prediction
values

ỹPM (k) = ỹP0 (k)+ G(1ucon,M (k)+ λ1uident,M (k)) (7)

Then (3) can be written as

min
1uM

∥∥1ucon,M (k)
∥∥2
R

s.t. 1uM (k) = 1ucon,M (k)+ λ1uident,M (k)

ỹPM (k) = ỹP0 (k)+ G1uM (k)

yLb ≤ ỹPM (k) ≤ yHb

uLL ≤ uM (k)+1uM (k) ≤ uHL

1uLL ≤ 1uM (k) ≤ 1uHL (8)

To integrate setpoint control and zone control problem
(traditional control mode and comprehensive test mode),
a unified form is given by:

min
1uM

∥∥ysp(k)− ỹPM (k)
∥∥2
Q +
‖1uM (k)‖2R

+ ‖εL‖
2
ELb
+ ‖εH‖

2
EHb

s.t. 1uM (k) = 1ucon,M (k)+ λ1uident,M (k)

ỹPM (k) = ỹP0 (k)+ G1uM (k)

yLb − εL ≤ ỹPM (k) ≤ yHb + εH

uLL ≤ uM (k)+1uM (k) ≤ uHL

1uLL ≤ 1uM (k) ≤ 1uHL

0 ≤ εH ≤ yHL − yHb

0 ≤ εL ≤ yLb − yLL (9)

where the third and fourth items in the objective function
of (9) respectively represent the penalty for the outputs pre-
diction values lower than the lower boundaries and upper
than the upper boundaries. εL and εH are defined as output
constraint slack variables, which guarantee the optimization
problem feasible. ELb and EHb are the corresponding weight-
ingmatrices. By comparing (9) to (3) and (2), (9) is equivalent
to the dynamic objective function of zoneMPC, whenQ = 0.
Equation (9) is equivalent to the dynamic objective function
of setpoint MPC, when Q 6= 0;
For the amplitude intensity λ, one may in general discern

the following two cases.

FIGURE 4. Closed-loop response for the plant. (a) with the initial model.
(b) with the re-identified model.

1) λ = 0 : It is in traditional control mode. Furthermore,
the control objectives of outputs are setpoints, and
(9) is equivalent to (2), when yLb = yLL, yHb = yHL
and Q 6= 0.

2) λ 6= 0 : It is in comprehensive test mode. In order to
drive the inputs as close as possible to the orthogonal
persistently excitation signals, the numerical value ofR
should be large enough to reduce the affection caused
by 1ucon,M .

With the increase of amplitude intensity λ, the input adjust-
ments u (k) also will increase correspondingly, which will

VOLUME 6, 2018 49517



H. Zheng et al.: Framework for Adaptive Predictive Control System Based on Zone Control

lead to higher signal to noise ratio and better test result.
However, the possibility of constraint violation will
be greater. To settle this problem, consider the following
optimization problem:

min
1uM

∥∥ysp(k)− ỹPM (k)
∥∥2
Q +

∥∥1ucon,M (k)
∥∥2
R

+ ‖εL‖
2
ELb
+ ‖εH‖

2
EHb
− ‖λ‖2S (10)

the constraints are the same as these of (9). where S is a
weighting coefficient. The target is to seek a large λ and small
1ucon,M (k) while satisfying the constraints.
Remark:
1) The proposed framework synthesizes traditional con-

trol mode and test mode to construct a unified form.
The steps of pre-test and dynamic response test in
the implementation of MPC project can be omit-
ted. Therefore, this proposed framework can effec-
tively improve the efficiency of the implementation
of MPC project, especially the maintenance of MPC
controller.

2) In contrast to the ‘‘Set-point Control’’, in the proposed
framework the application of the ‘‘Zone Control’’
makes the identification process similar to the ‘‘open
loop identification’’ because within the zone no ‘‘error
feedback’’ is required. Almost all of the MPC prod-
ucts (RMPCT, Aspen DMC3, Pavilion8, Taiji, et al.)
have ‘‘Zone Control’’ option. Therefore, the proposed
framework in this paper can be easily applied in these
products.

3) The performance monitoring module and the identi-
fication module can be implemented by the way of
offline computing to reduce the online computing com-
plexity. In (9), since the amplitude coefficient is known,
the comprehensive test module based on zone MPC
is still a QP problem, without adding computational
complexity. In (10), as the amplitude coefficient is
unknown, the computational complexity of the compre-
hensive test module based on zone MPC is increased,
and the standard QP optimization methods are no
longer applicable.

V. SIMULATION
Consider the MIMO plant for the Shell heavy oil
fractionator [23]

G (s) =


4.05e−27s

50s+ 1
1.77e−28s

60s+ 1
5.39e−18s

50s+ 1
5.72e−14s

60s+ 1

 ,

TABLE 1. Estimated errors of the initial MPC model (%).

FIGURE 5. Portion of the uncorrelated APRBS signals.

discretized as G (z), as shown at the bottom of this page,
where the input variables u1 and u2 represent the product
draw rate from the top and the side of the column, respec-
tively. The output variables y1 and y2 represent the draw
composition from the top and the side of the column, respec-
tively. The constraints of the input variables are set with
uLL =

[
−0.5 −0.5

]
, uHL =

[
0.5 0.5

]
, and that of the

output variables are yLL =
[
−0.5 −0.5

]
, yHL =

[
0.5 0.5

]
.

The setpoints of the output variables are ySP =
[
0.3 −0.1

]
.

The unmeasured disturbance ξ1 and ξ2 are respectively
generated by filtering a white noise e(k). The variance of e(k)
is 0.1.

ξ1 =
1

1− 0.95z−1
e (k) , ξ2 =

1+ 0.5z−1

1− 1.5z−1 + 0.7z−2
e(k)

The model used in the MPC is

GMPC(s) =


2.52e−27s

15s+ 1
3.8e−28s

45s+ 1
2.17e−18s

45s+ 1
2.15e−14s

15s+ 1


In this paper, a quadratic dynamic matrix control (QDMC)

algorithm is adopted for the simulation, where the main
tuning parameters are: P = 50, M = 20, Q1 = Q2 =

IP×P, R1 = R2 = IM×M . The simulation result of closed-
loop responses is shown in Figure 4(a). It can be observed
that the output variables are in the limits, however, they are
fluctuating up and down near the setpoints all the time due to
the model deviation.

G (z) =


0.2359z−1 − 0.2244z−2

1− 1.8930z−1 + 0.8958z−2
z−9

0.058− 0.0264z−1 − 0.0266z−1

1− 1.8930z−1 + 0.8958z−2
z−10

0.3139− 0.2986z−1

1− 1.8930z−1 + 0.8958z−2
z−6

0.0945+ 0.0954z−1 − 0.1737z−2

1− 1.8930z−1 + 0.8958z−2
z−5


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FIGURE 6. Closed-loop response for the online comprehensive test mode: (a) λ = 0.4. (b) λ = 1.4. (c) adaptive λ.

In performance monitoring module, the two small sinu-
soidal test signals used are

rt1 = 0.13 sin (0.015× 2π t)

+ 0.054 sin (0.067× 2π t − π)

+ 0.11 sin (0.13× 2π t − 1.5π)

rt2 = 0.092 sin (0.015× 2π t)

+ 0.052 sin (0.067× 2π t − π)

+ 0.078 sin (0.13× 2π t − 1.5π)

where three frequency points: 0.015, 0.067, 0.13 are chosen.
Perform tests and estimate the frequency responses at the

three frequencies, the results of estimated errors are shown
in Table 1.

Then the model error index matrix ERR can be deter-
mined as

ERR = 0.4×
[
116.3 99.1
89.5 66.7

]
+ 0.4×

[
70.5 108.3
96.0 98.9

]
+ 0.2×

[
92.1 97.4
98.6 98.0

]
=

[
93.2 102.4
93.9 85.8

]
The values of all the elements in ERR are quite
big (more than 50%), and one can conclude that the
model error is large. Therefore, it is necessary to per-
form re-identification. Then control mode is switched to
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FIGURE 7. Step response for the plant, initial model, re-identified model. (a) λ = 0.4. (b) λ = 1.4. (c) adaptive λ.

comprehensive test mode, in which the uncorrelated APRBS
signals are introduced, and portion of the signals are shown
in Figure 5.

For the desired range of zone MPC, the upper boundary
yHb = [0.5; 0.4], the lower boundary yLb = [−0.2;−0.4].
the closed-loop responses of comprehensive test are
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TABLE 2. Results corresponding comprehensive test.

presented respectively in Figure 6(a) for λ = 1.4,
in Figure 6(b) for λ = 0.4 and in Figure 6(c) for adaptive
λ which is calculated by (10).
As shown in Figure 6(a) and Figure 6(b), a greater value

of λ means greater amplitudes of test signals treated as
measured disturbances, which deteriorate the output con-
strains (the outputs fluctuate seriously in Figure 6(b), for
instance, y1 is beyond the objective zone at the sampling
time k = 140 − 144, and y2 is beyond the objective zone
at the sampling time k = 27− 30, 60− 62, 67− 73, 84, 85,
93−95, 123, 124, 126, 196−200). On the contrary, a smaller
value of λ means smaller amplitudes of test signals, which
results in better control result. The adaptive method, in which
persistently excitation and process constraints are consid-
ered comprehensively, is presented as Figure 6(c). However,
the magnitude of constraint violation in Figure 6(c) is
significantly less than that in Figure 6(b), there are some
constraint violation (y1 is beyond the objective zone at the
sampling time k = 73, 74, 141 and y1 is beyond the objective
zone at the sampling time k = 27− 30, 67− 73, 199).
An online identification method of recursive least squares

with forgetting factor is adopted, the result is shown
in Table 2, where Total_e2 represents the sum of squares of
deviations between the result identified and the actual values.
The step responses of plant, model used in MPC and the re-
identified model for adaptive λ are presented as Figure (7).
The following conclusions can be drawn from the graph: with
larger value of λ, the greater signal-to-noise ratio, the better
identification result. Otherwise the opposite result instead.

Then, switch MPC with the re-identified model for adap-
tive λ, and turn comprehensive test mode to traditional control
mode. As in the previous model error detection procedure
with the same two small sinusoidal test signals, the estimated
errors of the new model are shown in Table 3.

TABLE 3. Estimated errors of the identified model for adaptive λ (%).

The model error index matrix ERR can be calculated as

ERR = 0.4×
[
32.0 54.8
27.1 36.5

]
+ 0.4×

[
40.8 31.4
38.2 46.2

]
+ 0.2×

[
25.7 48.6
55.6 54.8

]
=

[
34.3 44.2
37.2 44.0

]

where the values of all the elements of the matrix are less
than 50%. As already mentioned, the same parameters of
QDMC are used. The result of closed-loop responses for
the re-identified model is shown in Figure 4(b). As can be
seen in the figure, the outputs are all within the upper and
lower limits, and they are quickly stabilized at the setpoint.
It can be concluded that the performance of the MPC with
the identified model for adaptive λ can meet the requirements
well, however, Total_e2 for adaptive λ is larger than that for
λ = 1.4 as shown in Table 2.

VI. CONCLUSION
In this work, a framework for adaptive MPC which is com-
posed of zone MPC, identification module and performance
monitoring module is proposed to compensate MPC per-
formance deterioration caused by large plant/model error.
The traditional control mode of setpoint MPC is switched to
comprehensive test mode of zone MPC, when performance
monitoring module detects that the controller performance
cannot be accepted. In the proposed comprehensive test
mode, uncorrelated test signals are introduced to excite the
process simultaneously, while zoneMPC is used to guarantee
the production safety in test. In order to construct a unified
form of comprehensive test mode and traditional control
mode for MPC in industrial applications, a parameter called
amplitude intensity λ is introduced. The main feature of the
proposedmethod is that 1) the test data can be treated as open-
loop, therefor all the proved technology of open-loop identi-
fication can be adopted. 2) the method synthesizes control
mode and test mode. It can be developed to implement with
the MPC software packages. Finally, the proposed approach
is tested by a simulation with a MIMO plant of a Shell heavy
oil fractionator. The result shows that the proposed method is
promising in terms of future application.

REFERENCES
[1] F. A. M. Strutzel, I. David, and L. Bogle, ‘‘Assessing plant design with

regard to MPC performance,’’ Comput. Chem. Eng., vol. 94, no. 2,
pp. 180–211, Nov. 2016.

VOLUME 6, 2018 49521



H. Zheng et al.: Framework for Adaptive Predictive Control System Based on Zone Control

[2] T. Zou, B. Ding, and D. Zhang, MPC: An Introduction to Industrial
Applications. Beijing, China: Chemical Industry Press, 2010, pp. 100–106.

[3] G. Ji, K. Zhang, and Y. Zhu, ‘‘A method of MPC model error detection,’’
J. Process Control, vol. 22, no. 3, pp. 635–642, Mar. 2012.

[4] T. A. N. Heirung, B. Foss, and B. E. Ydstie, ‘‘MPC-based dual control with
Online experiment design,’’ J. Process Control, vol. 32, no. 1, pp. 64–76,
Aug. 2015.

[5] T. A. N. Heirung, B. E. Ydstie, and B. Foss, ‘‘Dual adaptive model
predictive control,’’ Automatica, vol. 80, no. 1, pp. 340–348, Jun. 2017.

[6] M. L. Darby andM. Nikolaou, ‘‘Identification test design for multivariable
model-based control: An industrial perspective,’’ Control Eng. Pract.,
vol. 22, pp. 165–180, Jan. 2014.

[7] H. Genceli and M. Nikolaou, ‘‘New approach to constrained predictive
control with simultaneous model identification,’’ AIChE J., vol. 42, no. 10,
pp. 2857–2868, Oct. 1996.

[8] E. Žáčeková, S. Prívara, and M. Pčolka, ‘‘Persistent excitation condition
within the dual control framework,’’ J. Process Control, vol. 23, no. 9,
pp. 1270–1280, Oct. 2013.

[9] G. Marafioti, R. R. Bitmead, and M. Hovd, ‘‘Persistently exciting model
predictive control,’’ Int. J. Adapt. Control Signal Process., vol. 45, no. 6,
pp. 536–552, 2014.

[10] R. B. Gopaluni, R. S. Patwardhan, and S. L. Shah, ‘‘MPC relevant
identification—Tuning the noise model,’’ J. Process Control, vol. 14, no. 6,
pp. 699–714, Sep. 2004.

[11] A. S. Potts, R. A. Romano, and C. Garcia, ‘‘Improving performance and
stability of MPC relevant identification methods,’’ Control Eng. Pract.,
vol. 22, no. 1, pp. 20–33, Jan. 2014.

[12] B. Huang and Z. Wang, ‘‘The role of data prefiltering for integrated
identification andmodel predictive control,’’ IFACProc. Vol., vol. 32, no. 2,
pp. 6751–6756, Jul. 1999.

[13] A. H. González, A. Ferramosca, G. A. Bustos, J. L. Marchetti,
M. Fiacchini, and D. Odloak, ‘‘Model predictive control suitable for
closed-loop re-identification,’’ Syst. Control Lett., vol. 69, pp. 23–33,
Jul. 2014.

[14] A. Anderson, A. H. Gonzalez, A. Ferramosca, and E. Kofman, ‘‘Proba-
bilistic invariant sets for closed-loop re-identification,’’ IEEE Latin Amer.
Trans., vol. 14, no. 6, pp. 2744–2751, Jun. 2016.

[15] O. A. Z. Sotomayor, D. Odloak, and L. F. L. Moro, ‘‘Closed-loop model
re-identification of processes under MPCwith zone control,’’ Control Eng.
Pract., vol. 17, no. 5, pp. 551–563, May 2009.

[16] Y. Zhu, R. Patwardhan, S. B. Wagner, and J. Zhao, ‘‘Toward a low cost
and high performance MPC: The role of system identification,’’ Comput.
Chem. Eng., vol. 51, pp. 124–135, Apr. 2013.

[17] U. Forssell and L. Ljung, ‘‘Closed-loop identification revisited,’’ Automat-
ica, vol. 35, no. 7, pp. 1215–1241, Jul. 1999.

[18] S. J. Qin and T. A. Badgwell, ‘‘An overview of industrial model predictive
control technology,’’ Control Eng. Pract., vol. 93, no. 7, pp. 232–256,
Jan. 1997.

[19] B. Grosman, E. Dassau, H. C. Zisser, L. Jovanovič, and F. J. Doyle, ‘‘Zone
model predictive control: A strategy to minimize hyper- and hypoglycemic
events,’’ J. Diabetes Sci. Technol., vol. 4, no. 4, pp. 961–975, Jul. 2010.

[20] Z. H. Pang and H. Cui, System Identification and Adaptive Control MAT-
LAB Simulation (Revised Edition). Beijing, China: Beijing University of
Aeronautics and Astronautics Press, 2013, p. 20.

[21] R. Isermann and M. Münchhof, Identification of Dynamic Systems: An
Introduction With Applications. Berlin, Germany: Springer-Verlag, 2011,
pp. 184–190.

[22] R. Pintelon and J. Schoukens, System Identification: A Frequency Domain
Approach. Piscataway, NJ, USA: IEEE Press, 2001, pp. 304–306.

[23] D. M. Prett and M. Morari, The Shell Process Control Workshop. Boston,
MA, USA: Butterworths, 1987.

HONGYU ZHENG received the B.S. degree in
automation and the M.S. degree in control theory
and control engineering from the Shenyang Uni-
versity of Chemical Technology, Shenyang, China,
in 2008 and 2011, respectively. He is currently
pursuing the Ph.D. degree in detection technology
and automatic equipment with Northeastern Uni-
versity, Shenyang. His research interests include
advanced process control and optimization.

TAO ZOU was born in Dashiqiao, China, in 1975.
He received the Ph.D. degree in control theory and
control engineering from Shanghai Jiao Tong Uni-
versity, Shanghai, China, in 2005. Since 2017, he
has been a Researcher with the Shenyang Institute
of Automation, Chinese Academy of Sciences. His
research interests include industrial process mod-
eling and simulation, model predictive control,
advanced process control, and real-time optimiza-
tion technology research and application.

JINGTAO HU received the B.S. and M.S. degrees
in computer from the Dalian University of Tech-
nology, Dalian, China, in 1985 and 1988, respec-
tively. In 1990, he became an Assistant Researcher
with the Shenyang Institute of Automation, Chi-
nese Academy of Sciences, where he also became
an Associate Researcher in 1995 and a Researcher
in 2000. His research interests include intelli-
gent detection and control technology research and
application.

HAIBIN YU was born in 1964. He received the
Ph.D. degree in automation from Northeastern
University, Shenyang, China. He is currently the
Director of the Shenyang Institute of Automation,
Chinese Academy of Sciences. His main research
interest is industrial automation.

49522 VOLUME 6, 2018


	INTRODUCTION
	ZONE MPC
	THE PLANT MODEL
	RECEDING OPTIMIZATION

	THE FRAMEWORK FOR AN ADAPTIVE PREDICTIVE CONTROL SYSTEM
	PERFORMANCE MONITORING MODULE
	IDENTIFICATION MODULE

	COMPREHENSIVE TEST MODE BASED ON ZONE MPC
	TEST SIGNALS
	THE PROPOSED FRAMEWORK OF COMPREHENSIVE TEST MODE

	SIMULATION
	CONCLUSION
	REFERENCES
	Biographies
	HONGYU ZHENG
	TAO ZOU
	JINGTAO HU
	HAIBIN YU


