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ABSTRACT The optimal wheel/rail adhesion of heavy-duty locomotives under traction must be determined
given that suboptimal wheel/rail adhesion may result in low creep utilization, skidding, and idling. Here,
we present an algorithm for the online identification of adhesion parameters. The algorithm is used for
the online parameter estimation of the nonlinear wheel/rail adhesion model. The factors that influence the
wheel/rail adhesion–slip ratio relationship are analyzed and described using Burckhardt’s nonlinear model.
Then, an identification model is established to obtain the corresponding likelihood function within the
framework of parameter identification based on maximum likelihood. Given the nonlinearity of the problem,
a modified differential evolution algorithm is used for the parameter estimation of the identification model to
obtain an algorithm for the online estimation of the nonlinear adhesion model. Finally, numerical simulation
experiments are conducted under different conditions. Experimental results show that the proposed algorithm
can address the nonlinearity of the model and the uncertainty of the rail surface environment.

INDEX TERMS Advanced modeling, differential evolution, heavy-duty locomotive, method of maximum
likelihood, nonlinear identification.

I. INTRODUCTION
In heavy-duty locomotives, the requirements of adhesive
utilization, anti-idling, and ramp passing are becoming
increasingly stricter with increased axle load and train for-
mation [1] . Thus, the locomotive must meet the actual needs
of longitudinal traction and provide it steadily [2]. Therefore,
the effective estimation of the wheel/rail adhesion perfor-
mance parameters provides a basis for the control and opti-
mization of the longitudinal traction, and can better ensure
the safe operation and smooth passing of the locomotive [3].

The longitudinal traction of the heavy-duty locomotive
must be achieved by the adhesion resulted from the wheel
movement relative to the rail. Accordingly, when the loco-
motive is running, the linear speed of the wheel-set is greater
than that of the locomotive, and the speed difference is
the so-called creep speed. A nonlinear relationship exists
between the creep speed and the adhesion, which is described
as the characteristic curve of the adhesion. On this basis,
the adhesion performance parameters under the current con-
dition for the wheel and rail such as the maximum adhesion

coefficient and the optimal creep point are known. As regards
some of the existing estimation methods for the adhesion
performance parameters, in literature [4] the recursive least
square is adopted for identification of the wheel/rail adhe-
sion model. The algorithm is adaptive to variations in the
model parameters but does not duly consider perturbations
introduced in the differential algorithm. In literature [5], [6],
the fuzzy algorithm is used for quickly identifying traffic.
However, it only considers variations in the adhesion with
the third medium, with incomplete estimates on the model.
In literature [7], by presetting several types of models, the
current rail surface type is identified online. The algorithm
is real-time and accurate. However, given that its accuracy
depends on the preset model, different preset models must be
applied to different locomotives. Thus, the applications of the
algorithm are limited.

The wheel/rail adhesion behavior of the locomotive is
part of a complex process that is subject to the axle load
of the locomotive, the third medium, ambient temperature,
humidity, and so on; the behavior is time-varying and nonlin-
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ear [8]–[10]. For example, when the dry third medium turns
into water, the adhesion coefficient will drop by 40%. When
the ambient humidity rises from 20% to 100%, the adhe-
sion coefficient will decrease by approximately 17% [11].
Therefore, the identification of the wheel/rail adhesion model
for the locomotive must satisfy the nonlinear and time-
varying requirements.

Several literatures [12]–[14] have proposed parameter
identificationmethods based on project mapping, model error
function and attenuation memory filter. Maximum likelihood
estimation (MLE) is a widely applied algorithm for parameter
estimation and indicates excellent statistical characteristics
such as consistency and progressiveness [15]. The MLE
algorithm constructs a likelihood function using the system
model and the observed data and estimates unknown model
parameters by solving the extremum of this likelihood func-
tion [16]. Accurate parameter estimation also provides a basis
for control [17]. Thus, theMLEmethod is used to identify the
adhesion model online.

The main contribution of this work is as follows.
An algorithm for the identification of the adhesion model
for heavy-duty locomotives is constructed under MLE by
considering the nonlinear and time-varying adhesion–slip
ratio relationship of locomotives. A discrete adhesion–critical
model, which provides the likelihood function under MLE
and uses a modified differential evolution algorithm for prob-
lem solution, is established by analyzing the adhesion behav-
ior of locomotives.We introduce themodified variation factor
to improve computational speed and sensitivity to environ-
mental changes to enable adaptation to the unpredictable
external environmental changes of the locomotive.

This paper is organized as follows. The factors that affect
the adhesion performance of the locomotive are introduced
in Section 2. An analysis of the wheel/rail adhesion model is
presented in Section 3. The proposed identification algorithm
of the nonlinear wheel/rail adhesion model for heavy-duty
locomotives is discussed in Section 4. The verification of the
effectiveness of the proposed MLE algorithm through simu-
lations is discussed in section 5. The conclusion is provided
in Section 6.

II. SYSTEM DESCRIPTION
The longitudinal traction of locomotives is generated by the
creep between the wheels of locomotives. When the motor
torque acts and drives the wheel-sets to roll, the rail seg-
ment before the contact zone is stretched as the wheel-set is
compressed and that behind the contact zone behaves in the
opposite manner. Microscopically, the contact zone indicates
the slip ratio with the followingmacroperformance:When the
locomotive is driven forward, the linear speed of the wheel-
set is higher than the speed of the locomotive body. The speed
difference is called creep speed vs, which is expressed as
follows: [18]

vs = rw− v (1)

where r represents the wheel-set radius, w represents the
wheel-set angular velocity, and v represents the locomotive
speed. The slip ratio λ is further defined as: [19]

λ =
rw− v
v

(2)

In discussions about adhesion control, the adhesion
coefficient µ is defined as:

µ =
fad
Mg

(3)

Where fad represents locomotive adhesion, M represents
the axel traction effort, and g represents acceleration due to
gravity.

Creep motion is a power source for locomotive traction
and braking. The adhesion provided by the wheel/rail contact
patch is divided into longitudinal, horizontal, and spin slip
ratio [20]. The longitudinal slip ratio is a concern because of
its dominance in traction or braking [21].

The relationship between creep speed and adhesion in the
longitudinal slip ratio can be described by the characteristic
curve of adhesion. The ideal characteristic adhesion curve
is a smooth unimodal curve. However, the measured char-
acteristic curve of adhesion tends to exhibit a certain width
because of the uncontrollable external environment and the
self-coupling and nonlinearity of locomotives.

Some studies indicate that because the locomotive is run-
ning in an open environment, the third medium, ambient
temperature, air humidity and so on significantly affect the
wheel/rail adhesion performance [10], [22]. Among such
factors, the third medium is the most influential. For example,
the adhesion coefficient with the aqueous medium drops
by 40% compared with that with the dry medium [11]. Aside
from the third medium, ambient temperature and air humidity
affect the adhesion in a continuous time-varying manner,
and the adhesion changes slowly and continuously as these
quantities vary. For example, studies have shown that when
the ambient humidity rises from 20% to 100%, the adhesion
coefficient will drop by approximately 17% [11].

Actual adhesion performance can be effectively charac-
terized by some creep models that are based on the creep
mechanism.Most of thesemodels are based on rolling contact
theory and are highly consistent with actual adhesion per-
formance. However, these models cannot be applied to the
optimal control of traction and braking because of the intro-
duction of some immeasurable and nonconstant quantities,
such as creep patch size and friction factor.

Given the difficulties encountered by mechanistic models,
empirical models fitted with measured data are generally
adopted in the traction control of locomotives. These empiri-
cal models are simpler than mechanistic models and indicate
the improved goodness of fit. Thus, they are widely used in
controlling traction and braking.

Regardless of the type of adhesion model, the described
adhesion characteristic curve is generally uni-modal. Con-
sidering this feature, in the literature, researchers considered
maintaining the creep speed close to the point at which the
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TABLE 1. Parameters of burckhardt’s model [19], [31], [32].

derivative thereof is less than zero, thereby attaining the max-
imum adhesion [23], [24]. This method can avoid obtaining
adhesion performance parameters. However, such methods
with differential operators or complex observers introduced
are sensitive to interference and indicate certain limitations
in practice.

If the wheel/rail adhesion model parameters of the locomo-
tive are identifiable in real-time, the adhesion performance
parameters under the current rail surface condition will be
obtained. If differential operations are introduced in the trac-
tion and braking control of the locomotive, the locomotive
is kept close to the optimal creep point, thereby increasing
the adhesion utilization rate of the locomotive [25]–[27]. The
key to such control methods is the real-time acquisition of
adhesion performance parameters such as maximum adhe-
sion coefficient and optimal creep point. We assume that the
wheel/rail adhesion model is µ = f (λ, θ), where θ repre-
sents the model parameters. Via real-time solutions to the
parameter θ , model parameters such as maximum adhesion
coefficient and optimal creep point are indirectly obtained,
thereby improving the passing of the locomotive and ensuring
braking safety [28].

III. WHEEL/RAIL ADHESION MODEL
Based on the nonlinear magic formula tire model proposed
by Pacejka, Burckhardt obtained the corresponding nonlinear
model, which was coined Burckhardt’s model, via theoretical
deformation and simulation analysis: [29]

u (λ) =
[
c1
(
1− e−c2λ

)
− c3λ

]
· e−c4λV ·

(
1− c5F2

Z

)
(4)

In Equation (4), c1, c2, c3, c4, c5 represents the model
parameter, and λ represents the slip ratio. Given that the prod-
uct of the latter two items of the model e−c4λV ·

(
1− c5F2

Z

)
is

close to 1, they are generally ignored in studies on the adhe-
sion. Thus, Burckhardt’s model tends to use the following
form: [30]

u (λ) =
[
c1
(
1− e−c2λ

)
− c3λ

]
(5)

The model in Equation (5) has been applied in locomotive
adhesion control [31]. A control method based on the Burck-
hardt model has been proposed [19].

The typical model parameters are as follows:
In Burckhardt’s model,µ (λ) represents the adhesion coef-

ficient with λ as a variable, and c1, c2, c3 represents the rail
surface parameter. As for the identification, the parameters

FIGURE 1. Characteristic curve of adhesion in Burckhardt’s model.

to be estimated are c1, c2, c3, which are denoted as θ =

[c1, c2, c3]. Through simple derivation, the optimal creep
point that is pertinent to the adhesion control, namely the
maximum adhesion coefficient µm (λm) and the correspond-
ing slip ratio λm, can be calculated as follows:

µm (λm) = c1 −
c3
c2

(
1+ log

c1c2
c3

)
, λm =

1
c2

log
c1c2
c3

(6)

Based on Equation (6), the location of the optimal creep
point is determined by c1, c2, c3.

Burckhardt’s model has high accuracy and few parameters.
It can meet the requirements of real-time and accurate online
identification provided that its nonlinear characteristics are
overcome.

In summary, model parameters c1, c2, c3, which are deter-
mined through online identification, can provide a remark-
able basis for the control and optimization of wheel/rail
adhesion.

IV. IDENTIFICATION ALGORITHM
A. SETTING THE LIKELIHOOD FUNCTION
Here, the parameter to be estimated θ = [c1, c2, c3] is
solved by establishing the MLE framework. In the maximum
likelihood method, we construct a likelihood function that
relates to the measured data and the unknown parameters, and
we obtain the parameter identification value of the model by
maximizing this likelihood function.

In Equation (5), µ represent the adhesion coefficients, λ
represents the slip ratio, and c1, c2, c3 represents the coeffi-
cient to be identified. By outputting z (k) = µ (k), the data
vector is h (k) = λ (k), and the parameter to be identified
is θ (k) = [c1 (k) , c2 (k) , c3 (k)]. k is the sampling point.
Considering the noise n (k) ∼ N (0, 0.01), the identification
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model is established below:

z (k) =
N∑
i=1

θi · hi (k)+ n (k)

= c1 − c1 · e−c2·h(k) − c3 · h (k)+ n (k) (7)

The innovation (i.e., the output prediction error equation)
is

z̃ (k) = z (k)− ẑ (k) = z (k)− hT (k) θ̂ (k − 1) (8)

Under the maximum likelihood framework, the maximum
log likelihood function is obtained by Equation (7):

L (ZL |HL−1, θ) = lnP (ZL |HL−1, θ)

= c−
L
2
· ln 2π −

1
2 · σ 2 ·

L∑
k=1

n2 (k) (9)

Based on the principle of maximum likelihood iden-
tification, the parameter to be identified θ (k) =

[c1 (k) , c2 (k) , c3 (k)] is the value that facilitates a maximal
logarithmic likelihood function; that is

θ̂ = argmax
θ

L (ZL |HL−1, θ) (10)

Based on Equation (9), the following minimum value is
taken after being divided by the constant term, thereby obtain-
ing the maximum value of Equation (10):

L∑
k=1

n2 (k) (11)

We introduce the identification model as Equation (8) into
Equation (11):
L∑
k=1

n2 (k) =
L∑
k=1

(
zk − c1 + c1 · e−c2·h(k) + c3 · hk

)2
(12)

The objective function is

J (θ) =
L∑
k=1

(
zk − c1 + c1 · e−c2·h(k) + c3 · hk

)2
(13)

Based on Equation (13), the parameter to be identified
θ (k) is the value that facilitates a minimal logarithmic objec-
tive function; that is

θ̂ = argmax
θ

J (θ) (14)

In addition, since the derivation process above are
maximum-likelihood based, they have associated known and
asymptotically optimal statistical properties. The conver-
gence and reliability of the algorithm are shown in the fol-
lowing expressions

θ̂
a.s.
−→
L→∞

θ0 (15)

In Equation (15), θ0 represents the true value of model
parameters.

Given that the objective function is a nonlinear equation,
the general method is not applicable, and the modified dif-
ferential evolution is adopted to solve the extremum. The
identification framework is below.

FIGURE 2. Identification framework.

B. MODIFIED DIFFERENTIAL EVOLUTION ALGORITHM
The parameters are designed for the differential evolution
algorithm below.

The differential evolution algorithm is modified given
that the parametric variation form of the locomotive in the
actual operation is characterized by a jump that indicates
time-varying characteristics. This modification improves the
speed and accuracy of the algorithm.
Step 1: For the generation of the initial population,

the algorithm is converted into the form of θ̂ (k − 1) + bell
curve.

The selection of the initial value for the common differen-
tial evolution algorithm is at random in the entire value range.
However, considering the actual operating conditions of the
locomotive, when the locomotive is steadily running with the
external environment remaining unchanged, the wheel/rail
adhesion-creep is relatively stable. In that case, the parame-
ters are slowly time-varying. To increase the convergence rate
for the differential evolution algorithm, the initial population
generated for the differential evolution algorithm is designed
as follows:

xij = θ (k − 1)+ N (0, σ ) (16)

Step 2:Modified variation factor
The size of the variation factor determines the diversity of

the population. When the rail surface environment does not
jump; that is, the innovation equation does not change too
much, the variation factor should be smaller. Furthermore,
by accelerating the convergence of the algorithm, unnec-
essary calculations may be avoided. When the innovation
equation changes significantly, the variation factor should
be greater, thereby ensuring that algorithm jumps faster out
of local extremum. Aided by the logistic function, the time-
varying variation factor is designed as follows:

F (k) = 0.3+
0.8

1+ e−10·|z̃(k)|+2
(17)

C. FLOWCHART OF THE ALGORITHM
Figure 3 describes the flow of the algorithm. First, the param-
eters of the differential evolution algorithm are initialized in
accordance with Table 2. The initialization group is generated
in accordance with Equation (16) and proceeds in the loop
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TABLE 2. Differential algorithm parameters.

FIGURE 3. Algorithm flowchart.

to find the extremes. Finally, the online estimation of the
parameters is achieved.

V. SIMULATION ANALYSIS
We design three simulation experiments to verify the validity
of the algorithm.

In Experiment 1, we simulate the identification results of
the model for a locomotive that runs on a single rail surface.
The situation in which the rail environment is switched is
considered.

In Experiment 2, we determine whether the algorithm can
effectively adapt to changes in the rail surface and track the
real-time changes in the rail surface in a timely manner.

FIGURE 4. Identification results of c1.

FIGURE 5. Identification results of c2.

FIGURE 6. Identification results of c3.

FIGURE 7. Identification results of the maximum adhesion coefficient.

In Experiment 3, we perform a control experiment to inves-
tigate the effects of the modified time-varying differential
evolution algorithm.
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FIGURE 8. Identification results of c1.

FIGURE 9. Identification results of c2.

FIGURE 10. Identification results of c3.

FIGURE 11. Identification results of the maximum adhesion coefficient.

Experiment 1:We conduct the parameter identification of
sequence processing on the single rail surface and estimate
the most important adhesion performance parameter, namely,

FIGURE 12. Histogram of the maximum adhesion coefficient.

FIGURE 13. Identification results of c1.

FIGURE 14. Identification results of c2.

FIGURE 15. Identification results of c3.

the point of peak adhesion. Input signals mainly consider
the actual train driving conditions in the creeping zone, and
only a small part of the data points indicate idling. Thus,
the data designed for the simulation experiments only contain
the relevant data with the slip ratiowithin the range of [0, 0.5].

By setting the noise to v (k) ∼ N (0, 0.01), and the ini-
tial value of the estimation algorithm is randomly generated
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FIGURE 16. Identification results of the maximum adhesion coefficient.

FIGURE 17. Histogram of the maximum adhesion coefficient.

within the parameter search range. The experimental results
are below.

The simulation results indicate that parameter c1, c2 has
already converged to a true value at the slip ratio of approx-
imately 0.1. The parameter with the largest error c3 begins
to converge at a slip ratio of approximately 0.4, and the
corresponding maximum adhesion coefficient converges to
near a true value. This result suggests that the algorithm can
converge within an acceptable range.
Experiment 2: In actual locomotive operation, the exter-

nal environment may suddenly change, and parameters are
slowly changing. Thus, we consider the validity of the algo-
rithm in the case of a sudden change in the rail surface. Each
data block contains 500 data points after processing. The data
used in the simulation experiment are also incomplete and
only contain data with a slip ratio within the range of [0, 0.2].
By setting the noise to v (k) ∼ N (0, 0.01), and the ini-

tial value of the estimation algorithm to [c1 (0) = 0.5,
c2 (0) = 30, c3 (0) = 0.08], we conduct a Monte Carlo
experiment to verify the adaptability of the estimation algo-
rithm in practice. The experiment results are as follows:

The simulation results indicate that after modification
through block processing, the effects of the algorithm have
improved. In particular, the effect of the algorithm on rail
surface adhesion coefficient, which is of particular interest
in adhesion control, has considerably improved. The origin

of the maximum error from parameter c3 indicates relatively
high volatility.
Experiment 3: In the control experiment, we add the

modified experiment results to illustrate the validity of the
modified differential algorithm. Except for the improvements
mentioned in 4.2, nearly all the parameters are the same as
those in Experiment 2. The innovation equation for the sum-
mation in the block processing is substituted for the original
innovation equation. The experimental results are as follows:

We compare Experiments 2 and 3 where k = 50 and
k = 100, respectively. That is, the rail surface environment
presents a sudden change. In this situation, we find that the
volatility of the estimation results is greatly reduced given
the two improvements in the differential algorithm. When
the surface environment changes suddenly, themodified algo-
rithm allows for the rapid tracking of parameter transitions.
The histogram also indicates that the estimation results are
concentrated. Ideally, the solution of the algorithm is accel-
erated by improving the variation factor. However, the maxi-
mum number of iterations is limited because the calculation
is finite. Therefore, the modified variation factor can improve
accuracy and tracking speed with limited calculation.

VI. CONCLUSIONS
The identification of the proposed nonlinear wheel/rail
adhesion model for heavy-duty locomotives is suitable for
the parameter estimation of the relationship between the
wheel-set and the rail in a nonlinear, time-varying, and noisy
environment with incomplete data. An algorithm for parame-
ter identification for the wheel/rail adhesion model based on
Burckhardt’s nonlinear model is obtained through maximum
likelihood. We obtain an algorithm for parameter estimation
by introducing a modified differential evolution algorithm to
cope with the nonlinear difficulties encountered by the model
and to solve the corresponding likelihood function. The intro-
duction of the time-varying variation factor accelerates the
solution of the algorithm and increases the adaptability of
the algorithm to the environment. The results of simulation
experiments illustrate that the estimation algorithm effec-
tively tracks changes in the wheel/rail of locomotives and
compensates for missing locomotive data.

Future research based on this work may focus on the
tracking speed of the optimization algorithm. A gradient
descent algorithm with high robustness may be applied as an
alternative to the differential evolution algorithm used in this
work.
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