
Received July 23, 2018, accepted August 24, 2018, date of publication September 3, 2018, date of current version September 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2868411

REPICA: Rewriting Position Independent
Code of ARM
DONGSOO HA1, (Student Member, IEEE), WENHUI JIN1, (Student Member, IEEE),
AND HEEKUCK OH 1, (Member, IEEE)
Department of Computer Science and Engineering, Hanyang University, Ansan 15588, South Korea

Corresponding author: Heekuck Oh (hkoh@hanyang.ac.kr)

This work was supported in part by the Ministry of Science, ICT and Future Planning, Korea, through the Information Technology
Research Center Support Program, Institute for Information and Communications Technology Promotion, under Grant
IITP-2018-2014-0-00636 and in part by the National Research Foundation of Korea through the Korean Government, Ministry of
Education, Science and Technology, under Grant NRF-2015R1D1A1A09058200.

ABSTRACT Binary rewriting techniques are widely used in program vulnerability fixing, obfuscation,
security-oriented transforming, and other purposes, such as binary profiling and optimization. Over the
past decade, most binary instrumentation techniques have been studied on ×86 architecture, specifically
focusing on the challenges of instrumenting non-PIC. In contrast, ARM architecture has received little
attention, and statically instrumenting PIC has not been studied in depth. In ARM, owing to its fixed-length
instructions, addresses are frequently computed via multiple stages, making it difficult to handle all relative
addresses, especially the relative address of base-plus-offset and base-plus-index addressing. In this paper,
we presentREPICA, a static binary instrumentation techniquewhich can rewrite ARMbinaries compiled in a
position-independent fashion. REPICA can instrument at anywhere without symbolic information. With the
aim of identifying and processing relative-addresses accurately, we designed a value-set analysis specialized
for PIC of which the domain is in symbolic format. We also identified a new challenge for situations
all relative addresses cannot be corrected in an optimized way and solved this problem efficiently by the
stepwise correction of each relative address. We implemented a prototype of REPICA and experimented
with approximately 1200 COTS binaries and SPECint2006 benchmarks. The experiment showed that all
binaries rewritten by REPICA maintain relative addresses correctly with negligible execution and space
overhead. Finally, we exhibit the effectiveness of REPICA by using it to implement a shadow stack.

INDEX TERMS Binary instrumentation, binary rewriting, PIC, position independent code, reassembly.

I. INTRODUCTION
In a few decades, binary instrumentation technique has
become an important key technique in the security area.
It may be necessary to fix a bug in a program of which
the source code cannot be accessed, or an untrusted pro-
gram may have to be run. In addition to this, even if
the source code is available, there may have the type of
work that cannot be carried out via only generic program-
ming languages or compilers. In this situation, binary instru-
mentation technique can be used to solve these problems.
Specifically, control-flow integrity (CFI) hardens binaries
by inserting a verification routine at each indirect control
flow transfer point [1]–[5], which can protect against most
existing code and injected attacks such as jump-oriented
programming (JOP) and return-oriented programming (ROP)
attacks. Moreover, this technique can also be used for
a variety of security purposes, including software-based
fault isolation (SFI) [6]–[9], obfuscation [10]–[12], shadow

stack [13]–[17], and bug fix [18]. Because of the ability to
modify the program directly at low level, binary instrumen-
tation technique is crucial.

To date, studies of binary instrumentation technique
has been focusing on ×86 architecture and non-PIC [18].
Recently, the increase in the use of smart devices has caused
ARM architecture to grow in importance. Due to the charac-
teristics of smart device, it requires high security on limited
resources. PIC can satisfy the requirements for both efficient
memory management (e.g., physical memory sharing) and
high security (e.g., address space layout randomization [19]),
whereas non-PIC cannot satisfy both of these requirements
together. For this reason, the significance of PIC1 has also
been increasing, and most files on smart devices are PIC
despite the good performance of non-PIC. As a representative

1In this paper, PIC refers to code compiled in a position-independent
fashion rather than a compiled option.

50488
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-2989-8737


D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

example, both Android (above 5.0) and iOS (above 4.3)
have enhanced their policies to enforce the use of PIC in
third-party applications [20], [21]. However, the many severe
security vulnerabilities still encountered on PIC, and only the
security feature of PIC cannot prevent it from all hacking
attacks [22]–[24]. To cope with this situation, the binary
instrumentation technique can be used as implementing
binary protecting techniques such as CFI, SFI, and shadow
stack. Unfortunately, it is difficult to apply existing tech-
niques to the PIC of ARM architecture.

The main difficulty is from multiple address computa-
tion in PIC of ARM. All addresses have to be computed
owing to characteristic of PIC, and ARM instruction is fixed-
length. Thus, the relative-address may not be contained in a
single instruction, thereby the computation for obtaining an
address consist of multiple stages generally. In addition to
this, in ARM, PC register is general-purpose register, thereby
many instructions can read from and write to the PC register
for the address computation. For these reasons, there are var-
ious address computation patterns. Existing ×86 techniques
do not consider these difficulties [4], [25], [26]. Previous
studies on ARM were only able to process relative-addresses
that are directly computed with the PC register [18].

In addition to this problem, the PIC of ARM presents a
new problem in that the correction process may not terminate.
In some ARM instructions, the operands are scalable; hence,
fewer instructions can express a larger relative-address.
Because of this feature, in the process of correcting relative-
addresses, when each relative-address is always corrected by
optimized instructions, these corrections may occur infinitely
in a cyclic manner. We refer to this problem as the cyclic
correction problem. To the best of our knowledge, research
attempting to address this problem has not yet been reported.
This means that a technique capable of rewriting the PIC of
the ARM architecture efficiently and correctly does not exist.

In this paper, we present REPICA, a static binary instru-
mentation technique that can flexibly modify text segments
of a binary compiled in a position-independent fashion.
REPICA has two methods to solve challenges for handling
PIC. The first method is a value-set analysis specialized
designed for PIC, which can find and correct the relative-
address of the address computation in multiple stages.
The second method is a correction method which adjust
each relative-address stepwisely, which can solve the cyclic
correction problem efficiently. In particular, we are the first to
address the cyclic correction problem.We implemented a pro-
totype of REPICA and tested it on approximately 1,200 bina-
ries, including the entire PIC or PIE files of Android 8.1 (both
the 32-bit and 64-bit versions). Our experiments showed that
all binaries rewritten from the output produced by REPICA
maintain relative-addresses correctly with negligible execu-
tion and space overhead. We summarize our contributions as
follows:
• To the best of our knowledge, we are the first to pro-
pose a static technique with the ability to systemati-
cally rewrite ARM binaries that are compiled in the

position-independent fashion. This technique allows the
text segments of the target binary to bemodified flexibly.

• We identified a new challenge (referred to as the cyclic
correction problem), i.e., that relative-addresses cannot
always be corrected optimally. In this paper, we present
a detailed approach to overcome the cyclic correction
problem.

• We implemented a prototype of REPICA and tested it
on approximately 1,200 binaries, including the entire
PIC or PIE files of Android 8.1 (both the 32-bit and
64-bit versions). Our experimental results confirmed
that our tool is able to correctly and efficiently rewrite
the binaries.

The remainder of this paper is organized as follows:
Section II contains the background to the problem, Section III
presents the challenges that need to be addressed, Section IV
provides our approach to overcome these challenges,
Section V describes our design and the implementation of
REPICA, Section VI presents the experimental results and
case study, Section VII discusses the limitations of REPICA,
Section VIII describes related work, and Section IX summa-
rizes our conclusions.

II. BACKGROUND
In this section, we first define some terms for convenience
of explanation as it is not easy to describe our technique in
existing terms. Next, we describe the binary instrumentation
technique, PIC, and ARM architecture. Finally, we discuss
the limitation of existing approach on PIC.

A. TERM DEFINITION
The target instructions we are interested in are those that
use the relative-address via an immediate value or an index
register, and we divide them into two classes depending on
whether their base register is the PC register. Among the
target instructions, an instruction of which the base register is
the PC register is termed a PC-relative instruction, whereas
an instruction of which the base register is not the PC regis-
ter is termed a base-relative instruction. Examples of target
instructions include general-purpose arithmetic instructions
such as ADD and SUB, data transfer instructions such as LDR
and STR, and branch instructions such as B, BL, and CBZ.
Note that instructions involving register indirect address-
ing, such as LDR rm,[rn], are not target instructions
because we only consider instructions that use a nonzero
relative-address.

The addresses of interest are the PC value, the address
computed through arithmetic instructions, and the effective-
address of the target instruction. The PC value itself or the
address obtained through arithmetic operation between the
PC value and the relative-address is termed the PC-based
address, and the others is termed the non-PC-based address.
In addition, we also divide the all addresses into two types
according to the area within which it falls. An address that
falls within the instruction area is termed a code-address,

VOLUME 6, 2018 50489



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

whereas an address in another area, such as the literal pool
of the text segment and the data segment is termed a data-
address. As a special case, when considering the relative-
address range, we regard the PC value itself as the address
of the instruction regardless of the prefetch value.

B. BINARY INSTRUMENTATION TECHNIQUES
Depending on the placement of the instrumentation code,
the binary instrumentation technique can be classified into
trampoline-based and reassembly-based approaches. In the
trampoline-based approach, a new code area, named tram-
poline, is typically created at the lower end of the program,
and the instrumentation code is placed in that area. More
specifically, detour-based techniques such as Dyninst [27],
Etch [28], and Detour [29] replace the original instruction
with a jump instruction that passes control to the trampo-
line area in which the corresponding instrumentation code
run. When the instrumentation has completed its task in
the trampoline area, program control returns to the origi-
nal area. Slightly differently, patch-based techniques such
as STIR [30], PEBIL [31], and Multiverse [32] keep
the original almost intact and create a duplicated code area,
which is patched for instrumentation. The program is exe-
cuted on the duplicated area, where program control is passed
to the trampoline area when instrumentation is needed. This
approach generates high runtime and space overhead due to
the frequent jumps to the trampoline area and the duplicated
code.

The reassembly-based approach identifies absolute-
addresses in the literal pool2 and data segments by performing
work known as symbolization. The first related study led to
the development of Uroboros [25], which uses a heuristic
approach under strong assumptions to recognize pointer-like
data. A follow-up study proposed Ramblr [26], which uses
localized data flow analysis and value-set analysis to remove
the heuristic introduced by Uroboros as much as possible.
In this technique, because it identifies all absolute-addresses
in a program, in contrast to the trampoline-based approach,
this approach can insert the instrumentation code at any point
in the original code. In other words, this approach does not
need to create a separate trampoline area and can perform
more flexible instrumentation with negligible execution and
space overhead.

Our REPICA is a static binary instrumentation technique
that targets PIC composed of anARM instruction set and does
not require any symbolic information. REPICA can perform
instrumentation at levels similar to those of the reassembly-
based approach. Specifically, it can insert instrumentation
code before or after any instruction in the text segments, and
requires neither a trampoline area nor duplication of the orig-
inal. The output generated by REPICA is also a standalone
binary which does not require a special environment.

2The literal pool is an area of memory in the text segment, and is used to
store constants such as plain numerical constants, strings, and addresses of
variables.

C. POSITION INDEPENDENT CODE AND
ARM ARCHITECTURE
PIC has a characteristic that can be loaded on any location in
the virtual memory. Thus, unlike non-PIC, binaries compiled
in a position-independent fashion do not contain absolute-
addresses directly. All addresses used in the code are obtained
by computing between the PC value and a relative-address
except for addresses obtained by the stack register or dynamic
allocation, and the computed address can be recomputed
with other relative-addresses. Although the data segments can
contain absolute-addresses at runtime, relocation information
is required as well. This feature of PIC ensures that the
distinction between addresses and constants is clear.

The ×86 instruction set has a variable length, whereas the
length of the ARM instruction set is fixed. Depending on
the size of the relative-address, a single instruction in ARM
architecture may not fully include a relative-address. There-
fore, in ARM architecture, address computation is mostly
multi-staged. In addition, because of the general-purpose
nature of the PC register, relative-addresses can be used in
various instructions. These two characteristics enable the use
of various address computational patterns in the PIC of ARM.
Considering the PIC patterns generated by most modern
compilers, a single pattern is generated in ×86 architecture,
whereas various address computational patterns are generated
in ARM architecture. The following are examples of the
address computation with relative-address 0×1281180 in
each of the architectures:
<x86 architecture>
CALL __i686.get_pc_thunk.bx __i686.get_pc_thunk.bx:
ADD EBX,0x1281180 MOV EBX,[ESP]

RET

<ARM architecture>
LDR R2,[PC,#0x100] MOVW R2,#0x1180 ADR R2,#0x1280000
ADD R2,PC,R2 MOVT R2,#0x0128 ADD R2,#0x1180
...(0x01281180)... ADD R2, PC, R2

D. LIMITATION OF EXISTING APPROACH ON PIC
Existing static binary instrumentation techniques [18], [25],
[26], [33] process the PIC using a simple approach. In the
case of×86 architecture, they identify a function call such as
__i686.get_pc_thunk.bx, and trace the return value
which is generated from the call instruction via a simple
analysis. After finding the instruction responsible for com-
puting an address with the return value (e.g., ADD in the
example above), they correct its relative-address. Contrary
to this, for the ARM architecture, existing techniques find
instructions that have the PC register as operand (e.g., the first
and second ADD in the example above), and then track the
instructions that generate the relative-address (e.g., LDR,
MOVW, MOVT) via backward slicing [34]. In summary, to the
best of our knowledge, existing techniques only process
relative-addresses that are computed directly with the PC
value (referred as to PC-relative instructions), and do not
consider other relative-addresses computed with the base
register (referred as to base-relative instructions).

50490 VOLUME 6, 2018



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

Existing techniques do not consider the range between the
base address and the target address of base-relative instruc-
tion, thereby they cannot handle the case instrumentation
code is inserted within the range. According to our obser-
vations, the base-relative instruction is often used in various
situations. For example, in the case where the start address of
an array placed on top of a subroutine is computed, the start
address of the subroutine is first computed, after which the
start address of the array is computed based on the computed
address. In another case, the address of a specific instruction
is first computed, and then several relative-addresses are
added to the computed address depending on a condition.
In addition, in ARM architecture, owing to the characteristics
of fixed-length instructions, base-relative instructions, which
involve either base-plus-offset addressing or base-plus-index
addressing, are frequently used. Therefore, the base-relative
instruction should be considered to handle all the relative-
addresses in PIC on ARM.

III. CHALLENGES
Compared to ×86 architecture, ARM architecture has three
unique features. First, many instructions (e.g., LDR, MOV, and
ADD) can directly read from and write to the PC register,
because the PC register is general-purpose register.
Second, because of the limitation introduced by the instruc-
tion length,3 the relative-address may be obtained via more
than one instruction. Third, in some instructions, an operand,
such as immediate and register, can be scaled (e.g., LSL and
ROR). These features complicate address computations in
ARM architecture more than in ×86 architecture, making it
difficult to correct relative-addresses. In this section, we dis-
cuss these difficulties in more detail.

A. DIFFICULTY IN RELATIVE-ADDRESS CORRECTION IN
ALL ADDRESS COMPUTATIONS
Base-relative instructions as well as PC-relative instructions
need to be considered to ensure that all address computations
in the PIC are processed. In this subsection, we demonstrate
by example the difficulty associated with processing base-
relative instructions correctly using existing techniques.
The most difficult situation in the relative-address correc-

tion is when the address computation is continuous, as shown
in the example (a) on Figure 1. In this example, the start
address 0×800 of the array in the literal pool is computed
at 0×1004, and the address is repeatedly added with 4 bytes
at 0×1100.4 Suppose some data are inserted into 0×900
and 0×E00, in which case the relative-address of SUB at
0×1004(Ê) and that of SUB at 0×1000(Ë) are affected,
respectively. Because existing techniques only process
PC-relative instructions, it only considers relative-addresses
that are computed with the PC value. Thus, only the SUB at
0×1000(Ë) is considered despite the SUB at 0×1004(Ê)

3In ARM architecture, instructions are fixed-length (ARM mode: 4 bytes,
Thumb mode: 2 or 4 bytes)

4The instructions at 0×1004 and 0×1100 compute the result of base-
plus-offset addressing and write the address to register R3.

FIGURE 1. Examples, simplified for explanation, of PIC in COTS
binaries (The annotations in the example on the (a) indicate the program
state immediately after the execution of each instruction, and the result
of the value-set analysis at 0×1008 and 0×1100 may be
over-approximated.)

also need considering. As a result, the start address of the
array is computed incorrectly.

To process base-relative instructions together, suppose
we use backward slicing at all ADD and SUB instructions.
However, it is unclear which result should be used to correct
the relative-address. Even if we were to use the result at
0×1100, which is the superset of the others, it is unclear
which instruction to fix or how to fix it. That is, we need
to know the base address and the target address (or effective
address) of each instruction in order to identify a change
within the range and correct the variation. To complement
the lack of information, suppose that we use generic value-
set analysis [35] to collect addresses and constants at each
program point. Because of the limitation of the analysis,
the result may be over-approximated [36], [37]. In this
example, as the results at 0×1008 and 0×1100 are over-
approximated, the values of R3 at 0×1100 may include
0×900 and0×E00 although these two addresses are outside
the range of the array. When performing a correction based
on this result, the ADD at 0×1100 also be considered as well
as the two SUB at 0×1000 and 0×1004, which cause the
correction to be incorrect.

As an alternative, suppose we attempt to use dynamic
techniques to correct relative-addresses immediately before
instructions that use computed addresses. For example,
an indirect jump address at the BLX instruction, a derefer-
enced address at the LDR instruction, and an address value
passed to a function parameter at a call instruction may
be corrected immediately before each instruction. As illus-
trated (a) on Figure 1, the correction code can be placed
before 0×1008; however, it is unclear in which way to han-
dle the entry point of the loop. In (b) on the Figure, the com-
puted address is stored directly in memory (e.g., a field of
an object); hence, the method cannot process these cases.
As shown in (c) on the Figure, if more than one computed
address is transferred at a point, it is difficult to correct every
address individually. In conclusion, it is difficult to handle
both pc-relative and base-relative instructions appropriately
with existing techniques and heuristics alone.

VOLUME 6, 2018 50491



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

FIGURE 2. Example of cyclic correction problem (The instruction set for that code is ARM mode; thus, the value of the PC register is +8. The R3 of the ADD
is always assumed to point to the correct address.)

B. DIFFICULTY IN EFFICIENT
RELATIVE-ADDRESS CORRECTION
In some ARM instructions an operand can be scaled, and
this feature enables a larger offset to be expressed by fewer
instructions. For example, in the case of the ADD instruction
of ARM mode, an 8-bit immediate value can be scaled by the
ROR operation (0, 2, 4, . . . , 30), and its register can be scaled
by the RRX, LSL, and LSR operations (0, 1, 2, . . . , 31).
Because of this feature, the range of offsets an instruction
can express is discontinuous. In ×86 architecture, ADD has
immediate values of 8 bits, 16 bits, and 32 bits. Unlike ARM
architecture, as the size of the immediate value increases,
the size of the instruction becomes larger. In addition to a
single instruction, there is also the discontinuity of offset
expressed by more than one instruction.

Because of this characteristic, the correction process
may not terminate when all relative-addresses are cor-
rected using optimized instructions. We refer to this prob-
lem as the cyclic correction problem, and Figure 2 shows
a related example. The first state is the original state
in which there are two relative-addresses on the LDR5

and ADD6 instructions. Assume that 0×31C bytes of data
are inserted between 0×FF0 and 0×1000. In this case,

5The range of the offset is ROR(imm, 2×n) where 0 ≤ imm < 0×100 and
0 ≤ n < 15. The base and target addresses are 0×101C and 0×28,
respectively.

6The range of the offset is −0×1000 < imm < 0×1000. The base and
target addresses are 0×FF4 and 0×1100, respectively.

the relative-address (0×FF0 7→0×10E0) of ADD and the
relative-address (0×1000 7→0×28) of LDR are affected.
In the second state, new MOVW and ADD instructions are
used to correct the relative-address of ADD, and the relative-
address of LDR remains incorrect. In the third state, new
MOVW and LDR instructions are used to correct the relative-
address of the LDR. In this state, because an additional
instruction is used to correct the relative-address of the LDR,
the previously corrected relative-address of the ADD becomes
incorrect. In the fourth state, the relative-address of ADD
is corrected again. Although the relative-address 0×410
is larger than the relative-address immediately preceded
(0×40C), it can be expressed by a single ADD instruction,
which uses the ROR operation. Therefore, the relative-address
of the LDR, which becomes incorrect again, is corrected again
in the fifth state. However, because the reduced relative-
address of the LDR can be corrected by a single instruction,
it causes the relative-address of the ADD to be incorrect again.
The above discussion shows that the correction process is
unable to terminate during cyclic correction. (3→ 4→ 5→
6→ 3→ · · · ).

The cyclic correction problem makes it difficult to rewrite
a binary efficiently by using a simple correction algorithm.
Intuitively, this problem can be avoided if the correction
algorithm is considered to handle all relative-addresses to
be corrected with a size of 4 bytes. If so, regardless of the
instruction mode, an additional 8 bytes (e.g., the combination
of MOVW and MOVT for a 4-byte relative-address) is required

50492 VOLUME 6, 2018



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

at each point where correction of the relative-address occurs.
In some cases, a larger size of bytes may be required. This
heuristic method can solve the cyclic correction problem,
but generates large space overhead and runtime overhead
because PIC consists of many address computations related
to the relative-address. However, our binary instrumentation
technique is aimed at minimizing the space overhead and
runtime overhead by inserting an instrumentation code inside
the original code; thus, this heuristic method is not suitable to
implement our technique.

IV. OVERVIEW OF APPROACH
Although our technique is intended for both AArch32 and
AArch64, the following explanation is based on AArch32.
Compared to AArch64, rewriting AArch32 binaries is more
challenging because additional features need to be taken into
account such as 16-bit and 32-bit instructions, two instruction
modes, dynamic instruction mode switching, and 2-byte and
4-byte instruction alignment. Moreover, as AArch32 con-
tinues to be used in a wide variety of devices. Therefore,
AArch32 is more suitable for describing our technique.

A. TARGET BINARY
In this research, the type of target binary we are concerned
with is as follows. First, the binaries are stripped bina-
ries without any relocation information or symbols, except
those necessary for dynamic linking. Second, the binaries
are compiled in a position-independent fashion, including all
the binaries generated by the compiler options -fPIC and
-fPIE. Third, the binaries do not contain self-modifying
code. Fourth, the binaries are in the executable and link-
able format (ELF) of which the target architecture is either
AArch32 or AArch64.

B. BINARY MODIFICATION CAPABILITY
The modification capability of REPICA can be divided
into three categories. First, some code can be inserted
before or after any instruction, and any instruction can be
modified and removed. This capability can be used for
instrumenting binaries. Second, in the literal pool, relative-
addresses and some data such as a 4-byte constant can be
modified or removed. This feature can be applied for the
optimization of the corrected instructions (see §V-E). Third,
additional data can be inserted before or after each literal
pool and data segment. This feature enables additional data
to be inserted without creating a new data segment. REPICA
retains the rewritten binary as original as possible using these
three capabilities.

C. ASSUMPTION ON ADDRESS COMPUTATION
Our aim is to identify and correct relative-addresses that
are affected by instrumentations in the instruction area.
This requires accurate analysis results and clear correction
method, thereby wemake two assumptions. The first assump-
tion pertains to the characteristic of the value we need, and
can be used to narrow the scope of our value-set analysis,

thereby preventing over-approximation of the analysis result.
The second assumption relates to the characteristic of the
code-address, and can reduce the type of address compu-
tations we need to consider, thereby improving the unifor-
mity of the correction method. The two assumptions are as
follows:
A1. The relative-addresses used to compute a particular
address are obtained in the subroutine in which the com-
putation is performed. The particular address here refers to
the start address of the subroutine, the start address of the
data, and other base addresses; however, it does not include
the addresses computed to access the interior of data chunks
such as arrays or recursive data structures. To verify this
assumption, we checked all values computed with PC-based
addresses in approximately 1,200 COTS binaries7 using our
value-set analysis (see §V-C). In our observations, we were
unable to find a case that violates this assumption except for
the following case:

0x1000 CMP R3, #0xC
0x1004 ADDLS PC, PC, R3, LSL#2
0x1008 B label // default
0x100C B label // case 0

...
0x103C B label // case 12

R38 in this example is actually used as the index of the jump
table (which is the list of B from 0×1008 to 0×103C),
and this case is handled separately. The relative-addresses
used in computations for the particular address consist of
the immediate values of instructions in the subroutine and
constants in the literal pool. Based on this assumption,
we perform an intraprocedural value-set analysis to collect
relative-addresses.
A2. In the base-relative instructions, if the type of the
values transferred to the base register is a code-address,
the number of values transferred is always one. For var-
ious reasons, one or more values can be transferred to the
base register. For example, when an array is accessed in a
loop or the field of an arbitrary object is accessed, more than
one of the data-addresses may be transferred to the base
register of an instruction. However, to the best of our knowl-
edge, cases in which multiple code-addresses are transferred
to a base register for computing new addresses, except for
self-modifying code, rarely occur. To verify this assumption,
we checked all base registers in approximately 1,200 COTS
binaries using our value-set analysis. We performed intrapro-
cedural analysis, which is based on the underlying assump-
tion that code-addresses delivered from the outside are not
recomputed. As our observations did not reveal a case that
violates this assumption, it is not necessary to consider sit-
uations in which multiple base addresses and one or more
relative-addresses are computed at one point. Thus, all target

7This experimentation is performed with the binaries that are disassem-
bled with full coverage among the first dataset in §VI.

8The value of R3 may be generated indirectly with external values.
In general, the index values of a jump table are not directly in the
subroutine.

VOLUME 6, 2018 50493



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

FIGURE 3. Examples of our approach to correct relative-addresses (The original code and corrected instrumented code are
shown on the left and right, respectively. Dashed arrows denote the relative range.)

addresses can be corrected accurately only by adjusting the
relative-addresses.9

D. INDIVIDUAL RELATIVE-ADDRESS CORRECTION
In this study, we define the range between the base address
and the target address (or effective-address) on an instruction
as the relative range. On the left side of the figure 3, each
instruction at 0×1000 has a relative range pointing from the
current address to the target address. An instruction can have
one or more relative ranges, as shown the fourth example (d)
in the Figure 3withADD at0×1000. The starting point of the
relative range may not be the address of the instruction, and
the SUB at 0×1004 in the third example (c) shows this case.
In this example, the ADD at 0×1100 also has one or more
relative ranges which are fallen within data area. We do not
consider these relative ranges practically because we do not
modify the data area.

In order to correct all relative-addresses properly, the most
important challenge is to find all instructions with relative
ranges accurately. Specifically, the difficulty lies in accu-
rately collecting its base address and offset values in the
base-relative instruction. Once this problem could be solved,
in the example (a) on Figure 1, we could confirm that the
SUB at 0×1004 and 0×1100 are related to the address

9In general address computations, if the base address is a data-address,
the computed address is also a data-address, so we do not have to consider
this case.

computation, and this enables us to clearly identify the
instruction which is need to correct. Because the base address
of the ADD at 0×1100 is a data-address and this relative
range is related to the data area, it can be clearly seen that the
instruction is irrelevant to the correction.

For this purpose, we designed a value-set analysis of
which the domain is in the form of a symbol, which collects
PC-based addresses. The main reason of using symbol form
is to track the generation location of the relative-address and
to distinguish addresses from constants. In addition to this,
the address information contained in the symbol can be used
to avoid over-approximation of the collected values. Because
the values we aim to collect are localized and limited,
we can collect them without incurring over-approximation.
Thus, we designed a value-set analysis specialized for PIC
(see §V-C); because generic value-set analysis does not suit
for our purpose.

On the basis of the precisely collected relative ranges,
we individually correct the relative ranges that were affected
by instrumentation. Figure 3, on the right, shows the instru-
mented code which contains the corrected instructions, and
shows the main idea in our approach. (a) shows that one
relative range is corrected by the added 4-byte instruction to
express a larger relative-address. (b) shows that the LDR and
the ADD are corrected individually. Note that the relationship
between two instructions is not taken into account when
performing a correction. (c) contains more than three relative

50494 VOLUME 6, 2018



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

FIGURE 4. Examples of instruction extension design (Rx is a register that is additionally required for instruction
extension, and is obtained through liveness analysis.)

ranges, of which two are affected by instrumentation. Note
that we correct the relative range of the SUB at 0×1004, but
the relative range of SUB at 0×1000 is not involved. In (d),
each relative range is corrected at each generation location of
the transferred relative-addresses.

E. STEPWISE INSTRUCTION EXTENSION
Both the cyclic correction problem and optimization problem
can be addressed by extending the instruction irreversibly
step by step. By dividing the instruction extension into several
phases, it is possible to correct the relative-address by using as
few instructions as possible. Furthermore, by increasing the
extension phase in one direction, the cyclic correction can be
avoided. With these two methods, we solve the cyclic correc-
tion problem and the optimization problem simultaneously.

Figure 4 shows the instruction extended by phase to fit the
size of the relative-address perfectly following our instruc-
tion extension design. In this Figure, (a) is an example that
applying our extension design of ADD instruction, showing
stepwise extension in sizes of 4, 8, and 12 bytes. If it is
extended to an 8-byte expression (phase 2) in the correction
process, the 4-byte expression (phase 1) is no longer used in
the subsequent process. That is, the subsequent process uses
the expression in the same or higher phase. In phase 2, there
are two expressions, but it can be further divided to cover
a wider range of relative-addresses using the same bytes.
In REPICA, we designed extension phases for each instruc-
tion which use relative-address, as shown in this example.

In some cases, a relative-address should not be extended
individually, shown as (b) in Figure 4. The example contains
a jump table for indirect jump, which consists of relative-
addresses of the same size. In general, the offset calculation of
the jump table involvesmultiplying or shifting the index value
to take into account the size of the relative-address (or the
instruction length). Therefore, if only some relative-addresses
are changed to become larger, the offset calculation of the
jump table is incorrect. For this reason, we modify the entire
table when the size of a relative-address needs to be larger,
as in the method proposed by RevARM [18].

There exist jump tables that do not consist of relative-
addresses, which need to be considered in a special way.
(c) in Figure 4 shows a jump table constructed with jump
instructions. In this example, the index R3 is used to move
to the address of the B instructions that performs the actual
jump. Therefore, in this case, only some B instructions
should not be extended; thus, we replace the list of 4-byte
instructions with a jump table consisting of the 4-byte
relative-addresses.

V. DESIGN AND IMPLEMENTATION
This section covers the design and implementation of
REPICA. First, an overview of REPICA is provided, and
then each component is discussed in detail in each subsection
following the execution flow.

A. OVERVIEW
We implemented REPICA’s prototype based on Python.
We used Capstone 3.05 [38] for instruction decoding
and implemented all the other parts ourselves. Figure 5 shows
the REPICA architecture, which consists of the disassembly
and instrumentation modules. The input of the disassembly
module is a target binary, and that of the instrumentation
module is the instrumentation specification (see Figure 8) and
the results of the disassembly.

First, the disassembly module disassembles the text seg-
ments of the input binary (§V-B) and performs the value-
set analysis based on the disassembled code (§V-C). Based
on the result of the analysis, it extracts the indirect jump
addresses and new subroutine addresses, and disassembles at
the extracted addresses again. This process is repeated until
no new address is found.

Next, in the instrumentation module, it instruments the
disassembled code along the instrumentation specification.
Then, it corrects the relative-addresses that are affected by
applying the instrumentation (§V-D) and optimizes the cor-
rected relative-addresses (§V-E). Lastly, after rewriting the
instrumented code corrected to the new binary, the entire
process is complete (§V-F).

VOLUME 6, 2018 50495



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

FIGURE 5. Architecture of REPICA.

B. DISASSEMBLER
Because the correctness of the rewriting technique depends
on the disassembly accuracy, it is important to clearly sepa-
rate the literal pool and code in the text segments. Therefore,
we use only the recursive traversal approach (a.k.a. recur-
sive disassembly) to guarantee that the instructions that are
disassembled are real instructions. For this approach to be
successful, in general, it is necessary to overcome three
challenges: (1) identifying absolute-addresses in the code,
(2) identifying the types of addresses, and (3) identifying
indirect control flow. Fortunately, in PIC, absolute-addresses
cannot be placed directly on code, which solves the first
challenge. This subsection contains details of how the two
remaining challenges are addressed.

1) INDIRECT CONTROL FLOW IDENTIFICATION
In PIC, absolute-addresses placed in the data segments, such
as addresses of the virtual method table, contain relocation
information. Thus, we only have to consider the indirect jump
via jump table among the indirect control flow transfer. The
following explains how to identify the type of indirect jump
via jump table and how to identify the size of the table:

a: INDIRECT JUMP TYPE IDENTIFICATION
In ARM, because the PC register can be read to and
written from, an indirect jump can occur according to
various patterns. We use an existing technique [4] and
some patterns to cover all possible patterns. First, to iden-
tify the indirect jump via jump table, we search for an
indirect jump instruction or an instruction that writes a
value to the PC register within the disassembled code.
Subsequently, we derive the expression of the target address
by using backward slicing. If the expression has the form
of *(TBL_BASE+IDX)+JMP_BASE, we obtain the jump
base address and the jump table base address through the
result of our value-set analysis. If not, we attempt to identify
the ARM-specific indirect jump,10 such as in (b) and (c)
in Figure 4, using some patterns.

10Special functions can be used to generate switch patterns:
Thumb mode toolchain helpers for compact switch (https://chromium
.googlesource.com/chromiumos/platform/ec/+/refs/heads/master/core/
cortex-m0/thumb_case.S)

b: JUMP TABLE SIZE INFERENCE
The information of the jump table disappears at compile time,
and an index value may come from outside the program.
Therefore, it is difficult to collect all values of the index
through an analysis based on an abstract interpretation [36].
According to our observation, in the code generated by the
modern compiler, the index value is validated before calculat-
ing the offset of the jump table. The validation is performed
by comparing with a certain constant value. With the constant
value and the condition field of the followed conditional jump
instruction, we can infer the size of the jump table. The
example in §IV-C indicates that the size of the jump table can
be deduced from CMP at 0×1000 and ADDLS at 0×1004.
In most cases, the size can be inferred by using this method,
but if this is not possible, the next method is used.

c: BRUTE-FORCE JUMP TABLE SEARCH
Similar to the method in BinCFI [4], our method is sequen-
tially to read and verify each target address in the jump table
until the address is invalid. The validity of the target address
is determined by the location where the address points to,
which is based on the underlying assumption that jump table
targets are intraprocedural. If it is lower than the start address
of the subroutine or higher than the start address of the next
subroutine that is found, it is considered to be invalid. If the
target address is not invalid, we will try to disassemble at
the target address and at all subroutine addresses obtained
during this disassembly. If there are no errors in the entire
disassembly, the target address is judged to be valid.

2) ADDRESS TYPE IDENTIFICATION
We examine each arithmetic instruction to determine whether
it computes a new address, and if the result is a new PC-based
address, we will check whether the address is a code-address.
It is usually difficult to determine the type of a given address.
In order to solve this challenge, we first perform a simple
pre-identification process as follows: (1) determine whether
the address falls within data segments, (2) determine whether
the address falls within the disassembled instruction area,
(3) determine whether the address falls within the area deref-
erenced by LDR instructions. If the type of the address

50496 VOLUME 6, 2018



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

cannot be determined in the pre-identification process,
we will attempt to disassemble at the address to check
whether the address is a code-address by using the same way
as the verification in Brute-force jump table search.

FIGURE 6. Cases in which identification through disassembly produces
incorrect results.

Unfortunately, this verification method may often produce
incorrect results. Figure 6 shows cases where disassembly
starts at an address that falls within the literal pool, and
proceeds to the code area without error. Based on our obser-
vations, these erroneous outcomes often occur. In order to
estimate the failure probability of this verification method,
we disassembled all values in the 4-byte range to find out how
many values were disassembled without error. The following
table presents the result11:
Instruction set Success Failure Succ. rate
AArch32 (ARM) 0xDCDC6637 0x232399C9 86.27%
AArch32 (THUMB) 0xF33012C1 0xCCFED3F 94.99%
AArch64 0x4CEE8832 0xB31177CE 30.05%

In particular, the resultant values for the ARM mode
and the Thumb mode of AArch32 are very high at
86.27% and 94.99%, respectively. In addition, the end point
of the literal pool is usually aligned by NOP instructions. For
these reasons, the probability of failure is high when trying
to identify the data-address which point to nearby the end of
the literal pool.

We leverage the placement property of the literal pool to
compensate for the weakness of this verification method. The
literal pool includes immutable local data, such as floating
point, integer, and string, and relative-addresses for address
computation. For example, in C language, local variables of
the const type are placed in the literal pool, but variables
that can be seen with other subroutines or mutable variables
are not placed in this pool. Thus, each literal pool is placed
adjacent to the subroutine which uses it, as shown in Figure 6.
This means that the code of the subroutine is placed in one
bundle together with the data that are locally accessed by this
code. This characteristic is obvious in the code generated by
modern compilers. According to this characteristic, if a sub-
routine computes a data-address, the address can be expected

11In the experiment, we used Capstone 3.05, an open source.

to fall within the data segments or the literal pool adjacent to
the subroutine.

This characteristic enables us to compensate for the weak-
ness of the address type identification method. The type of
an address computed in a subroutine is identified after the
subroutine is completely disassembled. Therefore, the first
and second cases in Figure 6 can be easily identified.
We use two criteria to identify the third case. First, for a
case in which the computed address is higher than the address
of last instruction and lower than the dereferenced addresses
in the subroutine, the address is regarded as a data-address.
Second, if the start address of other subroutines fall within
the range of the entry block disassembled at the computed
address, the address is regarded as a data-address. This
approach enables us to identify data-addresses accurately.

C. VALUE-SET ANALYSIS
Our value-set analysis is an intraprocedural analysis, and
it aims to propagate all PC-based addresses and constants
to collect relative ranges of interest. Unlike generic value-
set analysis, our domain is in the form of symbols and is
specialized for rewriting PIC.

FIGURE 7. Domain of value-set analysis in REPICA.

1) ANALYSIS DOMAIN
In ARM, the address is typically computed via multiple
stages, and the computed address may be recomputed. Thus,
when given a value, it should be possible to accurately track
the instructions associated with the value. Figure 7 shows the
domain of the value-analysis in REPICA designed to process
multi-staged address computation.

In our domain, each value has its own generation address,
and PC and ADR values additionally contain instruction mode
information. This structure provides information about where
and how a given value was generated. Another advantage of
this structure is that it is path-sensitive, even if the state of the
analysis is not separately identified for each path. Thus, our

VOLUME 6, 2018 50497



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

TABLE 1. Transfer function of value-set analysis in REPICA (d , m, and n are general-purpose registers, i is the immediate value, and a is the address of
the corresponding instruction.)

domain consists of one state per program point, and each
element of the state consists of a set of values.

Theoretically, many instructions can be used for address
computation, but the instructions involved in actual address
computation are only a fraction of the instructions. According
to our observations, only those instructions mentioned in our
domain are used in the ARM architecture. This can vary
slightly depending on the compiler, but can be solved by
adding value types to the domain.

In some cases, an address or a constant value is temporarily
stored on the stack and reused. A situation such as this is
accommodated by tracking the stack memory by adding a
stack offset to the domain. Although these values can also
be stored in other memory spaces, this rarely occurs, and our
method is not designed to include these cases.

In some instructions, the sign of the offset or index is
determined by the instruction encoding rather than the value
itself (e.g., LDR, STR). Even though the arithmetic operations
of ARM are based on a complement of these two, in these
instructions, the computation of the effective-address is not.
In our domain this is reflected by setting the type of the
immediate value to an integer. Therefore, when the values of
the symbols are evaluated, the calculation method is applied
differently depending on each instruction semantic.

2) TRANSFER FUNCTION
As is characteristic of PIC, all addresses start with the
PC value which is code-address. In subsequent instruc-
tions, the address may be recomputed to either the code-
address or the data-address. If the base address is not
PC-based address, the address computation is related to the
heap or stack area. For this reason, the transfer function of
our analysis aims to propagate these PC-based addresses
and the constant values which may be used as relative-
addresses. Table 1 provides the transfer functions specialized
for propagating the values related to the address computation
of the PIC.

The initial value is an empty set denoted by ⊥, and the
values are propagated forward from the beginning of each

subroutine. If any of the operands in the instruction do not
receive values from the previous path, the result is no longer
propagated. Similarly, for instructions not related to address
computation, the result is not propagated. That is, only the
values associated with the address computation are propa-
gated, and the absence of an operand value means that the
operation is not associated with address computation.

Unlike the existing analysis, our transfer function has two
propagation constraints that are based on two underlying
assumptions about address computations. The first assump-
tion is that, if the value generated at one point is to be
used again at the same point, the computed addresses are
for accessing the data area. Another assumption is that if
an address is computed once to the data-address, it is not
recomputed back to the code-address. These constraints are
intended to prevent the collected values from being over-
approximated. The details are as follows:
C1. If the value generated at one point is used again at
the same point, the resultant value is not propagated.
The checkIter function in Table 1 corresponds to this
constraint, and its input is the current instruction address and
values of each operand. This situation occurs frequently when
indexing to an array or accessing a recursive data structure
via a loop. Therefore, as the relative range related to this
case falls within the data chunk region, it can be disregarded.
In text segments other than literal pools, this rarely occurs
except for self-modifying code. These constraints prevent
the collected values from being over-approximated and
ensure that our analysis terminates within a finite time.
In the absence of this constraint, the analysis shown on (a)
in Figure 1 would not terminate, causing the collected values
at 0×1100 to become over-approximated.
C2. If a base address is not a code-address in an address
computation, the resultant value is not propagated. The
isCodeAddr function in Table 1 corresponds to this con-
straint, and its input is a value corresponding to the base
address. This means that once a data-address is computed,
it is used only for data access, and it is not used again to
compute the address of an instruction. In fact, this is an aux-
iliary constraint, without which our analysis can perform the

50498 VOLUME 6, 2018



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

same work. Retention of this constraint enables unnecessary
propagation to be reduced, whereby the unrelated relative
ranges can be reduced in advance. As a result, the rewriting
technique becomes scalable.

This transfer function cannot process the indirect jump
via jump table completely. Specifically, because the index
value of the jump table may be indirectly generated from an
external value, the target values may not be propagated. Thus,
in our disassembler, this is taken care of by a heuristic. The
disassembler finds the addresses the jump table is targeting
by using the table base address and the jump base address
obtained from the analysis. In addition to this, the disas-
sembler manages the landing pad addresses included in the
exception handling section. These addresses are encoded in
the DWARF format [39].

D. OFFSET CORRECTOR
1) INSTRUMENTATION SPECIFICATION
Figure 8 shows the basic structure of the instrumentation
specification of REPICA. This specification has a list struc-
ture, with each element consisting of the address to be
applied (addr), data to be inserted (data), and size of byte to
be skipped (skip). Here, skip indicates the size of the original
binary instructions to be removed from the target address
at the time the binary is rewritten. To insert data, data is
required to contain more than zero bytes and skip should be
zero. Removing data requires data to contain zero bytes, and
skip to contain more than one. Further, to replace data, data
needs to contain more than one bytes and skip should be equal
to the size of the data. This specification structure is also
used to manage the correction information generated in the
correction process.

FIGURE 8. Basic structure of instrumentation specification of REPICA.

2) SYMBOL AND RELATIVE RANGE
The symbol consists of the address to be corrected and the
type of relative-address, and one symbol is paired with one
relative range. When a modification falls within a relative
range, the corresponding symbol is used to determine where
and how to correct the relative-address. Depending on the
way by which a relative-address is obtained, the correc-
tion method, which is distinguished by the symbol type,
is different.

For example, if a relative-address is obtained via LDR,
the symbol consists of the address which is dereferenced
by the LDR and the CONST type. This type means that the
correction target is a constant value. In another example, if a
relative-address is obtained via MOVW, the symbol consists

of the instruction address and the INST type. This type
means that the correction target is an immediate value of the
corresponding instruction. Different type of symbols can be
added or removed depending on the relative-address genera-
tion pattern.

3) CORRECTION PROCESS
The offset corrector receives the disassembled code, instru-
mentation specification, and result of value-set analysis as
the input. Algorithm 1 shows the correction process. First,
it examines all instructions to identify which instructions con-
tain relative ranges (#3,has_relative_range) based
on the result of the value-set analysis. Subsequently, it creates
symbol information for the relative ranges of each instruc-
tion (#7,make_symbol), and these symbols are added to
the worklist (#10).

In the next step, it computes the amount of change within
the relative range of the symbol (#19,calc_stretched_
size_within), and then corrects the relative-address
by the variation (#21,correct_offset_at). Relative-
address variation is affected by two factors: instrumentation
specifications and extension of the relative-address for cor-
rection. After the correction, the algorithm checks whether
the size of the corrected instruction or data increased (#23).
If the phase is increased, it identifies all the symbols of the rel-
ative ranges affected by the extended instructions caused by
the correction (#25,get_symbol_affected_from).
It then adds the affected symbols to the worklist (#26). The
correction process will keep running until the worklist is
empty (#15). In the final step, it corrects the meta data con-
tained in the ELF header, the program header table, and the
section header table (#32,correct_elf_meta_info).
Unlike the previous technique [18], in which the correction

process was performed linearly, our correction process is
based on the worklist. In a way that corrects the instructions
in place, one correctionmay cause a series of different correc-
tions, and these corrections may also cause other corrections.
Because of this characteristic, the linear correction process
may not be able to handle all the modifications that occur dur-
ing the entire correction process. For example, suppose that
the last relative-address correction during the linear correc-
tion process. Due to this correction, some relative-addresses
may need additional corrections, and these corrections may
also result in other corrections. Therefore, because the linear
approach cannot perform all corrections perfectly, we process
the correction based on a worklist.

4) ALIGNMENT
The ARM architecture requires an alignment by 2, 4, 8,
and 16 bytes depending on the type of data or instruction.
Similarly, each section also requires an alignment by a page
size or by a specific size. If each alignment is adjusted after
all corrections are completed, it causes a problem in that
all of the relative-addresses must be corrected again. In this
case, the correction of the relative-addresses may result in an
alignment again because the change may affect the phase of

VOLUME 6, 2018 50499



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

Algorithm 1 Pseudocode to Correct Relative-Addresses
1: procedure REARRANGE_BINARY(whole_insts, state_map, spec)
2: for i ∈ whole_insts do
3: if has_relative_range(i) then
4: base← eval(state_map.get_base_value(i)) F Base address is always one
5: for v ∈ state_map.get_offset_values(i) do
6: target ← base + eval(v)
7: symbol ← make_symbol(v)
8: symbol_to_range[symbol]← (base, target)
9: symbol_to_extension_phase[symbol]← 0 F Constant 0 means initial phase
10: worklist ← symbol::worklist F Add the symbol to worklist
11: end for
12: end if
13: end for
14:

15: while worklist 6= [] do F Iterate until worklist is empty
16: symbol ← worklist.head() F Get a symbol from head of worklist
17: worklist ← worklist.tail() F Remove head of worklist
18: range← symbol_to_range[symbol]
19: cur_stretched_size← spec.calc_stretched_size_within(range)
20: cur_phase← symbol_to_extension_phase[symbol]
21: new_phase← spec.correct_offset_at(symbol, cur_phase, cur_stretched_size)
22:

23: if cur_phase < new_phase then F Check the phase change
24: symbol_to_extension_phase[symbol]← new_phase
25: for symbol_affected ∈ get_symbol_affected_from(symbol) do
26: worklist ← symbol_affected ::worklist F Add the symbol affected to worklist
27: end for
28: end if
29: end while
30:

31: align_literal_pool()
32: correct_elf_meta_info()
33: end procedure
34:

35: procedure MAKE_SYMBOL(value)
36: if type(value) = LDR then
37: return (CONST, value.get_reference())
38: else if type(value) = MOVT then
39: return (MOVT, value.get_root_address(), value.get_child_address())
40: else
41: return (INST, value.get_root_address())
42: end if
43: end procedure

the instruction extension. To solve this problem, we present
two methods.

First, we set the amount of change that occurs in the
relative-address correction and the size of each instrumenta-
tion code to a multiple of 4 bytes. The ARM instructions and
most of the data in the literal pools require a 2-byte or 4-byte
alignment. Processing each alignment individually during
the correction process is challenging. Therefore, in order
to avoid the 2-byte and 4-byte re-alignment, we handle

instrumentations and corrections with a multiple of 4 bytes.
Consequently, neither of these types of re-alignment needs to
be considered.

Second, if the literal pool contains data that requires an
8-byte or 16-byte alignment,12 we will insert NOP instruc-
tions at the beginning of the literal pool, which is similar to
the way used by a modern compiler. After the disassembly

12Some SIMD& FP instructions access an 8-byte or 16-byte aligned data.

50500 VOLUME 6, 2018



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

FIGURE 9. Examples of corrected instruction and optimized instruction.

is completed, we find the corresponding literal pool and
insert padding at the start point of the literal pool as much
as the maximum size of the alignment byte required. The
alignment of each section is also padded as such. After the
relative-address correction is completed, the remaining literal
pool is aligned by removing a portion from the pre-padded
one (#31, align_literal_pool in Algorithm 1).
It finally recorrects the affected relative ranges and completes
the alignment process. In some cases of section alignment,
the alignment is performed by modifying the meta informa-
tion of the ELF file instead of inserting the padding. As a
result, it is possible to avoid increasing the size of the binary
unnecessarily.

E. OPTIMIZATION
1) CORRECTION OVERHEAD
Our correction algorithm does not consider the semantic
information between the instructions because it focuses on
correcting relative-addresses individually. Therefore, it incurs
a greater overhead than the operation or memory space
required for the actual execution. Figure 9 shows the related
examples. In the case (a), two instructions and 4 bytes of
memory space are used to create a single address. Subsequent
to the correction, the MOVW is added such that a total of
three instructions and 4 bytes of memory space are used.
Rather than obtaining the relative-address from the literal
pool, reorganizing these instructions to acquire the relative-
address via MOVW and MOVT is more efficient. In the case (b),
a single address is computed by using two SUB instructions.
Because the two SUB instructions are processed individually,
the MOVW instruction is additionally used to correct the SUB
at 0×1004 although it is possible to correct it by using
two SUB instructions or a pair consisting of SUB and MOV.
In the case (c), a 4-byte constant value is read by using LDR.
In this case, the MOVW is additionally used to access the

distant literal pool although memory space can be saved by
using MOVT and MOVW. As such, it is possible to reduce the
overhead incurred in the correction process by reconstructing
the related instructions and data.

2) OPTIMIZATION PROCESS
To reconstruct the related instructions and data, when dis-
assembly is completed, we find the three cases shown
in Figure 9, based on the result of the value-set analysis.
First, we search the LDR instructions that loads the constant
into the literal pool and arithmetic instructions such as ADD
and SUB that are PC-relative instructions. Second, in the
case of the LDR instruction, we identify the type of the con-
stant depending on whether it is computed with a PC-based
address. Finally, we group the related instructions and data
using the symbol information and some patterns. However,
our proposed technique is neither designed to process cases
in which the constant or relative-address of a literal pool is
accessed atmultiple points nor to process cases in whichmore
than one address is computed at one point.

Our optimization process is performed after all corrections
are completed. In the first step, we verified how the correc-
tion was performed at the previous identified group of the
instructions and data, and subsequently verified whether it
can be optimized by using some patterns. If this is possible,
we reconstruct the bundle in an optimized manner. In the
next step, we recorrect the relative ranges within which the
modification points fall as a result of optimization. The opti-
mization process proceeds similarly as the correction process
except that the relative-addresses are decremented. Although
this optimization does not apply to every case, most cases can
be optimized.

3) OPTIMIZATION CONSTRAINT
Depending on the design of the instruction extension, cases
occur in which the optimization is difficult. The optimization

VOLUME 6, 2018 50501



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

is not problematic if the range of expressible relative-
addresses of every instruction extension phase is continuous.
However, the optimization is difficult to perform even if the
range of one phase is discontinuous. In the first example of
Figure 4, the range of expressible relative-address of the sec-
ond phase is discontinuous, and the range is as follows:

ROR(imm8,m) + ROR(imm8, n) where m, n ∈ {0, 2, . . . , 28, 30}

Suppose the relative-address0×10300(=0b100000011
00000000) is corrected as the second phase in the cor-
rection process mentioned above. In the optimization pro-
cess, if 10 bytes are optimized within the relative range
corresponding to the relative-address, the relative-address
0×10300 is changed to 0×102F6(=0b100000010
11110110). However, the relative-address 0×102F6 can-
not be expressed by the second phase, and can only be
expressed by the third phase. If the phase is increased, it is
difficult to guarantee the termination of the optimization for
the reasons similar to those of the correction cyclic problem.
Therefore, the optimization process is only applicable if all
instruction extensions are designed to possess continuity.

F. BINARY REWRITER
The binary rewriting process receives the original binary and
revision specifications as the input, as shown in Algorithm 2.
The revision specification includes both the instrumentation
specification and the relative-address correction information.
This specification consists of the file offset, byte size to
be skipped, and data to be written, as shown in Figure 8.
Rewriting is achieved by taking the unchanged part from the
original binary and taking the instrumented or corrected part
from the revision specification. At the end of this process,
the binary applied with the instrumentation code is generated.

VI. EVALUATION
This section describes the dataset, evaluates the two compo-
nents of REPICA, and exhibit the effectiveness of REPICA
by implementing a shadow stack on it.

A. DATASET
For a more accurate evaluation, we used two sets of data
for a separate purpose. The first dataset is the 1,217 shared
libraries and 106 executable files included in the Galaxy S8
(SM-G955N) with Android 8.1 (R16NW.G955NKSU1-
CRD7). We selected this dataset because of two features.
First, the code in this dataset is PIC in the ELF format.
Second, these binaries are used for various purposes in the
real world, and the pattern of the compiled code varies;
therefore, we can encompass a wide range of code.

The second dataset contains 12 executable files of
SPECint2006. Compared to the previous one, this dataset
is suitable for performance measurements. The first one is
disadvantageous in that it is difficult to properly run or mea-
sure performance, compared to the advantage that it can be
used to test various patterns. Therefore, we evaluated the
runtime overhead and space overheadwith the second dataset.

In addition, for the purpose of evaluation on various compil-
ers, we compiled this dataset through GCC 4.8 (first dataset
is compiled with Clang 3.8)

B. DISASSEMBLY CORRECTNESS
Our rewriting technique requires the accurate identification
between the instruction area and the data area in text seg-
ments. We consider the result of disassembly as correct when
the result fully covers the text segments. Therefore, we eval-
uate whether the instruction area identified via disassembly
and the data area dereferenced via the instructions (e.g., LDR)
fully cover the text segments. In this subsection, we experi-
ment the correctness of our disassembly module with the first
dataset.

Our disassembly technique uses recursive traversal only;
hence, it cannot identify the area in which the NOP instruc-
tions, which is used as padding, are placed before or after the
literal pools, neither can it identify areas occupied by data
chunks such as arrays or strings. Therefore, these areas are
checked by manual inspection instead via commercial binary
analysis tools such as IDA Pro. Except these cases, if there
exist other unidentified areas, the disassembly is considered
as failed. Moreover, we verified whether the instruction area
overlapped with the area dereferenced via the LDR instruc-
tion. If an overlapped area exists, the result of the disassem-
bly is considered to be incorrect. This is because such area
may exist when the no-return function is not handled by our
disassembly module.

Table 2 shows the experimental results for 1,319 binaries
in the first dataset. According to the experimental results,
the 121 binaries were not with completely covered. The
non-full coverage is attributed to two primary reasons: First,
the most typical case is the unreachable unknown areas such
as the dead code and the auto-generated code. We start dis-
assembly only using recursive traversal at the start address
of the program, the exported function, the address of landing
pad in the exception handling table, and other addresses in the
dynamic section. If there exists an unidentified area that can-
not be reached from these addresses, the result of disassembly
will be considered as failed. Second, the case is that mis-
disassembly occurred owing to the no-return function. Some
functions such as abort, exit, stack_chk_fail, and
_Unwind_Resume do not return. If these functions can-
not be processed properly, overlapped areas may be found.
We handle functions specified in the C++ ABI (application
binary interface) and the LSB (linux standard base) [40]
through the relocation information and heuristics. Except

TABLE 2. Rate of full coverage of disassembly by REPICA.

50502 VOLUME 6, 2018



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

Algorithm 2 Pseudocode to Rewrite the Target Binary
1: procedure REWRITE_BINARY(ob, spec) F ob = original binary, spec = revision specification
2: nb← create_file()
3: cur_offset ← 0
4: for offset_to_modify ∈ spec.get_list_of_offset_to_modify() do F Sorted by ascending order
5: new_data←spec.get_new_data(offset_to_modify)
6: skip_to_size← spec.get_skip_to_size(offset_ to_modify)
7: nb.write(ob[cur_offset:offset_to_modify]) F Copy original binary to new binary
8: nb.write(new_data) F Copy new data to new binary
9: cur_offset ← offset_to_modify+ skip_to_size
10: end for
11: nb.write(ob[cur_offset:EOF]) F Copy remaining original binary to new binary
12: return nb
13: end procedure

TABLE 3. Correctness of relative-address correction in REPICA.

these functions, if other functions exist, which no-return func-
tion places in the end, our disassembly fails.

C. CORRECTION CORRECTNESS
To evaluate the accuracy of the relative-address correction,
we inserted one NOP instruction between all the instructions.
That is, we verified whether relative-address correction can
be processed at all the possible locations that can be instru-
mented. To validate the result, we re-analyzed the instru-
mented binaries by using our disassembly module to derive
new relative ranges. Based on the original relative range,
we verified whether each relative range has been corrected
to the right width, and whether the instruction or data at
the target address is identical. This experimentation was per-
formed with 1,217 binaries that were disassembled with the
full coverage mentioned above; the experimental results are
as shown in Table 3.

We verified whether the instruction or data, which
is pointed by the target address of the relative range,
is same with original one. In the case where the instruc-
tions or data at the target address are modified during
the correction process, the comparison is processed by
the correction information. For the convenience of com-
parison, we do not apply the optimization to the target
binary. Our disassembly detects the NOP instruction for var-
ious purposes, such as verifying for no-return functions;
therefore, inserting the NOP instruction at all points can lead
to incorrect results. Therefore, we inserted an alternative
instruction such as MOV R2,R2 instead of NOP into some
points.

Finally, to verify whether the instrumented binaries are
effective, we selected and executed the gzip, ls, grep,
echo and cat applications among the GNU core utilities.
We performed all the command options to include all paths as
much as possible. All the applications above executedwithout
problems.

D. PERFORMANCE
To evaluate the performance overhead of REPICA, we tested
the second dataset SPECint2006 that contains 12 bench-
marks purposed for the CPU integer processing power.
Because these benchmarks are not specifically designed
for Android, when compiling the experimentation target,
some library files are required that the basic Android NDK
does not provide. Therefore, we compiled the benchmarks
in SPECint2006 with the GCC compiler in an expanded
NDK named Crystax NDK 10.3.2, which provide
more libraries. Such that the benchmarks can operate on an
Android device, the necessary compile option we used is as
follows:

-march=armv7 -O2 -fPIE -pie

In this subsection, the results of all the experiments
are performed 10 times on the NEXUS 6P with
Android 8.1.

1) ENTIRE-INSTRUMENTATION
To evaluate the lower bound of the overhead when instrumen-
tation occurred at all the instrumentable points, we inserted
one NOP instruction between all the instructions except
the jump instruction in the jump table and instructions in

VOLUME 6, 2018 50503



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

TABLE 4. Runtime and space overhead for the benchmarks with entire-instrumentation (RR: relative range, EI: extended instructions, OH: overhead.)

TABLE 5. Comparison of overhead for the benchmarks with entire-instrumentation and iCFT-instrumentation (EI: extended instructions, OH: overhead.)

the PLT section. Generally, the runtime overhead is caused
by two factors: overhead of instrumented instructions, and
overhead of extended instructions generated because of the
relative-address correction. To evaluate the overhead caused
by extended instructions rather than the overhead of the
instrumented instructions accurately, we inserted the NOP
instruction that owns the minimum overhead (we call this
entire-instrumentation).
The result is shown in Table 4. Even though the number

of extended instructions increases as the number of rela-
tive range increases, the runtime overhead is not propor-
tional to the number of extended instructions. It is difficult
to obtain a relationship between the runtime overhead and
extended instructions, especially in the case of 429.mcf
and 462.libquantum; the number of extended instructions
is almost 0 while the runtime overhead is 101.6% and
95.09%, respectively. Moreover, the number of relative
ranges between 400.perlbench and 471.omnetpp is close but
the performance overhead gap is large. Hence, in our opinion,
the most runtime overhead is caused by the instrumented NOP
instructions.

Consequently, we found that approximately 60% of
the runtime overhead is caused by the instrumented
code on average. Compared to the number of total

instructions, the number of extended instructions gener-
ated owing to relative-address correction is less than 1%.
Moreover, in the case of space overhead, the average is
0.80%, in which the minimum is 0% and the maximum is
2.49%. Thus, the runtime and space overhead caused by the
relative-address correction itself is sufficiently small to be
ignored.

2) iCFT-INSTRUMENTATION
In general, binary instrumentation is not performed at all
points between the instructions but near the point of the
function entry, function call, jump, and return instruction.
Hence, we need to evaluate the runtime and space overhead
of the binaries instrumented for practical use, and select
the CFI technique to evaluate. CFI is the typical technique
that uses the binary instrumentation technique, in which the
technique verification routine is inserted at the iCTF (indi-
rect control flow transfer) to enforce the valid control flow.
To evaluate the lower bound of the overhead caused by
implementing the CFI, we inserted one NOP instruction at the
general target points such as the indirect call, indirect jump,
and return instruction (we call this iCFT-instrumentation).
Table 5 shows the comparison of overhead between entire-
instrumentation and iCFT-instrumentation.

50504 VOLUME 6, 2018



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

FIGURE 10. Percent runtime overhead for the benchmarks instrumented with a shadow stack.

Compared with the result of entire-instrumentation,
the runtime and space overhead of iCFT-instrumentation
are almost negligible. In the case of runtime overhead,
the result range is from−2.16% to 3.19%. In particular, in the
cases of 401.bzip2, 429.mcf, 458.sjeng, 462.libquantum, and
464.h264ref, the instrumented binaries execute slightly faster
than the original binaries; we believe this is caused by the
cache effect and experimental errors from the clock granu-
larity. As for the space overhead, every benchmark is less
than 0.32%. By comparing with the number of total instruc-
tions, the percentage of the extended instructions in each
benchmark is less than 0.001%. In conclusion, REPICA can
implement security applications such as CFI, shadow stack,
and SFI (software-based fault isolation) with negligible run-
time and space overhead.

E. CASE STUDY: SHADOW STACK
REPICA can be used for a variety of purposes, and we
demonstrate its effectiveness through the implementation of
a shadow stack. Shadow stack is a technique that protects the
return address stored in the stack when calling a function.
In this technique, whenever a function call occurs, it records
the return address additionally in a separate memory space
called shadow stack, and verifies or simply overwrites the
return address using the corresponding one recorded on the
shadow stack before return. This prevents the program con-
trol flow from moving to unintended addresses caused by
attack techniques such as ROP attack and stack overflow.
To show the effectiveness of REPICA through comparison,
we implemented the overwriting, no-zeroing, parallel shadow
stack [17] used in the Multiverse experimentation [32].
This technique is easy to implement because REPICA can

insert any code at anywhere in the text segment. We inserted
the code that saved the original return address to the shadow
stack before each call instruction (i.e., BL, BLX). In ARM,

two instruction sets exist, which are separated by the least
significant bit; therefore, we added 1 when calculating the
return address in the THUMB mode. The following is an
example of the code we inserted:

STMFD SP!, {R0,R1}
MOVW R1, #shadow_stack_offset
MOVT R1, #shadow_stack_offset
ADD R0, PC, #8 // +1 in THUMB mode
STR R0, [SP,-R1]
LDMFD SP!, {R0,R1}

To protect the return address, we inserted a code that
overwrites the return address of the current stack with the
return address stored in the shadow stack before each return
instruction (i.e.,LDMFD {...,PC},BX LR). According to
the ABI for ARM, in general, R0-R3 registers are not guar-
anteed to be preserved during function call, therefore, the R2
and R3 registers can be used without being stored; R0 and R1
register are used to store the return value. However, for
the simplicity of implementation, we implemented all the
inserted codes to temporarily store the R0 and R1 regis-
ters in the stack. In ARM, by default, the return address is
stored in the LR register when the function is called, and the
return value is stored in the stack depending on the situation.
Therefore, two kinds of codes are inserted according to the
situation, and the following is an example of the code we
inserted:
<LDMFD {...,PC}> <BX LR>
STMFD SP!, {R0,R1} STMFD SP!, {R0,R1}
MOVW R0, #shadow_stk_off MOVW R0, #shadow_stk_off
MOVT R0, #shadow_stk_off MOVT R0, #shadow_stk_off
LDR R1, [SP,-R0] LDR LR, [SP,-R0]
STR R1, [SP,#8] LDMFD SP!, {R0,R1}
LDMFD SP!, {R0,R1}

Figure 10 shows the runtime overhead of the SPECint2006
benchmark rewritten by REPICA for implementing the
shadow stack. The highest runtime overhead is 60.33% for
471.omnetpp and the lowest runtime overhead is -0.26% for
429.mcf. In cases 429.mcf, 462.libquantum, and 401.bzip2,

VOLUME 6, 2018 50505



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

almost no overhead occurred; we believe this is because the
majority of the performed code are simple computations. In
contrast, 456.hmmer and 471.omnetpp exhibit the highest
overhead. In particular, compared to other experiments [17],
they exhibited a higher overhead than the previous experi-
mental result. In our opinion, this is caused by a combination
of architectures, operating systems, and binary instrumenta-
tion methods.

To compare the effectiveness of REPICA, we included the
results of the Multiverse in Figure 10. Multiverse is
a dynamic binary instrumentation technique that enables the
PIC to be disassembled and rewritten without heuristics, and
can be instrumented anywhere in the text segment. The reason
we chose Multiverse in spite of it being a dynamic tech-
nique is that, similar with REPICA, it can almost perfectly
process the PIC and can flexibly rewrite the text segment.
Multiverse has inherent runtime overhead owing to the
nature of dynamic techniques, and it demonstrates an average
runtime overhead of 75% when the shadow stack is applied
to the benchmarks. For our REPICA, the average runtime
overhead is 12.74%, which is expected to improve slightly
after some optimizations.

VII. LIMITATIONS
A. SELF-MODIFYING CODE
Our technique cannot handle self-modifying codes. The pri-
mary reason is that our technique can neither statically
identify the code that is exposed at runtime, nor can it cor-
rectly handle overlapping codes. Next, our assumptions do
not fit the self-modifying code. According to our assump-
tion A2, one or more code-addresses cannot be transferred
to a base register, but it can occur frequently in the self-
modifying code. Therefore, a problem may occur in that not
only the relative-addresses but also the base addresses need
to be corrected. Generally, most programs do not contain
self-modifying codes, and other static binary instrumenta-
tion techniques [4], [25], [26], [32], [33] exhibit the same
limitation.

B. POSITION-DEPENDENT CODE
Our technique is specifically designed for the PIC; there-
fore, it is difficult to apply it to non-PIC using only our
technique. Unlike the PIC, absolute addresses are placed
in the data or text segments of the non-PIC. Hence, our
technique cannot be immediately applied to some PIC in
non-PIC binaries. In a recent research [25], [26], techniques
for identifying pointer-like data have been developed. These
techniques are primarily designed for handling non-PIC.With
these techniques, our technique can be applied to process PIC
included in non-PIC.

C. IMPERFECT DISASSEMBLY
The limitations of the disassembler prevent our technique
from handling all typical binaries. It is unsolvable to com-
pletely disassemble any binaries statically [25], [26], [41]

because many semantic information are erased during com-
pilation [42]. Our technique can handle many cases by using
heuristics, but our disassembly technique still cannot com-
pletely identify all indirect jumps, no-return function, and
special code pattern resulted by the combination of optimiza-
tion and unknown reasons. Some limitations are inherited
from using only recursive disassembly. However, REPICA
is a prototype, and can be improved through combining with
various existing techniques [43], [44].

VIII. RELATED WORK
Early research on binary instrumentation was studied for non-
security purposes such as optimization, performance mea-
surement, and profiling. These techniques (e.g., PIXE [45],
ATOM [46], QPT [47], and EEL [48]) are based on RISC
architecture (e.g., SPARC and MIPS). Because the ARM
architecture is also a RISC, these studies are highly relevant
to our study. However, as the implementation details of those
studies are not open, the exact way in which the PIC is
processed remains unclear. We consider it highly likely that
those studies used heuristics to process the PIC.

Since the late 1990s, many related studies have been
conducted on ×86 architecture. In early studies on ×86,
Etch [28] targets Win32/×86 binaries and is developed
for performance measurement and optimization. SASI [49]
targets ×86 binaries that are compiled with GCC, and is
developed for the SFI. Because ×86 architecture uses a
variable-length instruction, a 4-byte relative-address can be
expressed by a single instruction. This means that the address
computation in×86 can be completed at one time rather than
in multiple stages (as is the case in ARM). Therefore, it is
easy for the existing ×86 binary instrumentation techniques
to handle PIC by heuristics; however, for ARM, it is difficult
to handle PIC only by these heuristics.

One of the problems in binary instrumentation is that it is
difficult to identify pointer-like data in binary. To overcome
this problem, many studies use the symbolic information
generated from compilers [28], [50]–[54]. Because sym-
bolic information includes the symbol type, the scope (block
scope or global scope), the size, etc., these techniques can
handle PIC properly. Other studies proposed runtime tech-
niques to solve this problem [55]–[58]. A limitation of this
approach is that instrumentation cannot be performed only
with standalone binaries.

More closely related to our study, BISTRO [33] creates
a space at the entry point of each function to insert the
instrumentation code for the functions. This approach enables
the instrumented code to be inserted more flexibly than tech-
niques that simply replace the instructions and jump to the
trampoline, such as Dyninst [27], [59] and Detours [29].
SecondWrite [60] is a binary writer that converts disas-
sembled code into LLVM IR [61] for optimization without
symbolic information; however, it cannot handle the PIC [62].
Other methods such as REINS [42] and BinCFI [4] are
specific to the ×86 architecture only, and handle the ARM

50506 VOLUME 6, 2018



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

architecture with difficulty because of the different charac-
teristics between ARM and ×86.

Recent works have led to the development of
Uroboros [25] and Ramblr [26] to identify all pointer-
like data in binary via a technique known as symbolization.
Both are reassembly techniques, which can flexibly modify
the instruction area. These techniques handle the PIC by
identifying a specific function call that returns the next
instruction address, and trace the return value to find the
instruction containing the return value that is used to compute
the address. This heuristic method can handle most cases of
the ×86 architecture, but cannot properly handle the address
computation patterns in ARM.

In the most recent study, RevARM [18] was developed as
an insertion-based binary instrumentation technique. It can
insert the instrumented code flexibly into any location on the
text segment in binary. This technique, when handling the
PIC, simply corrects the relative-addresses that are computed
directly with the PC register. Therefore, the heuristic cannot
handle the relative-addresses used by all address computa-
tions. To the best of our knowledge, no insertion-based binary
instrumentation targeting ARM, other than that in this study,
has been proposed.
Multiverse [32] is a binary rewriter based on shingled

disassembly, and can handle PIC without a heuristic. When
handling a PIC, it finds a specific function that returns the
next instruction address, and translates it to an instruction
that returns the old return address. This enables any subse-
quent address arithmetic to compute the old code addresses
correctly. The rewriter dynamically remaps an old address
to a new address, and can therefore safely handle the PIC.
However, techniques such as this, because of the features
of the approach they follow, incur large amounts of space
overhead and runtime overhead.

To summarize, most existing ×86 techniques identify the
call instruction that returns the address of the next instruc-
tion, after which they modify the instruction or modify an
instruction that uses the return value. Similar to the×86 tech-
niques, the existing ARM techniques find instructions with
the PC register as the operand, and trace the index value for
correcting it. Most existing techniques for handling PIC con-
sider only PC-relative instructions, which can handle many
address computations that use relative-addresses. However,
they cannot handle all patterns of address computations in
ARM because they do not consider the relative-addresses in
the base-relative instructions.

IX. CONCLUSIONS
PIC is becoming more important owing to the need for
enhanced security. In particular, the use of PIC is increasing
in ARM-based systems, which are gaining in importance
owing to the expansion of the mobile and embedded mar-
kets. However, static binary instrumentation techniques on
PIC are still immature. In addition, the characteristics of the
ARM architecture present a new problem that does not occur
with the ×86 architecture. With respect to rewriting the PIC

composed by the ARMarchitecture instructions, we specified
two primary challenges: (1) Difficulty in relative-address cor-
rection in all address computations, (2) Difficulty in efficient
relative-address correction. In the second challenge, we found
the cyclic correction problem and are the first to address this
problem.

To overcome these challenges, we proposed REPICA,
a static binary instrumentation technique capable of
instrumenting a binary without symbolic information. Local-
ized value-set analysis, of which the domain is in the
form of symbols, was used to enable REPICA to accu-
rately collect values and identify the points of correction.
Furthermore, the use of a stepwise instruction extension
allows REPICA to solve the cyclic correction problem effec-
tively. We evaluated the correctness and performance of
REPICA by experimenting with SPECint2006 and approxi-
mately 1,200 shared libraries and executables included in the
deployed Android 8.1 build. Our experimental results showed
that REPICA could rewrite all of the binaries that were dis-
assembled completely, and that little space and runtime over-
head was incurred by the newly rewritten binaries. Finally,
our shadow stack implementation showed that REPICA can
be used to solve various security problems.

REFERENCES
[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, ‘‘Control-flow

integrity,’’ in Proc. CCS, Alexandria, VA, USA, 2005, pp. 340–353.
[2] J. Ansel et al., ‘‘Language-independent sandboxing of just-in-time compi-

lation and self-modifying code,’’ in Proc. PLDI, San Jose, CA, USA, 2011,
pp. 355–366.

[3] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, ‘‘XFI:
Software guards for system address spaces,’’ in Proc. OSDI, Seattle, WA,
USA, 2006, pp. 75–88.

[4] M. Zhang and R. Sekar, ‘‘Control flow integrity for COTS binaries,’’ in
Proc. USENIX Secur., Austin, TX, USA, 2013, pp. 337–352.

[5] B. Niu and G. Tan, ‘‘Modular control-flow integrity,’’ in Proc. PLDI,
Edinburgh, U.K., 2014, pp. 577–587.

[6] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, ‘‘Efficient
software-based fault isolation,’’ in Proc. SOSP, Asheville, NC, USA, 1993,
pp. 203–216.

[7] A.-R. Adl-Tabatabai, G. Langdale, S. Lucco, and R.Wahbe, ‘‘Efficient and
language-independent mobile programs,’’ inProc. PLDI, Philadelphia, PA,
USA, 1996, pp. 127–136.

[8] S. L. Graham, S. Lucco, and R. Wahbe, ‘‘Adaptable binary programs,’’ in
Proc. USENIX Secur., Salt Lake City, UT, USA, 1995, pp. 1–14.

[9] B. Ford and R. Cox, ‘‘Vx32: Lightweight user-level sandboxing on the
x86,’’ in Proc. USENIX ATC, Boston, MA, USA, 2008, pp. 293–306.

[10] C. Linn and S. Debray, ‘‘Obfuscation of executable code to improve
resistance to static disassembly,’’ in Proc. CCS, Washington, DC, USA,
2003, pp. 290–299.

[11] I. V. Popov, S. K. Debray, and G. R. Andrews, ‘‘Binary obfuscation using
signals,’’ in Proc. USENIX Secur., Boston, MA, USA, 2007, pp. 275–290.

[12] H. Chen, L. Yuan, X. Wu, B. Zang, B. Huang, and P. Yew, ‘‘Control flow
obfuscation with information flow tracking,’’ in Proc. MICRO, New York,
NY, USA, 2009, pp. 391–400.

[13] T.-C. Chiueh and F.-H. Hsu, ‘‘RAD: A compile-time solution to buffer
overflow attacks,’’ in Proc. ICDCS, Phoenix, AZ, USA, 2001, p. 0409.

[14] L. Szekeres,M. Payer, T.Wei, andD. Song, ‘‘Sok: Eternal war inmemory,’’
in Proc. SP, San Francisco, CA, USA, 2013, pp. 48–62.

[15] M. Prasad and T.-C. Chiueh, ‘‘A binary rewriting defense against stack
based buffer overflow attacks,’’ in Proc. USENIX ATC, San Antonio, TX,
USA, 2003, pp. 211–224.

[16] A. Baratloo, N. Singh, and T. Tsai, ‘‘Transparent run-time defense against
stack smashing attacks,’’ in Proc. ATEC, San Diego, CA, USA, 2000,
pp. 1–13.

VOLUME 6, 2018 50507



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

[17] T. H. Y. Dang, P. Maniatis, and D. Wagner, ‘‘The performance cost of
shadow stacks and stack canaries,’’ in Proc. ASIA CCS, Singapore, 2015,
pp. 555–566.

[18] T. Kim et al., ‘‘RevARM: A platform-agnostic arm binary rewriter for
security applications,’’ in Proc. ACSAC, San Juan, PR, USA, 2017,
pp. 412–424.

[19] PaX Address Space Layout Randomization (ASLR).
Accessed: Jul. 15, 2018. [Online]. Available: https://pax.grsecurity.net/
docs/aslr.txt

[20] Android: Security Enhancements in Android 5.0.
Accessed: Jul. 15, 2018. [Online]. Available: https://source.android.com/
security/enhancements/enhancements50

[21] iOS Developer Library. Accessed: Jul. 15, 2018. [Online]. Available:
https://developer.apple.com/library/archive/qa/qa1788_index.html

[22] J. Drake, ‘‘Stagefright: Scary code in the heart of Android,’’ presented at
BlackHat, Las Vegas, NV, USA, 2015.

[23] Android Keystore Stack Buffer Overflow. Accessed: Jul. 15, 2018. [Online].
Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-
3100

[24] Android DRM Services—Buffer Overflow. Accessed: Jul. 15, 2018.
[Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-13253

[25] S. Wang, P. Wang, and D. Wu, ‘‘Reassembleable disassembling,’’ in Proc.
USENIX Secur., Washington, DC, USA, 2015, pp. 627–642.

[26] R. Wang et al., ‘‘Ramblr: Making reassembly great again,’’ in Proc. NDSS,
San Diego, CA, USA, 2017, pp. 1–15.

[27] B. Buck and J. K. Hollingsworth, ‘‘An API for runtime code patching,’’
Int. J. High Perform. Comput. Appl., vol. 14, no. 4, pp. 317–329, 2000.

[28] T. Romer et al., ‘‘Instrumentation and optimization ofWin32/Intel executa-
bles using Etch,’’ in Proc. USENIX Windows NT Workshop, Seattle, WA,
USA, 1997, pp. 1–8.

[29] G. Hunt and D. Brubacher, ‘‘Detours: Binaryinterception ofwin 3 2 func-
tions,’’ in Proc. 3rd USENIX Windows NT Symp., Seattle, WA, USA, 1999,
pp. 1–10.

[30] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, ‘‘Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code,’’ in Proc.
CCS, Raleigh, NC, USA, 2012, pp. 157–168.

[31] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, ‘‘Pebil:
Efficient static binary instrumentation for linux,’’ in Proc. ISPASS,
White Plains, NY, USA, 2010, pp. 175–183.

[32] E. Bauman et al., ‘‘Superset disassembly: Statically rewriting x86 binaries
without heuristics,’’ inProc. NDSS, SanDiego, CA, USA, 2018, pp. 40–47.

[33] Z. Deng, X. Zhang, and D. Xu, ‘‘BISTRO: Binary component extraction
and embedding for software security applications,’’ in Proc. ESORICS,
Egham, U.K., 2013, pp. 200–218.

[34] M. Weiser, ‘‘Program slicing,’’ IEEE Trans. Softw. Eng., vol. SE-10, no. 4,
pp. 352–357, Jul. 1984.

[35] G. Balakrishnan and T. Reps, ‘‘Analyzing memory accesses in x86 exe-
cutables,’’ in Proc. CC, Grenoble, France, 2014, pp. 5–23.

[36] P. Cousot and R. Cousot, ‘‘Abstract interpretation frameworks,’’ J. Logic
Comput., vol. 2, no. 4, pp. 511–547, 1992.

[37] P. Cousot and R. Cousot, ‘‘Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation,’’ in Proc. PLILP,
Leuven, Belgium, 1992, pp. 269–295.

[38] Capstone: The Ultimate Disassembler. Accessed: Jul. 15, 2018. [Online].
Available: http://www.capstone-engine.org

[39] The DWARF Debugging Standard. Accessed: Jul. 15, 2018. [Online].
Available: http://press-pubs.uchicago.edu/founders/

[40] Linux Foundation: Referenced Specifications. Accessed: Jul. 15, 2018.
[Online]. Available: https://refspecs.linuxfoundation.org

[41] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos, ‘‘An in-
depth analysis of disassembly on full-scale x86/x64 binaries,’’ in Proc.
USENIX Secur., Austin, TX, USA, 2016, pp. 1–19.

[42] R.Wartell, V. Mohan, K.W. Hamlen, and Z. Lin, ‘‘Securing untrusted code
via compiler-agnostic binary rewriting,’’ in Proc. ACSAC, Orlando, FL,
USA, 2012, pp. 299–308.

[43] D. Andriesse, A. Slowinska, and H. Bos, ‘‘Compiler-agnostic func-
tion detection in binaries,’’ in Proc. EuroS&P, Paris, France, 2017,
pp. 177–189.

[44] R. Qiao and R. Sekar, ‘‘Function interface analysis: A principled approach
for function recognition in COTS binaries,’’ in Proc. DSN, Denver, CO,
USA, 2017, pp. 201–212.

[45] F. C. Chow, M. I. Himelstein, E. Killian, and L. Weber, ‘‘Engineering a
RISC compiler system,’’ in Proc. COMPCON, San Francisco, CA, USA,
1986, pp. 132–137.

[46] A. Srivastava and A. Eustace, ‘‘ATOM: A system for building cus-
tomized program analysis tools,’’ in Proc. PLDI, Orlando, FL, USA, 1994,
pp. 196–205.

[47] J. R. Larus and T. Ball, ‘‘Rewriting executable files to measure program
behavior,’’ Softw., Pract. Exper., vol. 24, no. 2, pp. 197–218, 1994.

[48] J. R. Larus and E. Schnarr, ‘‘EEL: Machine-independent executable edit-
ing,’’ in Proc. PLDI La Jolla, CA, USA, 1995, pp. 291–300.

[49] U. Erlingsson and F. B. Schneider, ‘‘SASI enforcement of security poli-
cies: A retrospective,’’ in Proc. NSPW, Inglewood, ON, Canada, 1999,
pp. 287–295.

[50] B. Schwarz, S. Debray, G. Andrews, and M. Legendre, ‘‘PLTO: A link-
time optimizer for the Intel IA-32 architecture,’’ in Proc. WBT, Barcelona,
Spain, 2001, pp. 1–7.

[51] R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere, ‘‘Alto: A link-
time optimizer for the compaq alpha,’’ Softw. Pract. Exper., vol. 31, no. 1,
pp. 67–101, 2011.

[52] A. Srivastava, A. Edwards, and H. Vo, ‘‘Vulcan: Binary transformation
in a distributed environment,’’ Microsoft Res., Redmond, WA, USA,
Tech. Rep. MSR-TR-2001-50, Apr. 2001.

[53] B. De Sutter, B. De Bus, and K. De Bosschere, ‘‘Link-time binary rewriting
techniques for program compaction,’’ ACM Trans. Program. Lang. Syst.,
vol. 27, no. 5, pp. 882–945, 2005.

[54] S. McCamant and G. Morrisett, ‘‘Evaluating SFI for a CISC architecture,’’
in Proc. USENIX Secur., Vancouver, BC, Canada, 2006, Art. no. 15.

[55] N. Nethercote and J. Seward, ‘‘Valgrind: A program supervision frame-
work,’’Electron. Notes Theor. Comput. Sci., vol. 89, no. 2, pp. 44–66, 2003.

[56] D. L. Bruening, ‘‘Efficient, transparent, and comprehensive runtime
code manipulation,’’ Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci.,
Massachusetts Inst. Technol., Cambridge, MA, USA, 2004.

[57] C.-K. Luk et al., ‘‘Pin: Building customized program analysis tools
with dynamic instrumentation,’’ in Proc. PLDI, Chicago, IL, USA, 2005,
pp. 190–200.

[58] F. Bellard, ‘‘QEMU, a fast and portable dynamic translator,’’ in Proc.
ATEC, Anaheim, CA, USA, 2005, pp. 1–6.

[59] A. R. Bernat, K. Roundy, and B. P. Miller, ‘‘Efficient, sensitivity resistant
binary instrumentation,’’ in Proc. ISSTA, Toronto, ON, Canada, 2011,
pp. 89–99.

[60] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and
A. D. Keromytis, ‘‘Retrofitting security in COTS software with binary
rewriting,’’ in Proc. SEC, Lucerne, Switzerland, 2011, pp. 154–172.

[61] K. Anand et al., ‘‘A compiler-level intermediate representation based
binary analysis and rewriting system,’’ in Proc. Eurosys, Prague, Czech,
2013, pp. 295–308.

[62] M. Smithson, K. ElWazeer, K. Anand, A. Kotha, and R. Barua, ‘‘Static
binary rewriting without supplemental information: Overcoming the
tradeoff between coverage and correctness,’’ in Proc. WCRE, Koblenz,
Germany, 2013, pp. 52–61.

DONGSOO HAwas born in Pohang, Gyeongsang,
South Korea. He received the B.S. degree in com-
puter science and engineering from Hanyang Uni-
versity, SouthKorea, in 2010, where he is currently
pursuing the Ph.D. degree in computer science and
engineering. His research interests are program
language, program analysis, binary analysis, auto-
mated vulnerability analysis and detection, binary
obfuscation, and security issues in smart mobile.

50508 VOLUME 6, 2018



D. Ha et al.: REPICA: Rewriting Position Independent Code of ARM

WENHUI JIN was born in Hegang, Heilongjiang,
China. He received the B.S. degree in software
and engineering from Heilongjiang University,
China, in 2013. He is currently pursuing the Ph.D.
degree in computer science and engineering from
Hanyang University, South Korea. His research
interests are binary obfuscation, binary analy-
sis with machine learning, malware analysis and
detection, and security issues in mobile.

HEEKUCK OH received the B.S. degree in elec-
tronics engineering from Hanyang University,
South Korea, in 1983, and the M.S. and Ph.D.
degrees in computer science from Iowa State
University, Ames, IA, USA, in 1989 and 1992,
respectively. In 1994, he joined the Faculty of
the Department of Computer Science and Engi-
neering, Hanyang University, ERICA campus,
South Korea, where he is currently a Professor.
His current research interests include network and

system security. He is a member of the Advisory Committee for Digital
Investigation in Supreme Prosecutor’s Office, South Korea, and the Advi-
sory Committee on Government Policy under the Ministry of Government
Administration and Home Affairs. He is also a President Emeritus of the
Korea Institute of Information Security and Cryptology.

VOLUME 6, 2018 50509


	INTRODUCTION
	BACKGROUND
	TERM DEFINITION
	BINARY INSTRUMENTATION TECHNIQUES
	POSITION INDEPENDENT CODE AND ARM ARCHITECTURE
	LIMITATION OF EXISTING APPROACH ON PIC

	CHALLENGES
	DIFFICULTY IN RELATIVE-ADDRESS CORRECTION IN ALL ADDRESS COMPUTATIONS
	DIFFICULTY IN EFFICIENT RELATIVE-ADDRESS CORRECTION

	OVERVIEW OF APPROACH
	TARGET BINARY
	BINARY MODIFICATION CAPABILITY
	ASSUMPTION ON ADDRESS COMPUTATION
	INDIVIDUAL RELATIVE-ADDRESS CORRECTION
	STEPWISE INSTRUCTION EXTENSION

	DESIGN AND IMPLEMENTATION
	OVERVIEW
	DISASSEMBLER
	INDIRECT CONTROL FLOW IDENTIFICATION
	ADDRESS TYPE IDENTIFICATION

	VALUE-SET ANALYSIS
	ANALYSIS DOMAIN
	TRANSFER FUNCTION

	OFFSET CORRECTOR
	INSTRUMENTATION SPECIFICATION
	SYMBOL AND RELATIVE RANGE
	CORRECTION PROCESS
	ALIGNMENT

	OPTIMIZATION
	CORRECTION OVERHEAD
	OPTIMIZATION PROCESS
	OPTIMIZATION CONSTRAINT

	BINARY REWRITER

	EVALUATION
	DATASET
	DISASSEMBLY CORRECTNESS
	CORRECTION CORRECTNESS
	PERFORMANCE
	ENTIRE-INSTRUMENTATION
	iCFT-INSTRUMENTATION

	CASE STUDY: SHADOW STACK

	LIMITATIONS
	SELF-MODIFYING CODE
	POSITION-DEPENDENT CODE
	IMPERFECT DISASSEMBLY

	RELATED WORK
	CONCLUSIONS
	REFERENCES
	Biographies
	DONGSOO HA
	WENHUI JIN
	HEEKUCK OH


