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ABSTRACT Localization capability is a challenging task in global navigation satellite system-
degraded or denied environments. Alternatively, today’s smartphones have an increased number of inte-
grated sensors that can act as terminals for indoor personal positioning solutions such as pedestrian dead
reckoning (PDR). However, magnetic interference, poor sensor measurements, and diverse handling of
smartphone quickly decrease the performance for indoor PDR. This paper proposes a comprehensive and
novel pedestrian indoor positioning solution in which heading estimation is improved by using simplified
magnetometer calibration, by calculating projected acceleration along the moving direction using frequency-
domain features and by applying direction constrains to indoor accessible paths. Moreover, compared with
an ordinary particle filter (OPF) and a Kalman filter, this paper proposes a multidimensional particle filter
(MPF) algorithm, namely MPF, which includes high-dimensional variables such as position, heading, step
length parameters, motion label, lifetime, number of current particles, and factor. An MPF can handle more
uncertain parameters than the OPF. Therefore, positioning with an MPF can achieve lower errors using
low-quality sensors, mitigate interference introduced from surrounding environments, and reduce heading
ambiguities due to different modes of carrying a smartphone. Consequently, field tests show that the proposed
algorithm obtains robust performance for heading estimation and positioning.

INDEX TERMS Heading estimation, indoor positioning, particle filtering, pedestrian dead reckoning,
smartphone localization.

I. INTRODUCTION
With widespread applications of Global Navigation Satel-
lite System (GNSS), Location Based Services (LBS) have
been widely applied outdoors. However, GNSS signals are
degraded or denied for indoor environments due to signal
attenuation and multipath effect. Therefore, in recent years
one of the hottest research topics is to achieve reliable and
accurate indoor navigation and positioning solution.

Since the increase in computational and sensing capa-
bilities for commercial off-the-shelf (COTS) smartphones,
we can observe a boost in emerging technologies, such
as 3D mapping [1], AR/VR (Augmented Reality/Virtual

Reality) [2], applied in personal LBS applications. Pedestrian
Dead Reckoning (PDR) is an algorithm that uses accelerom-
eter, gyroscope, and magnetometer sensors to calculate user’s
locations. Rich integrated sensors can enable smartphone-
based PDR to become an alternative of indoor positioning
methods [3], [4].

A PDR algorithm estimates the heading and step length
from pedestrian gait information and calculate the current
position of the pedestrian from the previous state [5]–[7].
Since PDR is a relativemethod, there will be an induced accu-
mulated positioning error over time. Opportunistic signals,
such as WiFi [8], Bluetooth [9], and magnetic field [10] can
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provide absolute positioning in a certain range, but its popu-
larity is limited by the deployment cost and signal database
maintenance cost. Therefore, this paper proposes a solution
using self-contained sensor data to form an indoor positioning
system with optimal heading estimation and robust filter,
which can significantly reduce the density of opportunistic
signals and decrease the maintenance cost.

The heading estimation of PDR dominates the position-
ing accuracy and stability [11]. There is numerous research
done related to the accuracy improvement of heading esti-
mation. Most of them utilize magnetometer and gyroscope
integrated into a custom Kalman filter to get optimized head-
ing [12]–[15].Moreover, [16] and [17] buildweightedmodels
to fuse the outputs from Inertial Measurement Unit (IMU).
On one hand, some researches focus on heading estima-
tion under different device carrying modes. On the other
hand, some apply Principal Component Analysis (PCA) or
enhanced PCA into heading estimation using data from
accelerometer and gyroscope [18]–[22]. In the paper [23],
the least-squares linear regression is used to calculate the
direction of the horizontal acceleration to determine the walk-
ing direction. In this paper, an optimal heading estimation is
achieved through three aspects: simplified sensor calibration,
heading estimation using projected acceleration along a mov-
ing direction, and constrained current environment accessible
path.

Based on the review of heading estimation, we can see
that many researches utilize Kalman filter in pedestrian
fusion positioning with multiple sensors and opportunistic
signals [24], [25]. It is known that Kalman filter is the optimal
filter for linear Gauss system [14]. However, in nonlinear
PDR system with non-Gaussian noise, its performance will
degrade. Therefore, there are researches using particle filter
to optimize indoor positioning [26], [27]. But using ordinary
particle filter (OPF) has a flaw such that it loses diversity of
particles as the number of iterations increases.

Consequently, this paper proposes a robust modified par-
ticle filter algorithm namely Multidimensional Particle Fil-
ter (MPF). In an ordinary Particle Filter (OPF), each particle
represents a possible 2D position and heading for the user
in this PDR approach. Some positions are perhaps more
likely than others, so each particle contains a weight value
that represents the probability of it being correct based on
all the information to date [26]. Unlike OPF, in a MPF,
more uncertainties such as 2D coordinates, heading bias, step
length parameters, motion state, particle lifetime, and so on,
are assembled into a higher dimensional particle. The max
number of particles varies with the number of walking steps
and the density of walls. Based on the optimized particle
filter, the performances of heading estimation and positioning
are both improved.

In summary, our contributions of this paper include two
parts:

Firstly, we propose a novel and comprehensive pedestrian
indoor positioning solution in which heading estimation is
improved by using a simplified magnetometer calibration,

by calculating projected acceleration along moving direc-
tion using acceleration features in frequency domain, and by
applying direction constrains to accessible paths instead of
position constrains to free space.

Secondly, this paper proposes a high dimensional particle
filter namely MPF which includes position, heading, step
length parameters, motion label, lifetime, number of current
particles, and factor which is a weight depending on exter-
nal observations. MPF can handle more uncertain parame-
ters compared to OPF. Therefore, positioning with a MPF
can achieve lower errors using low quality sensors, mitigate
interference introduced from surrounding environments, and
reduce heading ambiguities due to different modes of carry-
ing a smartphone.

This paper is structured as follows. The optimization of
heading estimation is given in Sect. II; multidimensional
particle filter positioning is presented in Sect. III; and final
conclusion is drawn in Sect. IV.

II. THE OPTIMIZATION OF HEADING ESTIMATION
Heading in a PDR algorithm refers to the moving direction
of a pedestrian. To obtain an accurate pedestrian heading is
one of the major challenges in an indoor positioning system.
On one hand, magnetometer is sensitive to metal objects
and indoors electromagnetic interference. On the other hand,
the accumulated heading drift is unavoidable if angulated
integration is applied using gyroscope readings. Currently,
the commonly used magnetometer calibration method is to
rotate the smartphone around the figure ‘‘8’’ [28]. This
methodology is time consuming due to the number of col-
lected samples is generally not enough to calculate a valid
calibration model, resulting in failures and reruns. Besides,
the smartphone heading estimation is also influenced by the
attitude or placement of the phone. Since the heading of PDR
represents the walking direction of the pedestrian and not of
the phone; any change in the phone placement during walk-
ing, calling or swinging phone in hand, will induce wrong
moving direction. Some researches compensate the heading
offset under different carryingmodes by adding fixed heading
bias [12], [29]. However, a large number of training samples
from different people is needed to tune this set of heading bias
in order to support diverse use cases.

To resolve the heading estimation issues addressed above,
we firstly propose a simplified calibration method to opti-
mize magnetometer calibration [36]. Then, a heading estima-
tion algorithm using projected acceleration is introduced to
reduce the influences by diverse phone placements. Finally,
a constrain method is applied to generate a cleaner heading
estimation from the accessible path.

A. THE CALIBRATION METHOD FOR SELF-CONTAINED
MAGNETOMETER ON SMARTPHONE
Typical magnetometer reading is disrupted by external inter-
ference and internal errors [30], [31]. Internal errors of a
magnetometer sensor caused by the manufacturing process
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and components quality can be divided into non-orthogonal
error, sensitivity error, sensor noise, and zero-offset [36].

Knowing the introduced error and analyzing the error cri-
teria, we can obtain the error model equations of the magne-
tometer measurement system as follows [32]:

B̃ = εni(εnmBc + εlm)+ εli + εw (1)

where B̃ is a vector consisting of three values measured
frommagnetic field. Bc represents real magnetic field vector;
εni is a 3-by-3 matrix representing nonlinear system errors
including sensitivity error and non-orthogonal error; εnm is
also a 3-by-3 matrix representing nonlinear error caused by
magnetic interference, namely soft-iron effect; εlm is a vector
representing linear error caused by magnetic perturbation,
namely hard-iron effect; εli and εw represent zero-offset and
sensor noise respectively.

After merging the similar items, we can get (2), the error
model of magnetometer in this paper.

B̃ = ABc + b (2)

in which A is a matrix representing multiplicative error and b
represents linear errors.

After performing amagnetometer calibration, themagnetic
field vector which we obtain should be equal to local geomag-
netic vector. At this time, we rotate the smartphone randomly
in the three-dimensional space to collect magnetic field data.
The modulus of the data should be constant, and equal to the
value of local geomagnetic field strength B [33]:

BTc Bc = B2 (3)

Combined with (2), we can get:

(B̃− b)T (A−1)TA−1(B̃− b) = B2 (4)

It is noted that the form of (4) is almost equivalent to the
ellipsoid equation. Therefore, the errors of magnetometer are
distributed on the surface of an ellipsoid. The centre of this
ellipsoid depends on hard-iron effect b, and the shape depends
on the symmetric matrix (A−1)TA−1 [34]. The difference
between the magnetic field vector before and after calibration
is shown in Fig. 1.

If we collect enoughmagnetic field data and solve the ellip-
soid equation of the distribution of magnetic vector, we can
calculate A and b by matrix operation.
Moreover, if we compile the minimum data required for

calibration purposes, we can design an efficient way to rotate
the magnetometer in a smartphone which will collect a small
quantity of magnetic field data with enough weight to fulfill
our calibration process. With the body coordination system
definition of smartphone as shown in Fig.2, we select two
of three axes of the magnetometer in the smartphone as the
rotational axes. Then we rotate smartphone around these two
axes to collect data.

In principle, after we rotate the smartphone around one
axis, we can roughly sketch the shape of the ellipsoid [36].
However just one circle of rotation cannot determine the

FIGURE 1. The comparison of magnetic field data before and after
calibration [35].

X

Y

Z

FIGURE 2. The body coordinate system of a smartphone.

FIGURE 3. The shape of an ellipsoid.

equation as shown in Fig.3. Thus, we need to rotate the
smartphone around another axis to get another trace on the
surface of the ellipsoid. After we get two circles in two
mutually perpendicular planes, we can determine the unique
ellipsoid equation. Compared with other methods like six-
directional stewing method [15], and ∞ shape method [28]
this proposed technique requires fewer data and costs less
time with the same calibration effect.

As collecting magnetic field data becomes more efficient,
less time is spent on solving the ellipsoid equation calibration
process. Therefore, we have specifically made a series of
experiments and explored the cost effect to calibrate the
smartphone based on different rotation modes.

All experiments were conducted in a typical office build-
ing. The sensors we used were embedded in a smartphone
is AK8963 Magnetometer from Manufacturer AKM with
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resolution of 0.15 µT/LSB and its sample rate is 100 Hz.
The whole calibration process can be achieved both by
online and offline. In this paper, we develop an indoor
navigation App which performs the calibration process
online.

First, magnetic field data were collected by rotating the
smartphone around X and Z-axis of its coordinate system;
quickly followed by the calibration output data. Some exam-
ple data of our experiment are shown in Fig. 4 and Fig.5.

FIGURE 4. The distribution of magnetic field data before/after
calibration. The red trace represents the data without calibration. The
blue one is the result using calibration matrix proposed in this paper.

FIGURE 5. The readings of heading (the same data used in Fig. 4. The red
line is the data before calibration. The blue line indicates the data after
calibration).

The same data used in Fig.4 and Fig.5 is collected in a
typical indoor environment. As shown in Fig.4, the trace after
calibration is much closer to the light green sphere skeleton,
which is equivalent to lower variance. Fig.5 demonstrates that
after calibration the variance of the data is greatly reduced
from 134.19 to 0.09 degrees.

Figure 6 is the experimental result of a 360-degree rotation
in the horizontal plane using two similar smartphones at the
same time.

This experiment was conducted by rotating two identi-
cal smartphones in horizontal plane for 360 degrees with a
moto-drive rotation table which rotates with an even speed

FIGURE 6. The heading change estimation results without and with
calibration. This experiment was conducted by rotating two identical
smartphones in horizontal plane for 360 degrees.

controlled by a computer. The ground truth was obtained
from the computer of the rotation table. Compared with
the results of heading change estimation with and without
calibration, we can find that the heading change estimation
with calibration is closer to the ground truth. The standard
deviation of error is reduced from 19.50 to 8.80 degrees.

To verify the performance of the proposed algorithm,
we have selected several representative methods to make
comparison. The results are shown in Fig.7. Six-direction
means taking the phone stewing in six different directions
(usually direction of co-ordinate system). XYZ means rotat-
ing around the X, Y and Z-axis of the smartphone coordinate
system respectively. XY means rotating around the X and
Y-axis and so on. The experiments were taken both indoors
and outdoors.

FIGURE 7. Variance of different methods of data collected indoors.

The result shows, the data variance applied with calibration
using the proposed technique is reduced by 94.08% on aver-
age, while data collected by six-direction method is reduced
by 91.73% and∞ shapemethod by 49.83% averagely. Unlike
six-direction method, the whole process of rotating phone
around two axes of the phone takes only 2 to 4 seconds, while
the former method needs at least 10 seconds to achieve the
convergence criterion.
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B. HEADING ESTIMATION BASED ON PROJECTED
ACCELERATION ALONG MOVING DIRECTION
In this subsection, we propose a heading estimation algo-
rithm using projected acceleration along pedestrian moving
direction. The algorithm flow is summarized as Algorithm 1.
In addition, subscript i in step 6 means the serial number of
the steps detected by the step detection module and subscript
j means the serial number of acceleration vector between the
i-th step and the (i+ 2)-th step. The subscripts x, y mean the
axes the data of acceleration vector respectively.

Algorithm 1 Heading Estimation Based on Projected Accel-
eration Along Moving Direction

1. Data acquisition: sample acceleration, angular rate
and magnetic field vector at a fixed frequency. The
acceleration is represented by Ab =

[
ax,b ay,b az,b

]T
2. Attitude calculation: import the sensor data into

AHRS to calculate the attitude of the smartphone rel-
ative to the reference coordinate system, and get the
rotation matrix Cr

b.
3. Step detection: input acceleration data into step detec-

tionmodule of PDR system to obtain the timestamp and
walking frequency of each step event.

4. Bandpass filtering: do bandpass filtering for accel-
eration data to eliminate noise and other interference
signals.

5. Acceleration projection: use Cr
b to project the filtered

acceleration data into the reference frame.

Ar = Cr
bA

b

6. Integral computation: integrate the processed accel-
eration in the time interval of adjacent step events
according to the timestamp obtained from step 3.

Sri =
stepi+2∑
stepi

Arj

7. Heading calculation: get the heading by inverse
trigonometric function.

θ = arctan
Srx
Sry

AHRS (Attitude and Heading Reference System) is a
system that can provide at least three Euler angles repre-
senting attitude including roll, pitch, and yaw, i.e. it can
determine the attitude of the body relative to the reference
system. MARG (Magnetic, Angular Rate and Gravity) is one
of typical AHRS configurations, which consists of a three
three-axis orthogonal accelerometer, gyroscope, and magne-
tometer. Usually, AHRS fuses data from MARG sensors to
acquire the smartphone’s attitude. In this paper, we adopted
an AHRS algorithm from [38], which is a novel orientation
filter with low computational load using a single adjustable
parameter tuning associated with Kalman-based approaches.

An optimized gradient descent algorithm is applied to enable
performance at low sampling rates. Furthermore, a real-time
magnetic distortion and gyroscope bias drift compensation
algorithm is designed [37], [38].

Step detection is a module of PDR system, which uses
acceleration information to detect whether a step event
occurs, which has been widely studied [7], [12], [37]. In our
approach, we can achieve an accuracy of 99% for step detec-
tion with different phone placements [37]. We also evaluate
the step length model with 5 subjects and achieve an average
error of 3 cm for each step length estimation.

In this algorithm, we assume that moving direction will
introduce dominate acceleration except gravity. Viewing
from the frequency domain, we consider the frequencies of
acceleration which generate forward movement are compo-
nents that can be used for heading estimation. The noises
caused by low cost sensor measures or interferences such as
frequency introduced by side movements should be elimi-
nated. It is found from experiments that some low-frequency
components and high-frequency ones would also influence
the result of heading estimation [39]. Therefore, a bandpass
filter is added to enhance the signal quality. To retain more
valuable frequency components, we set the passband fre-
quency to 1/2 step frequency; low cut-off frequency is 1/4 step
frequency; high cut-off frequency is 5/4 step frequency. And
the passband attenuation is less than 3dB; stopband attenua-
tion is no less than 80dB. The step frequency is given by step
detection module of PDR system.

On the problem of filter selection, we summarize the orders
required by different filters to satisfy the filtering conditions
as shown in Table 1.

TABLE 1. The comparison of orders of bandpass filters.

Because the frequency component we need to extract is
small and phase distortion won’t influence the result of the
integral, a linear phase applied on the FIR will not be nec-
essary. Moreover, from the experience of our experiments,
it takes at least four walking steps to obtain enough data
for FFT (Fast Fourier Transform) processing. In order to get
real-time result, it is impractical to use FFT algorithm on
an input data stream. Thus, a IIR filter with relatively fewer
orders is chosen to reduce computation.

Finally, we use a 12-order Elliptic IIR filter to process the
acceleration information. The amplitude-frequency and the
phase-frequency characteristic diagram are shown in Fig. 8.
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FIGURE 8. The amplitude-frequency and phase-frequency characteristic
diagram of the bandpass filter.

FIGURE 9. The raw acceleration data in frequency domain.

Fig.9 shows the waveform of raw acceleration data after
FFT in frequency domain. The acceleration data were col-
lected by a smartphone held as a texting message handling
scenario, which means the Y-axis of sensor frame represents
the moving direction of the pedestrian, and X-axis is perpen-
dicular to the moving direction.

In Fig.9, we can find that the waveform on the axis repre-
senting the moving direction has the max peak near 2 Hz,
which is almost equal to the step frequency of a human.
Moreover, the waveform on the vertical axis to the moving
direction has the max peak near 1 Hz, which is approximate
to half of the step frequency of a human. When a pedestrian
walk, his body will swing laterally, which is thought to be the
main reason. The Fig.10 shows the filtered acceleration data
in frequency domain.

As for the projection of acceleration, we use attitude angles
from AHRS to build a coordinate transform matrix, then we
can use this matrix to project sensor data from MARG into
ENU (East-North-Up) frame by left multiplying the coordi-
nate transform matrix.

FIGURE 10. The filtered acceleration data in frequency domain.

From our experience, it’s inaccurate to directly estimate
heading from projected acceleration data in Step5 of Algo-
rithm 1 due to the low quality of accelerometer embedded in
smartphone and interference caused by excessive movement
of human body. Moreover, it is unnecessary for a PDR system
to constantly estimate the heading at all time. In fact, we only
need to know the heading of each frequency step performed
by the user so that we can calculate the current position from
the previous one using dead reckoning method. Therefore,
we propose to use the result of the integral acceleration
to calculate the heading. To be more concrete, we use the
integral acceleration data between every two steps, which
would save computation time and eliminate the influence of
the acceleration generated by the body’s swinging motion
during human walk.

We then apply arc cotangent function to calculate an angle
from the integrated acceleration. The angle is regarded as the
heading of the pedestrian. So far, we have achieved heading
estimation. Combined with the results of step length estima-
tion, the position and walking trajectory of the pedestrian can
be calculated.

To verify the feasibility of this heading estimation method
against varying phone placements, a series of experiments
were carried out including handheld mode, photo mode, call-
ing mode, and pocket mode as shown from Fig 11 (a)-(d)
respectively [39]. The sample rate was set to 100Hz.
Table 2 shows the information about the sensors and oper-
ating system of the smartphone utilized for testing. Set in
a typical indoor office environment, a pedestrian carries
a smartphone with each mode and walks along a corri-
dor for two laps with a total length of about 100 meters.
Table 3 shows that proposed algorithm can meet the require-
ments of heading estimation in PDR to some extent.

Wang et al. [29] proposed a context-based compensa-
tion solution which made a result of heading estimation
with RMSE 2.56◦ in handheld mode, 7.58◦ in calling mode
and 5.38◦ in pocket mode. Compared to the results of
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FIGURE 11. The results of heading estimation on handheld
mode (a), photo mode (b), calling mode (c), and pocket mode (d).

TABLE 2. The description of smartphone used for testing.

TABLE 3. Heading error analysis of Nexus 5 testing results.

context-based compensation solution, the proposed method
in this paper is much more accurate in handheld mode and
pocket mode. The performance of calling mode is slightly
worse. However, the compensation solution needs to detect
the diverse contexts to compensate offset dynamically. The
proposed method in this paper is more universal compared to
the context-based compensation solution.

C. HEADING ESTIMATION BASED ON ACCESSIBLE
PATH CONSTRAINTS
A priori map can provide constraints on the walking area
given pedestrians normally walk in the accessible area of
the map [37]. Furthermore, similar to map matching method
applied to car navigation, this paper proposes a scheme
to constrain pedestrians’ heading by using map matching,

that is, extract the valid open space area of the map to form
accessible paths information including the setting direction
of each road. This will assist heading estimation for our PDR
system.

Different from the previous graph-based or link-node map
matching solutions, we do not need to build the topological
relationship for lines. The required structure of accessible
path only includes the starting point and end point of each
path and the direction of the path because the application of
accessible path is mainly to assist the heading estimation.

There are also many existing algorithms for accessible path
extraction [44]–[46]. In this paper, we use the widely applied
indoor floorplan, such as Fig.12 (a) to generate the accessible
path.

FIGURE 12. (a) The indoor map used in this project. (b) The accessible
area obtained after image processing. The white area is the area we
obtained. (c) The region boundaries (white lines) obtained by edge
detection.

Therefore, only the accessible area is needed to be
extracted from the indoor map, this will allow us to extrap-
olate the corresponding accessible path data.

This paper uses expansion and corrosion in digital image
processing as the main strategy of road extraction. After
processing, we can get the rough accessible area as shown
in Fig.12 (b).

Next, we perform edge detection on the image shown
in Fig.12 (b) with Canny operator. The edge image can be
obtained as shown in Fig.12 (c).

After that, we use Hough Transform to extract the lines in
the image, from which we can get the formula of each line
in Fig.13 (a). Hough Transform is one of the basic image
processing ways to identify geometric shapes. This method
has been very effective for segmenting geometric shape with
the same characteristics from the image.

We can find that there are numerous overlapping lines
and very short lines in the set. Therefore, we are required to
simplify and reduce the line set. The goal of the simplification
is to remove the shorter line segments that overlap, and merge
multiple segments to obtain a continuous line segment. After
this simplification process is complete, we end up with the
line set as shown in the following Fig.13 (b).

Now that we have defined the accessible path constraints
for an indoor map, we can apply the accessible path into head-
ing estimation assistance. We propose the following formula
to assist heading estimation.

θfinal =
21θ
π
θcompass +

π − 21θ
π

θR,i

1θ = min
(∣∣θcompass − θR,1∣∣ , ∣∣θcompass − θR,2∣∣) (5)
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FIGURE 13. (a) The line set extracted by Hough Transform.
(b) The simplified line set. (c) The accessible path of the indoor map.

where θfinal is the final result of heading estimation, and
θcompass is the heading calculated by a magnetometer or the
smartphone in other ways. i can be 1 or 2, which depends
on the source of 1θ . This formula takes into consideration
both the heading of road information and the randomness of
a pedestrian walk. Moreover, in some areas like crossroads,
a position may correspond to a number of roads. In that
way, the calculation of 1θ can be extended to the following
formula.

1θ = min
(∣∣∣θcompass − θ iR,1∣∣∣ , ∣∣∣θcompass − θ iR,2∣∣∣)

i ∈ {n|dn < threshold} (6)

where dn is the distance between the pedestrian’s position and
n-th road, and θ iR,1, θ

i
R,2 are the directions of n-th road.

Because the accessible path assistance needs to be carried
during pedestrian walking, we choose to hold a smartphone
and walk around a fixed route to compare the difference
between the heading and location with and without accessible
path assistance. Specifically, the experimental environment
is an ordinary office area. A tester holds the smartphone to
keep the phone screen vertical and upward. The heading of
the phone is consistent with the tester’s direction. The route
used for testing is shown in Fig. 14.

FIGURE 14. The diagram of accessible path assistance test walking route.

Fig. 15 shows the result of heading and positioning test
without accessible path assistance, and Fig. 16 is the result of
the test with accessible path assistance. We can find that the
result of the simple PDR system is not ideal. We know the
heading fluctuation is caused by the indoor magnetic field
interference. Although the heading error is relatively small
just by a few degrees, the long-term positioning accumulated
effect would magnify this error.

TABLE 4. The positioning error of heading test about accessible path
assistance.

The Table 4 is a statistics table of positioning error for the
corresponding test using accessible path assistance. The test
result using accessible path assistance demonstrates a sig-
nificant improvement compared with the test result without
accessible path. Moreover, we can clearly see the heading
performance comparison in Fig. 17 and conclude that the
heading estimation will be more stable with the added acces-
sible path assistance.

III. MULTIDIMENSIONAL PARTICLE FILTER POSITIONING
Particle filter is a probability estimation algorithm based on
the state of random particle approximation, which is suit-
able for solving problems in nonlinear non-Gaussian system.
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FIGURE 15. The result of heading and positioning tests without
accessible path assistance.

FIGURE 16. The result of heading and positioning test with accessible
path assistance.

FIGURE 17. The comparison of results of heading tests with and without
accessible path assistance. The X-axis is the step count during the test,
and the Y-axis is the heading result in unit of degree. The red line is the
result of the test without accessible path assistance, and the blue line is
the one with accessible path assistance.

Therefore, it can be applied to a map constrained positioning
system [47].

A. THE DESIGN OF PARTICLE FILTER
Generally, the flow of particle filter consists of several
steps including prediction, update, normalization and resam-
pling [48]. The core of resampling is to abandon the particles

with smaller weights and clone the particles with larger
weights [49].

The proposed multidimensional particle filter realizes
indoor positioning by enriching the properties of the particles,
optimizing the process, combining with motion recognition
and opportunistic signal localization.

First, the motion model of the particle filter mainly propa-
gates as the following equation (7).{

x ik+1 = x ik + L
i
k · sin(θ

i
k )

yik+1 = yik + L
i
k · cos(θ

i
k )

(7)

where x ik and yik are the coordinates in north and east direc-
tions of the i-th particle at the step k , L ik and θ

i
k are the step

length and heading of the i-th particle at step k .

Meask = {Ak ,Gk ,Mk ,Ok} (8)

where the measurements at step k include the acceleration
vector Ak , gyroscope observations Gk , magnetometer Mk ,
and opportunistic signals Ok .

The filter is driven by the step detection and the user’s
step event triggers a particle set resampling update. When
a particle set update takes place, the filter would decide
whether each particle is alive or dead based on the weight
of the particle and wall collision detection. Walls are being
represented as lines in the map. Particles are then added
into corresponding particle set. The algorithm of collision
detection refers to the existed algorithm [50]. The basic flow
of the algorithm is shown in Fig. 18.

FIGURE 18. The flowchart of particle filter algorithm applied in indoor
positioning.

Considering the possible states which might introduce
positioning uncertainty, we design a high dimensional
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particle filter. The variable states of the i-th particle at step
k include position, heading, step length parameters, motion
label, lifetime, number of current particles, and factor, i.e.

Sik =
(
P ik θ ik l ik mik t ik n cik

)
(9)

where P ik =
{
x ik , y

i
k

}
, θ ik , l

i
k corresponds respectively to

the 2D coordinates, heading, and step length parameters of
the i-th particle, and mik , t

i
k , c

i
k corresponds to the motion

label, lifetime, and factor, n is the number of living particles.
In our test we set the maximum number of living particles
as 500 which ensures a promising result with an affordable
computation for the test platform list at Table 2.

The states of pedestrian positioning include position coor-
dinates, heading and step length parameters, from which the
corresponding states of the particles can be sampled. The
heading bias θ ik is given by a probability distribution when
the particle is initialized. The step length model we used
is a binary linear model associated with variance of step
frequency and acceleration [37]:

L ik = α
i
k · Freq

i
k + β

i
k · Var

i
k + γ

i
k (10)

Therefore, the parameters of step length model are l ik =(
αik β

i
k γ

i
k

)
.

The motion label mik is designed for handling the heading
bias caused by motion uncertainty. Different motion labels
refer to different heading offset relative to walking direc-
tion. The heading offset can be calculated by the difference
between the heading just before the motion changing and the
one after changing, assuming people usually change carrying
modes during walking straight lines. Motion label of the par-
ticle is assigned by motion recognition module according to
the recognition probability, when the change of motion state
is detected. The motion label assignment will be described in
the follow-up sub-section.

Lifetime, t ik , is added to give a confidence to a living
particle. Longer time a particle lives, higher confidence is
given because we believe that the states of a particle with
longer life are more reliable compared to the ones with short
life. If a particle survives a long time, that is, it does not
collide with the walls. It indicates that the particle attributes
are similar to the real pedestrian states with a small margin of
error.

Factor cik is reserved for weighting particles given oppor-
tunistic signal observations Ok such as WiFi, Bluetooth, and
so on. The particles closer to WiFi or Bluetooth positioning
results will be given higher cik .
The particle lifetime t ik and the particle factor cik are both

set to 1 at initialization. Every time a step event is detected,
the lifetime is incremented by one up to a corresponding
maximum threshold relative to the original value. The particle
factor is assigned by a value between 0 to 1 depending on the
range from the particle to the opportunistic signal positioning
results. The weight of the particle ωik is determined by the
following expression:

ωik = cik · t
i
k (11)

In the process of initialization, we add the zero mean
Gaussian noise with the proper variance to the coordinates
of each particle. Since the PDR system itself is unable to
locate the initial position, there are two schemes presented in
this paper for tabulating initial point positioning based on the
PDR particle filter algorithm: one is user manual setting; the
other is absolute opportunistic signal positioning localization.
Moreover, to prevent ‘‘crossing walls’’ during positioning,
wewouldmake a collision detection between the surrounding
walls against the line connecting the pedestrian coordinates
and the particle coordinates. An example is shown in Fig. 19.

FIGURE 19. The diagram of optimized initialization distribution of
particle filter. (Green dots: alive; Red dots: dead)

FIGURE 20. The diagram of particle filter correcting heading estimation.
(Green dots: alive; Red dots: dead)

In Fig. 20, θbias represents the heading bias of the whole
particle set, which can be calculated by (12).

θkbias =
1
N

N∑
i

θ ik (12)

The heading bias θ ik of a particle is also initialized by
zero-mean Gaussian distribution and θbias equals to zero.
When the heading estimation performs badly in the process
of positioning, some particles may die by colliding with the
walls, which then allows us to abandon their heading biases.
At this time, θbias is a non-zero value, which represents the
difference between the true heading and the PDR system
heading estimation.

If there is a step event detected by the PDR system, the fil-
ter will judge whether each particle is alive. The judgment
conditions include map wall collision detection and weight
threshold restriction. If a particle does not collide with any
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walls or weighs higher than a certain threshold, that particle
will be added into a live particle set and its lifetime will
increase by one, or else it will be added into a dead particle
set.

We also add a maximum divergence radius to eliminate
particles too far from the particle set, which is shown in (13).

Rmax = c3 · e−c4·Nwall + Rmin (13)

where Rmax is the maximum divergence radius and c3, c4 are
constant coefficients.Nwall is the number of wall lines around
the position of a particle. Rmin is the minimum divergence
radius to ensure the most particles to be alive, which depends
on the average width of the roads indoors which can be
manually set.

When resampling the particles, the algorithm would
sample the particles’ attributes from the lived particle set,
including the coordinates, the heading bias, the step length
parameters and factor. The dead particle lifetime is initialized
to one after having copied lived particle’s attributes, of which
the lifetime decreases by one. The dead particle maintains its
number when copying attributes.

B. MOTION RECOGNITION ASSISTANCE
Most of PDR based smartphone indoor positioning systems
utilize the heading of the smartphone to represent the heading
of the pedestrian, which assumes that the pedestrian moving
direction is same as the smartphone’s heading. If the pedes-
trian rotates the phone in space for taking a photo or for
calling, the phone heading estimation will also change even
though the movement is kept in the same direction. This
would introduce significant heading estimation errors for
indoor positioning. Therefore, this paper uses motion recog-
nition to assist particle filter to realize heading estimation and
positioning under different phone carrying modes.

FIGURE 21. Four different modes of carrying a smartphone. From left to
right: pocket, hand-swing, calling, handheld.

This paper optimizes four modes for carrying smartphones,
as shown in Fig. 21, including handheld, calling, hand-swing,
and pocket.
• Handheld mode: the pedestrian holds the smartphone
to keep the screen upwards, and the phone’s heading is
aligned with the moving direction of the pedestrian.

• Calling mode: the pedestrian puts the phone near his ear,
which leads to the misalignment between phone heading
and moving direction.

• Hand-swing mode: the pedestrian holds the smartphone
in his/her hand, swinging his/her arm around naturally
during walking. Phone’s heading changes with the hand
swinging pattern.

• Pocket mode: the pedestrian put the phone in his/her
pants pocket. Phone’s heading changes with the body
movement and constrains of the pocket.

Supervised learning algorithms such as decision tree and
support vector machine, can be applied for detecting the
carrying mode, also known as motion recognition. In the
following description, we also use the word ‘‘motion’’ that
has the same meaning as ‘‘carrying mode.’’

When a pedestrianmoves along a straight line, his direction
remains constant. At this time, for all four smartphone carry-
ing modes, the direction of the pedestrian can be obtained
through the phone yaw angle. There exists a simple lin-
ear relationship between all four carrying modes; therefore,
we can extrapolate the moving direction just by using the
smartphone yaw angle.

In this paper, the heading estimation adjustment is to
compensate the direction deviation under different carrying
modes by adding a corresponding angle bias 1θmotion. To be
more concrete, we can record the headings for the past sev-
eral steps. When a change and switch in motion state has
been detected, the angle offset can be obtained by using the
changed heading value and calculate the difference with the
preserved value.

As for the hand-swing mode and pocket mode, the yaw
angle is unstable when the pedestrian walks along a straight
line. Therefore, this paper tries to find a pattern in the yaw
angle change under these two modes.

FIGURE 22. The variation of smartphone acceleration amplitude and yaw
under hand-swing mode.

As shown in Fig.22, the acceleration amplitude curve and
the yaw angle degree are characteristic to the human body’s
actual motion. On one hand, the amplitude is cyclical. On the
other hand, we can correspond the extreme points of the
yaw angle curve to the two pause points when a pedestrian
performs an arm swinging motion. Thus this is the ideal time
to compensate the angle offset during hand-swing mode and
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pocket mode when the pedestrian’ arm is placed at the two
pause points.

Because the heading bias directly affects the heading esti-
mation result, this paper recommends the system to save the
headings of the past four steps during implementation, and
only take the average of three values with the least variance
as the heading θbefore before a carrying mode change occurs.
At the same time, the average heading value of the two steps,
after a carrying mode changes occurs, is stored as the output
heading θafter . We can get the heading bias by (14).

1θmotion = θafter − θbefore (14)

However, the straight-forward compensation strategy is
not robust enough to adapt to diverse scenarios. Therefore,
we apply the multidimensional particle filter to improve the
heading estimation robustness by introducing the motion
label mk variable which indicates the carrying mode.

FIGURE 23. Particle assignment based on motion recognition result.

Each of the four carrying modes in this paper has the
corresponding initial recognition probability. Assuming that
the carrying mode probability after a motion changes occurs
is defined as pmotion, as shown in Fig. 23, we would divide
the lived particle set into the particle set�A with the changed
motion and the particle set �B with original state according
to the weight ratio pmotion : (1 − pmotion), and update cor-
responding motion label to the particles. Every motion label
mk has a corresponding recognition probability pmotion. And
every time the mode changes, we think that there are only two
possibilities of carrying modes, the original one and the new
one. Therefore, we divide the whole particle set into two sets
according to the particles motion labels.

In the update phase, two different particle sets are updated
respectively according to the motion labels. For the particle
set with changed motion, the new heading bias is calculated
by equation (14), which would be used in particle update.
If the weight ratio of one of two particle sets is lower than
a certain threshold during positioning, this set will be elimi-
nated and put into dead particle set.

The probability pmotion for each carrying mode would be
initialized to 0.5 because the motion recognition using deci-
sion tree does not output the confidence probability. At the
meantime, we would record the value of each probability in

a local file when motion changes by equation (15).

precord = 0.5 · p′motion + 0.5 · precord (15)

where precord is the recognition probability of the correspond-
ing carrying mode in the local file, and p′motion is the ratio
of the weight of lived particles with corresponding carrying
mode to the total weight. Moreover, p′motion has an upper limit
set as 0.9.

From using a multidimensional particle filter, we can get
the filtered positioning result, and thus we can use this result
to optimize PDR system heading estimation. As for the head-
ing at every step event, we can take the heading estimation as
a Markov process, given the heading at the subsequent step
event is only related to the current step heading. Moreover,
in most cases, a pedestrian will walk in a straight line when
observing its positioning information. Therefore, the heading
at last step is valuable for the current heading, in addition we
can use the particle filter result to calculate the heading of the
last step θlast and use it to adjust the heading at the current
step by (16).

θnow = α · θnow + (1− α) · θlast (16)

where α is a coefficient relative to the angular velocity mod-
ulus which, if necessary, can be manually set.

This heading adjustment is only available in the situation
that the pedestrian is walking along a straight line. Therefore,
we propose a judgment condition for turning as shown in
equation (17).

∑
t−τ<δ

‖ωτ‖ > threshold1

|θnow − θlast | > threshold2
(17)

where t is the current moment, and ωτ represents the angular
velocity at time τ .

If the condition (17) is satisfied, the pedestrian is most
likely to turn a corner. In this case, α in equation (16) is
set as 1, which means the heading estimation from last step
cannot used for optimizing the current heading estimation.

C. FIELD TEST
First, we carried out a positioning test applied with multidi-
mensional particle filter.

A tester walked along the path shown in Fig.24 (a) with
the smartphone in handheld mode. Fig.24 (b) shows the heat
map of local magnetic field strength. Red area is covered with
strong magnetic field strength. Blue area indicates a weak
magnetic field strength coverage. The test area is a typical
magnetic field disturbed environment where the magnetic
field strength is varying from 32.168uT to 52.244uT due to
existing computers, GNSS receivers and simulators, micro
oven, LED display, printer, concrete structure, and so on.
In the process, the user changed the smartphone placement
into calling mode, hand-swing mode and pocket mode for
each walking circle. The total length of each walking cycle
is about 300 meters. The result is shown in the Fig.25.
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FIGURE 24. (a) The path of indoor positioning test. Red circles mean the
positions of Bluetooth beacons for initial localization. Black arrows show
the directions of the test path. (b) The strength heat map of magnetic
field in the test area. Red area is covered with strong magnetic field
strength. Blue area indicates a weak magnetic field strength coverage.

FIGURE 25. Indoor positioning result of multidimensional Particle Filter.
The red and black solid blocks are the reference points for positioning.
The handheld mode corresponds to the light green trajectory; the calling
mode corresponds to the bright blue trajectory; the hand-swing mode
and the pocket mode correspond to the dark blue and red trajectories
respectively. The start and end points are the same for all trajectories.

FIGURE 26. The particle distribution during the positioning test of
particle filter. The red curve is the weight sum change of the old particle
set. The blue curve shows the weight sum change of the particle set after
motion changed. The green curve shows the weight sum change of the
particle set remaining previous motion.

At the same time, we give a schematic particle distribution
diagram in the process for this test as shown in Fig.26.

Moreover, we made a positioning performance com-
parison test using ordinary particle filter (OPF), and
also Kalman filter (KF) under different carrying modes.

FIGURE 27. Indoor positioning result of the ordinary particle filter under
hand-swing mode.

FIGURE 28. Indoor positioning result of the ordinary particle filter under
pocket mode.

Fig.27 and Fig.28 shows the OPF positioning results of under
hand-swing mode and pocket mode respectively. We can
see that the increasing heading estimation error results in
the positioning failure because the OPF cannot make a sta-
ble and robust heading estimation when the carrying mode
changes. The final positioning errors of three filters are shown
in Table 5.

TABLE 5. The table of indoor positioning error of heading estimation
assistance.

Furthermore, we carried out the heading estimation opti-
mization test based on multidimensional particle filter. The
heading estimation and positioning result is shown in Fig.29.
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FIGURE 29. The result of heading estimation assisted with MPF. The red
dashed lines show the reference heading of the test path shown
in Fig.24 (a).

FIGURE 30. Underground car park tests with smartphone carrying mode
causally changed. (a) Handheld->Calling->Pocket->Handheld.
(b) Handheld->Calling->Handswing->Calling. (c) Calling->Pocket->
Calling->Handheld. (d) Handheld->Handswing->Pocket->Calling->
Handswing.

Last, we carried out challenging tests in an underground car
park with 7200m2 using a SAMSUNG Galaxy S6 (Android
6.0.1) to verify the performance of proposed solution in a
sparse map constraint environment. The magnetic field of
this car park is still suffered from dense concrete pillars and
full occupied vehicles. A user walked along a straight line
with 45meters while smartphone carrying mode was causally
changed among four carrying modes as shown in Fig. 30.
Four test cases show that the proposed solution can handle the
scenario of carrying mode change. The transform from/to the
hand-swing mode introduces more errors compared to other
transforms. Results show that the average error of positioning
is less than 2.5 meters with MPF even though in the map-less
environment.

IV. CONCLUSION
This research paper proposes algorithms focusing on heading
estimation and its optimization application on a smartphone
platform. The proposed algorithm and suggestedmagnetome-
ter calibration process can eliminate the influence of mag-
netic interference in a certain indoor environment range. The
heading estimation algorithm using acceleration information
makes it possible to achieve accurate heading estimation in
different carrying modes and enables various random smart-
phone handling modes for indoor positioning pedestrians
LBS. Moreover, combined with road constraints informa-
tion, the heading estimation during positioning can correct
the heading error effectively. Finally, this paper presents a
multidimensional particle filter scheme that combines PDR
and motion recognition, which improves positioning accu-
racy and robustness in addition to optimizing the heading
estimation as well. The experimental results show a good
performance in both positioning and heading estimation.

The challenging tests present a decreased performance.
In future, we will introduce the WiFi, Bluetooth, and
magnetic field fingerprints into the MPF to achieve
a more practical smartphone-based indoor positioning
approach. In addition, the more complex carrying mode such
as bag mode and more types of smartphone will be further
investigated.
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