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ABSTRACT This paper investigates the problem of attitude stabilization for rigid-flexible coupling space-
craft under external disturbances, parametric uncertainties, and measurement errors. First, the dynamical
model for a rigid spacecraft with two symmetric solar arrays is derived based on the Lagrange method,
and the measured kinematic and dynamic models are formulated, respectively, in terms of the measured
values and errors. A robust anti-disturbance control law is hierarchically proposed to stabilize the attitude
states via the backstepping method. For the first step, the lumped disturbance in the measured kinematic
model is reconstructed from a finite-time integral sliding mode disturbance observer (FTISMDO), and
a virtual control strategy is designed. For the second step, the overall uncertainties in the measured
dynamic model are approximated by FTISMDO, and the actual control scheme is proposed based on the
virtual control and disturbance observers. It is proved that the designed controller can guarantee that all
attitude variables converge to small neighborhoods of origin asymptotically in the presence of interior and
exterior disturbances. Finally, a numerical example is provided to demonstrate the disturbance rejection and
robustness performance of the proposed control technique.

INDEX TERMS Spacecraft attitude control, baskstepping method, sliding mode disturbance observer,
rigid-flexible coupling spacecraft.

I. INTRODUCTION
Space science technology has achieved tremendous advance-
ment in recent years [1]. Complicated aerospace missions,
such as space rendezvous and docking [2], [3], deep space
exploration [4], spacecraft formation flying [5] and so on, are
being widely investigated and practiced in aerospace engi-
neering. Most modern space tasks require accurate pointing
and fast stabilization of the spacecraft, thus the attitude con-
trol remains a crucial topic [6].

The design of a high-performance attitude controller for
a spacecraft is difficult due to the model non-linearities,
parametric uncertainties, measurement errors, and unknown
external disturbances in space [7]. In addition, space-
crafts may carry large-scale, low stiffness and light weight
appendages, such as large deployable antenna and solar
arrays, these structures decrease the rigidity of the spacecrafts
and result in flexible phenomenon [8]. Especially, the atti-
tude maneuver of the spacecraft platform will unavoidably
excite the elastic oscillations of flexible appendages, and the
vibration will affect the rotation of the spacecraft via hinges

simultaneously, which further results in the decrease of the
attitude pointing accuracy [9]. Therefore, it is necessary to
take the flexible appendages into account and compensate the
adverse effects of the rigid-flexible coupling phenomenon in
spacecraft attitude controller design. The vibration items of
the flexible appendages can be substituted into the attitude
dynamic model via the coupling equation and considered
as uncertainties. Then, external disturbance, measurement
errors, and model uncertainties are lumped as total distur-
bance. Quite often, the lumped disturbance cannot be directly
measured, which however must be properly considered in
the spacecraft attitude controller design. Moreover, these
uncertainties can lead to inaccurate pointing of the spacecraft
payload, or even the instability of the spacecraft platform. For
solving this problem, a feasible way is to estimate the lumped
uncertainties by the disturbance observer technique [10].

The state and disturbance observer technique has been
extensively studied for nearly half a century, and a variety
of observers, like disturbance observer [11], perturbation
observer [12], extended state observer [13], unknown input
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observer [14], etc [15], have been employed to deal with
the estimation problems for various types of dynamical sys-
tem, such as uncertain linear/nonlinear systems [16], [17],
discrete-time systems [18]–[20], Markovian jump sys-
tems [21], hybrid systems [22], singular systems [23],
switched systems [24], [25], etc [15], [26]. Since the sliding
mode control stands out for its strong robustness against
system uncertainties and external disturbance, sliding mode
observers have also been widely researched for system state
and disturbance estimations [27]. For example, Liu et al. [28]
designed a proportional and derivative sliding mode observer
to generate the asymptotic estimation for system states
and sensor fault vectors of Markovian jump systems,
Zhang et al. [29] proposed a sliding mode friction observer
to estimate the reaction wheel friction torque for flexible
spacecraft, Chen et al. [30] developed a terminal slidingmode
disturbance observer to compensate the unknown external
disturbance for the single-input and single-output nonlinear
system, etc. Sun et al. [31] constructed a finite-time integral
sliding mode observer to evaluate the external disturbance
and appendage vibration of the flexible spacecraft. It has
proved that the proposed observer can effectively estimate the
lumped uncertainties in finite time. The integral operation in
sliding mode observer can remarkably increase the conver-
gence performance and attenuate the chattering effect.

The idea of the disturbance-observer-based control is to
evaluate the uncertainties from measurable variables, then
design the control scheme based on the estimation, in order
to compensate the influence of the disturbances. When the
flexible appendages are included in the dynamic model, the
attitude controller design becomes more complex due to
the complicated nonlinear dynamics [41]. The disturbance-
observer-based control for flexible spacecraft has drawn lots
of attention, and various nonlinear attitude control methods,
such as optimal control [32], the Lyapunov control [33], [34],
sliding mode control [35], adaptive control [36], [37], back
stepping control [38], [39], etc, are utilized to synthesis
work of attitude control systems. Ma [36] developed a
fault-tolerant adaptive controller for attitude tracking of flex-
ible spacecraft, Ding and Zheng [40] investigated a non-
smooth attitude-stabilization controller based on the finite
time control technique, Wu and Wen [41] applied the robust
H∞ output feedback control to achieve attitude stabilization
of a flexible spacecraft. Sun et al. [31] proposed a composite
anti-disturbance controller via backstepping method, while
the control torque needed is relatively high for the actual
engineering. Zhang et al. [29] designed a H∞ controller
with disturbance observers for the flexible spacecraft, the
inertia uncertainties and measurement errors are not taken
into consideration, Du and Li [42] derived a distributed
delayed attitude controller by combining the backstepping
method with the finite-time control technique for a group
of flexible spacecrafts. In this design, communication delays
are considered, while parametric and measurement uncer-
tainties are not included. From the brief survey mentioned
above, considerable progress has been made in the field

of disturbance-observer-based control for flexible spacecraft
attitude control. However, there exist some potential prob-
lems: 1) the sensors measurement errors and model paramet-
ric uncertainties are not being considered in the disturbance
models; 2) controller with excellent robustness performance
may require large size control torque which is difficult to
be implemented by the onboard actuator due to amplitude
limitation.

Motivated by aforementioned analysis, a FTISMDO-based
backstepping controller with input constraint is designed in
this paper. The main contributions are listed as follows: 1) the
attitude dynamic model for a rigid satellite with two sym-
metric solar arrays are provided via the Lagrange method;
2) the external disturbance in space, spacecraft parametric
uncertainties, attitude sensor measurement errors, and vibra-
tion of flexible appendages are conducted as lumped distur-
bances and compensated by FTISMDOs; 3) the measured
attitude, angular velocity and the modal coordinate of flex-
ible appendages converge to origin aymptotically under the
designed controller, and the corresponding actual controlled
states converge to small neighborhoods of origin in the pres-
ence of measurement errors.

The rest of the paper is organized as follows: the problem
formulation is presented in Section II; design process for
the anti-disturbance controller is presented in Section III,
followed by numerical example and conclusion in Section IV
and Section V respectively.

II. PROBLEM FORMULATION
A rigid satellite with two symmetric flexible solar arrays
is considered in this paper. The mathematic model for the
rigid-flexible coupling spacecraft can be depicted by the
kinematic and dynamic equations as follows.

A. THE KINEMATIC EQUATION
To avoid singularities in the parameter, the four unitary
quaternion q ∈ R4 is employed to describe the attitude of
the satellite, and it has the expression:

q =
[
q0 qTv

]T
= [ q0 q1 q2 q3 ]T (1)

where q0 is the scalar part and qv ∈ R3 is the vector part, and
they satisfy q20 + q

T
v qv = 1. The kinematic equation in terms

of the quaternion takes the form:

q̇ = E (q)ω =
1
2

[
−qv

T

q̃v + q0I3×3

]
∗ ω (2)

where ω ∈ R3 is the angular velocity of the undeformed
satellite in the body-fixed reference frame<B, and q̃v ∈ R3×3

represents the skew symmetric matrix of qv.
The relationships for the satellite attitude in three frame,

that is, the Earth-centered inertial reference frame <J , the
orbit reference frame<O, and<B, can be illustrated in Fig. 1.
As been shown in Fig.1, q (ω) /qe (ωe) /qd (ωd ) is the

attitude (attitude veloctiy) orientation in <B/<B/<O with
respect to<J/<O/<J respectively. qe is defined as the error
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FIGURE 1. Attitudes in the three frames.

quaternion, the error kinematic equation in terms of qe is
formulated as:

qe = E
(
qe
)
ωe = E

(
qe
) (
ω − R

(
qe
)
ωd
)

(3)

where R
(
qe
)
is the coordinate transformation matrix from

<O to<B. Since the orbit velocity ωd indicates slow motion
compared with the attitude manuver ω, it is not considered
for simplification in this paper. Therefore, the error kinematic
equation is rewritten as:

qe = E
(
qe
)
ω (4)

B. THE DYNAMIC EQUATION
A rigid satellite with two symmetric flexible solar arrays is
illustrated in Fig.2.

FIGURE 2. A rigid spacecraft with two symmetric flexible appendages.

In Fig.2, ai (i = 1, 2) represents each of the two solar
arrays. To be simplified, the satellite translation (X in Fig.2)
and the ai’s rotation relative to the satellite (ωai in Fig.2) are
not taken into consideration in this paper. Then, according to
the Lagrange method [43], the attitude dynamic equation can
be described as:

Isω̇ + ω̃Isω +
2∑
i=1

Fsai η̈ai = u+ d

η̈ai + 2ξai�ai η̇ai +3aiηai + F
T
sai ω̇ = 0 (5)

where Is ∈ R3×3 is the spacecraft inertial matrix, ηai ∈ RN×1

is the modal coordinates of ai, andN is the number of flexible
modes, Fsai ∈ R3×N is the flexible coupling coefficient
matrix of the ai’s vibration to the platform’s rotation. u ∈ R3

is the control torque, d ∈ R3 is the external disturbance.
�ai ∈ RN×N is the modal frequency diagonal matrix, 3ai ∈

RN×N is the stiffness matrix, and satisfies �ai
2
= 3ai .

ξai ∈ RN×N is the damping ratio diagonal matrix. Since the
two solar arrays are installed symmetrically, the following
equations hold: Fsa1 = Fsa2 , 3a1 = 3a2 and ξa1 = ξa2 .
Therefore, Fsa, 3a and ξa are utilized to represent Fsai , 3ai
and ξai respectively in the following discussion.

C. THE MEASURED MODELS
The uncertainties considered in this paper include: the mea-
surement error of the attitude sensors onboard the space-
craft, which are expressed as 1qe and 1ω respectively, the
unknown external disturbance d , and uncertainties of the
spacecraft inertial matrix 1Is.
Assumption 1: Assume that all the aforementioned uncer-

tainties are bounded:
∥∥1qe∥∥ ≤ 1q̄e, ‖1ω‖ ≤ 1ω̄, ‖d‖ ≤ d̄ ,

‖1Is‖ ≤ 1Īs. Moreover, their derivatives are also bounded
such that:

∥∥1q̇e∥∥ ≤ 1 ¯̇qe, ‖1ω̇‖ ≤ 1 ¯̇ω, ∥∥ḋ∥∥ ≤ ¯̇d , ∥∥1İs∥∥ ≤
1 ¯̇Is. All the bounds are pre-known positive parameters.

Set q̂e and ω̂s as the measured quaternion and attitude
velocity respectively, and they are denoted by:

q̂e = qe +1qe
ω̂ = ω +1ω (6)

where qe and ω indicate the actual attitude parameters. For
the actual inertial matrix Is, it satisfies:

Is = Îs +1Is (7)

where Îs is the nominal inertial matrix. Based on formula (4)
and (6), the kinematic equation can be expressed as:

˙̂qe −1q̇e = E
(
q̂e −1qe

) (
ω̂ −1ω

)
(8)

Further, the measured kinematic equation can be pre-
sented as:

˙̂qe = E
(
q̂e
)
ω̂ + δ1 (9)

where δ1 is the lumped uncertainties, and it contains:

δ1 = −E
(
q̂e
)
1ω − E

(
1qe

)
ω +1qe (10)

For the rigid-flexible coupling dynamics (5), the two
sub-equations can be combined as:

Jω̇ + ω̃Isω + 2Fsa
(
−2ξa�aη̇a −3aηa

)
= u+ d (11)

where J =
(
Is − 2FsaFT

sa
)
. Similarly, considering the uncer-

tainties, formula (11) can be transformed into the measured
dynamic equation:

Ĵ ˙̂ω + ω̂Îsω̂ = δ2 + u (12)

where Ĵ =
(
Îs − 2FsaFT

sa

)
, and δ2 is the lumped uncertain-

ties which can be expressed as:

δ2 = d + 4Fsaξa�aη̇a + 2Fsa3aηa + Ĵ1ω̇ −1Isω̇

+ ˜̂ωÎs1ω − ˜̂ω1Isω +1ω̃Isω (13)

Therefore, the measured kinematic and dynamic models
are summarized as follows:{

q̂e = E
(
q̂e
)
ω̂ + δ1

Ĵ ˙̂ω + ˜̂ωÎsω̂ = δ2 + u
(14)
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D. DESIGN OBJECTIVE
The desired attitude qev and ω are set as qev = [0 0 0]T, and
ω = [0 0 0]T in this paper. The subsequent work is to design
a robust controller for the system (14) such that, for any initial
attitude quaternion and angular velocity:

1) all the state vectors in the closed-loop system are
bounded;

2) the measured attitude parameter q̂ev and ω̂ converge to
origin asymptotically, and the actual qev, ω converge to
small neighbourhoods of origin simultaneously in the
presences of measurment errors, parametric uncertain-
ties and external disturbance.

Remark 1: When qev = [0 0 0]T, it yields qe0 = ±1
according to the normalization of quaternion. It should be
pointed out that the equilibrium qe = [1 0 0 0]T and qe =
[−1 0 0 0]T indicate the same stable state in physical space.
Therefore, it is applicable to force the vector part qev to origin
in the control design.

III. DISTURBANCE-OBSERVER-BASED
CONTROLLER DESIGN
A disturbance-observer-based attitude controller is proposed
for the rigid-flexible coupling spacecraft in this section. The
structure for the anti-disturbance control strategy is illustrated
in Fig.3.

FIGURE 3. Schematic diagram of the control strategy.

The attitude control scheme is developed via the back-
stepping method. Corresponding to the measured kinematic
and dynamic equations(14), the anti-disturbance backstep-
ping controller is constructed in two steps.
Step 1: Define the backstepping variables as:{

z1 = q̂e
z2 = ω̂ − α

(15)

where α ∈ R3×1 is the virtual control vector, and it is
designed as:

α = −E−1 (z1)
(
K1z1 + δ̂1

)
, (16)

E−1 (z1) is the generalized inverse matrix of E (z1), K1 ∈

R4×4 is a positive definite diagonal matrix, δ̂1 is the estima-
tion of the lumped disturbances δ1, and it can be obtained by

the FTISMDO [31]:

s0 = q̂e − ψ (17)

ψ̇ = E
(
q̂e
)
ω̂ + δ̂1 (18)

s1j = ṡ0j +
∫ t

0

(
k1jsigβ1j (s0j)+ k2jsigβ2j (ṡ0j)

)
ds (19)

˙̂
δ1 = k1jsigβ1j (s0j)+ k2jsigβ2j (ṡ0j)+ λ1jsigγ (s1j)

+ λ2js1j + Ljsgn
(
s1j
)
. (20)

In (20), s0 = [s01 s02 s03 s04]T, j = 1, 2, 3, 4. k1j, k2j, β1j, β2j,
λ1j, λ2j, Lj and γ are positive constants. Lj ≥ supt≥0

∥∥δ̇1∥∥,
and β2j = β1j/

(
1+ β1j

)
, 0 < β1j < 1. sigβ1j

(
s0j
)
=∣∣soj∣∣β1jsgn (s0j), where sgn (·) means the sign function, the

similar way goes for sigβ2j
(
ṡoj
)
and sigγ (s1).

The integral term in (17) guarantees the finite time conver-
gence performance of the sliding mode observer. In addition,
according to (20), the estimated δ̂1 is derived by an inte-
gral operation which can effectively attenuate the chattering
effect. The stability proof for the error system based on
observer (17)-(20) is similar to [31], and it is omitted here
for space reason.
Remark 2: It can be seen that ṡ0i are required to be used

in the observer. In this design, the higher-order sliding mode
differentiator (HOSMD) [44] is utilized to solve this problem,
which is as follows:

ẋ0 = v0 = −ηk |x0 − f (t)|k/(k+1)sgn (x0 − f (t))+ x1
ẋ1 = v1 = −ηk−1|x1 − v0|(k−1)/ksgn (x1 − v0)+ x2
...

ẋk−1 = vk−1
= −η1|xk−1 − vk−2|1/2sgn (xk−1 − vk−2)+ xk

ẋk = −η0sgn (x1 − v0) (21)

where η0, η1, · · · , ηk > 0 are properly chosen positive
constants. The following equalities hold after a finite-time
transient process:{

x0 = f0(t)

xr = vr−1 = f (r−1)0 (t), r = 1, 2, · · · , r
(22)

For the aforementioned FTISMDO, the f (t) indicates soi,
and ṡoi can be obtained by v1.
Remark 3: The FTISMDO requires the upper bound of

δ̇1, ˙̂qe and ˙̂ω. Here, δ̇1 contains the information of 1q̇e and
1ω̇, whose bounds are known as 1 ¯̇qe and 1 ¯̇ω respectively.
Meanwhile, ˙̂qe can be obtained from q̂e and ω̂, and ˙̂ω can
be calculated by the finite-difference method [45] from ω̂.
Hence, the upper bound of δ̇1 can be properly obtained.
Step 2: The measured dynamic equation in terms of back-

stepping variables can be written as:

Ĵ (ż2 + α̇)+ (z̃2 + α̃) Îs (z2 + α) = δ2 + u (23)

where z̃2 and α̃ represents the skew symmetric matrix of z2
and α respectively. Therefore, ż2 can be expressed as:

ż2 = −Ĵ
−1 [

(z̃2 + α̃) Îs (z2 + α)
]
+ Ĵ
−1
u+ δ3 (24)
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where δ3 is the lumped uncertainties and is described as
follows:

δ3 = −α̇ + Ĵ
−1
δ2 (25)

The control law u is designed as:

u = −ĴK2z2 − Ĵ δ̂3 + (z̃2 + α̃) Îs (z2 + α)

− εĴ(E (z1))Tz1 (26)

where K2 ∈ R3×3 is a positive definite diagonal matrix, ε is a
positive constant, and satisfies 0 < ε ≤ 1, δ̂3 is the estimation
of δ3 which is obtained by FTISMDO.
Remark 4: The FTISMDO for δ3 can be described as:

l0 = z2 − ς (27)

ς̇ = −Ĵ
−1 [

(z̃2 + α̃) Îs (z2 + α)
]
+ Ĵ
−1
u+ δ̂3 (28)

l1n = l̇0n +
∫ t

0

(
p1nsigφ1n (l0n)+ p2nsigφ2n (l̇0n)

)
ds (29)

˙̂
δ3 = p1nsigφ1n (l0n)+ p2nsigφ2n (l̇0n)+ ϑ1nsigν(l1n)

+ϑ2nl1n + L ′nsgn (l1n) (30)

where l0 = [l01 l02 l03]T, n = 1, 2, 3. p1n, p2n, φ1n, φ2n,
ϑ1n, ϑ2n, L ′n and ν are positive constants, L ′j ≥ supt≥0

∥∥δ̇3∥∥,
and φ2p = φ1p/

(
1+ φ1p

)
, 0 < φ1p < 1.

Remark 5:The upper bound of δ̇3 is requried for L ′j . Similar
to Remark 3, bounds of 1 ¯̇qe, 1 ¯̇ω, ˙̂qe and ˙̂ω are available.
According to (11), 4Fsaξa�aη̇a + 2Fsa3aηa is equivalent to
u+ d − J

(
˙̂ω +1ω̇

)
−

(
˜̂ω +1ω̃

)
Is
(
ω̂ +1ω

)
, where ¯̇d is

available, ¨̂ω and u̇ can be calculated by the finite-difference
method [45]. Therefore, the upper bound of δ̇3 can be prop-
erly chosen.
Theorem 1: If the diagonal elements of K1 and K2 satisfy

K1d ≥ 1/2 (d = 1, 2, 3, 4) and K2f ≥ 1/2 (f = 1, 2, 3)
respectively, then the designed control law u can guarantee
that all variables in the closed-loop are bounded, and the
controlled states qe and ω converge to origin in finite time.

Proof: The candidate Lyapunov function V1 is defined
as:

V1 =
1
2
z1Tz1 (31)

Based on α(16) and δ̂1(20), the derivative of V1 is derived
as:

V̇1 = z1Tż1
= z1T (E (z1) (z2 + α)+ δ1)

= −z1TK1z1 + z1Tδ̃1 (32)

where δ̃1 = δ1 − δ̂1 is the estimation error of δ̂1.
Further, the second candidate Lyapunov function is pro-

posed as:

V2 =
1
2
z2Tz2 + εV1 (33)

Set δ̃3 as the estimation error of δ̂3, and δ̃3 = δ3− δ̂3 holds.
Based on (24),(26),(32), the time derivative of V2 is derived
as follows:

V̇2 = z2Tż2 + εV̇1

= z2T
(
−Ĵ
−1 [

(z̃2 + α̃) Îs (z2 + α)
]
+ δ3 + Ĵ

−1
u
)

+ ε
(
−z1TK1z1 + z1Tδ̃1

)
= z2T

(
−K2z2 + δ3 − δ̂3

)
− εz1TK1z1 + εz1Tδ̃1

= −εz1TK1z1 − z2TK2z2 + εz1Tδ̃1 + z2Tδ̃3

≤ −εz1TK1z1 − z2TK2z2 +
1
2
ε
(
z1Tz1 + δ̃

T
1 δ̃1

)
+

1
2

(
z2Tz2 + δ̃

T
3 δ̃3

)
= −εz1T

(
K1 −

1
2
I4

)
z1 − z2T

(
K2 −

1
2
I3

)
z2

+
1
2

(
εδ̃

T
1 δ̃1 + δ̃

T
3 δ̃3

)
(34)

According the finite-time convergence of the FTISMDO,
the estimation errors δ̃1 and δ̃3 would converge to zero after
a finite time tf . In addition, the diagonal elements of K1
and K2 guarantee that (K1 − 1/2I4) and (K2 − 1/2I3) are
positive definite matrices. Therefore, after tf , V̇2 can be trans-
formed as:

V̇2 ≤ −εz1T
(
K1 −

1
2
I4

)
z1 − z2T

(
K2 −

1
2
I3

)
z2 ≤ 0

(35)

As a result, we prove that the attitude control system under
the proposed controller is asymptotically stable, and the states
z1 and z2 will converge to origin asymptotically. As q̂e → 0
and ω̂ → 0, the actual attitude parameters qe and ω will
converge to small neighbourhoods of origin respectively. In
addition, it can be concluded from (35) thatV2 decreases from
a bounded initial value V2(0) to zero. Therefore, all the states
in the closed-loop are bounded under the anti-disturbance
attitude controller.

IV. NUMERICAL EXAMPLE
In this section, we will present a simulation example to
illustrate the effectiveness of the proposed technique. The
performance of the attitude controller is verified on a rigid
satellite with two symmetric solar arrays.

The spacecraft mass inertial nominal component is given
as: Îs = [57 9 12; 9 51 6; 12 6 57]kg · m2, and its uncertain
component is: 1Is = [0.06 0.05 0.01; 0.03 0.07 0.002; 0.02
0.001 0.09]kg · m2. The flexible coupling coefficient matrix
for each of the solar array’s vibration to the spacecraft’s
rotation is:

Fsa =

 1.4015 −1.1673 2.1987 1.2018
1.2807 1.0201 1.5673 −1.5782
2.1397 −1.2653 −0.7967 1.2304


Themodal frequency and damping diagonal matrix of each

solar array is: �a = diag {1.5908, 2.2757, 1.9482, 2.4858},
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ξa = diag {0.1133, 0.1712, 0.1548, 0.0578}. Hence, 3a =

diag {2.5308, 5.1789, 3.7953, 6.1794}.
The external disturbance is defined as: d = 0.02[1 +

sin(0.013π t), 1 + sin(0.012π t), 1 + sin(0.010π t)]T. In
addition, the measurement errors include: 1qe = 0.002[1 +
sin(0.023π t), 1 + sin(0.023π t), 1 + sin(0.021π t), 1 +
sin(0.013π t)]T, 1ω = 0.002[1 + sin(0.023π t), 1 +
sin(0.021π t), 1+ sin(0.013π t)]T.

The initial quaternion, angular velocity and modal coordi-
nate are given as: qe(0) = [0.173648, −0.263201, 0.789603,
−0.526402]T,ω(0) = [10◦, −9◦, 13◦]T, ηa(0) = 0, η̇a = 0.
The gains for controller are described as:
K1 = diag {65.62, 66.18, 65.99, 66.13}, K2 =

diag{65.99, 65.90, 65.93}.
The observer gains are given as: for δ̂1, k11 = 0.24e-5,

k12 = 0.21e-5, k13 = 0.23e-5, k14 = 0.22e-5, k21 = 0.31e-5,
k22 = 0.28e-5, k23 = 0.27e-5, k24 = 0.29e-5, λ11 = 1.65e-5,
λ12 = 1.83e-5, λ13 = 1.85e-5, λ14 = 1.77e-5, λ21 =
1.62e-5, λ22 = 1.65e-5, λ23 = 1.59e-5, λ24 = 1.63e-5,
γ = 4.89e-3, β11 = 0.0020, β12 = 0.0019, β13 = 0.0023,
β14 = 0.0021, L1 = 0.859e-5, L2 = 0.895e-5, L3 =
0.860e-5, L4 = 0.905e-5. For δ̂3, p11 = 5.12e-2, p12 =
5.29e-2, p13 = 5.30e-2, p21 = 6.30e-2, p22 = 6.25e-2,
p23 = 6.28e-2, ϑ11 = 1.3e-2, ϑ12 = 1.1e-2, ϑ13 = 1.2e-2,
ϑ21 = 1.0e-2, ϑ22 = 1.9e-2, ϑ23 = 1.2e-2, ν = 0.89,
φ11 = 0.36, φ12 = 0.36, φ13 = 0.36, L ′1 = 3.9e-5,
L ′2 = 3.9e-5, L ′3 = 3.9e-5, L ′4 = 3.9e-5.

The HOSMD Gains for both δ̂1 and δ̂3 are given as η0 =
0.15, η1 = 2.5, η2 = 6.5, η3 = 2.5, η4 = 13.8.
The simulation results are presented in Fig.4-Fig.11.

Fig.4-Fig.5 illustrates the trajectory of the measured and
actual quaternion respectively.

FIGURE 4. Trajectory of the measured quaternion.

From Fig.4 it can be seen that the measured quaternion
converges to origin asymptotically, while the convergence
error of the actual quaternion is larger, which is caused by
the measurement error in the model. The trajectory of the
measured and actual angular velocity are presented in Fig.6-
Fig.7 respectively.

Similar with q̂e and qe, the convergence error of ω in Fig.7
is also larger than that of ω̂ in Fig.6. The development of the
solar array’s modal coordinate is given in Fig.8.

It can be observed from Fig.8 that all of the modal
coordinates(N = 4) converge to small neighborhood of
origin gradually, while the convergence speed is slower than

FIGURE 5. Trajectory of the actual quaternion.

FIGURE 6. Trajectory of the measured attitude angular.

FIGURE 7. Trajectory of the actual attitude angular.

FIGURE 8. Trajectory of the modal coordinate.

that of the attitude states in Fig.4-Fig.7. The reason is that
the attitude states converging to origin means the gradual
vanishment of the vibration exicitement, while the flexible
appendages require more time to calm down.

Fig.4-Fig.8 verify the effectiveness of the proposed con-
troller in the presence of various disturbances. With ±1Nm
being the control input constraint, the trajectory of the pro-
posed controller is illustrated in Fig.9.

The actual lumped uncertainties δ1 and its estimation
δ̂1, and δ3 and its estimation δ̂3 are respectively presented
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FIGURE 9. Trajectory of the control torque.

FIGURE 10. δ1 and its estimation δ̂1.

FIGURE 11. δ3 and its estimation δ̂3.

in Fig.10-Fig.11. The subfigures indicate each of the vector
components.

Fig.10-Fig.11 illustrates that the two observers can effec-
tively evaluate the lumped disturbances during the controlling
process.

V. CONCLUSION
In this paper, an anti-disturbance backstepping control
scheme has been proposed for the attitude stabilization of
the rigid-flexible coupling spacecraft. The robust controller is
structured in two steps via the backstepping method. With the
inertia uncertainties, external disturbance and measurement
errors being considered, the FTISMDO is utilized twice in the
controller design process to estimate lumped uncertainties.
The simulation results verify that the FTISMDO-based back-
stepping controller is robust to various disturbances, and
can effectively solve the attitude stabilization problem for
rigid-flexible coupling spacecraft.
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